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Oxidation reactions may be considered as the heart of chemical synthesis. However, the indiscriminate uses of harsh and corrosive
chemicals in this endeavor are threating to the ecosystems, public health, and terrestrial, aquatic, and aerial flora and fauna.
Heterogeneous catalysts with various supports are brought to the spotlight because of their excellent capabilities to accelerate the
rate of chemical reactions with low cost. They also minimize the use of chemicals in industries and thus are friendly and green to the
environment. However, heterogeneous oxidation catalysis are not comprehensively presented in literature. In this short review, we
clearly depicted the current state of catalytic oxidation reactions in chemical industries with specific emphasis on heterogeneous
catalysts. We outlined here both the synthesis and applications of important oxidation catalysts. We believe it would serve as a

reference guide for the selection of oxidation catalysts for both industries and academics.

1. Introduction

Oxidation reactions play a pivotal role in chemical industry
for the production of many crucial compounds [1]. For
example, selective oxidation of alkyl substituted benzene pro-
duces alcohol and ketones which have significant biological
and mechanistic interest in modern organic synthesis [2].
Ethylbenzene is a representative compound of various linear
and phenyl-substituted alkanes and is a model substrate to
study alkane oxidation reactions. The oxidation products
of ethylbenzene include acetophenone and 1-phenylethanol
which have been used as precursors for the synthesis of a wide
variety of drugs, such as hydrogel [3], optically active alcohols
[2], hydrazones [4], benzalacetophenones (chalcones) [5],
tear gas, and resins [6].

In the past, efforts were made for the oxidation of alkyl
substituted benzene to useful products such as benzylic and
allylic ketones by adding stoichiometric amounts of strong
oxidants such as chromium (IV) reagents, permanganates,
tert-butyl hydroperoxide (TBHP), selenium oxide (SeO,),
ruthenium (VIII) oxide, hydrogen peroxide, nitric acid, and
oxygen [7-9]. However, most of these chemicals are either
toxic or corrosive to reactor wall, unstable in atmospheric
conditions, nonspecific in actions, which produce many
undesirable side products, and that increases the purification

cost and environment pollutant [7-9]. These traditional
transformation schemes are also time consuming and cannot
be recycled [10].

The green chemistry approaches must meet health and
environmental safeties and use very little chemicals reducing
both cost and time [11]. Catalytic approaches might be
considered as green since specific chemical transformation
could be achieved within very short time with the addition of
very little catalysts, significantly reducing production cost as
well as health and environmental risks [12, 13]. According to
the North American Catalysis Society, approximately 35% of
global GDP rest on catalysts and the use of catalysts in indus-
try are increasing 5% per year [14]. Currently, more than 60%
of chemical synthesis and 90% of chemical transformations
in chemical industries are using catalysts [15, 16]. In 2013,
the sales of catalysts were between 15.5 billion USD and the
turnover in industries using catalyst was 14 trillion USD.

Homogeneous catalyst has been extensively used in the
oxidative process for the manufacturing of bulk as well as
fine chemicals. This is because of its efficiency in bringing
huge influences in chemical conversion via the same phase
catalysis reaction [17]. In the recent time, some transition
metal ion complexes have shown high selectivity, efficiency,
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TABLE 1: Major features, advantages, and disadvantages of the commonly used support materials.

Supports materials Features Advantages Disadvantages References
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(2) High melting point and g)) ?:ﬁﬂly S:;Elere d
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Alumina (3) Resistant to abrasion § hydrolysis rate of (73]
and chemical attack pore volume aluminum precursors
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con du% tivity (5) Narrow pore size
1) Tendency to form large . .
fle)tworks ! ’ (1) High efficiency (1) Low compatibility
Silica (2) Found in nature and (2) High selectivity (2) Formation of [74]
living organisms (3) Highly stable aggregates/agglomerates
3) Pz(Igar diess (4) Mechanical strength 881¢8 88
(1) Highly effective
(2) Less or no corrosion (1) Irreversible adsorption
(3) No waste or disposal .
. or steric blockage of heavy
(1) Microporous problems secondary products
. 2) Inertness (4) High thermo stability S .
Zeolit ( 75,76
comte (3) Excellent electron (5) Easy set-up of EIZJCIITP(?:S;?; lity of using [ |
conductivity continuous processes b Y .
s (3) Difficult to exploit the
(6) Great adaptability to shave selectivit
practically all types of P Y
catalysis
(1) High mechanical
strength )
(1) Nonmetallic (2) Large surface area (1})1 I;Illcg:; ;ecltlil}::triztrlllre
Carbon (2) Tetravalent (3) Excellent electron I()Z)YEX ensive (77, 78]
conductivity pen ’
(3) Porous structure - (3) Emission of greenhouse
(4) Good elasticity asses during pyrolysis
(5) Thermal stability 8 & PYroly

(6) Inertness

and reproducibility to catalyze the reaction under mild con-
ditions. The single catalytic entity in homogeneous catalysts
can act as a single active site which can speed up reaction and
reduce the reaction time [18]. However, homogeneous cat-
alytic processes produce huge waste materials, significantly
disrupting the environmental and ecological stability [19-21].
One of the main disadvantages to the use of these types of
catalysts is the ease of separating of the comparatively affluent
catalysts from the reaction mixtures at the end of reaction
[9, 19, 22]. Homogeneous catalysts also cause corrosion to
the industrial materials and some of them are deposited on
the reactor wall. To get rid of these problems and minimize
environmental hazards, the homogenous catalysts could be
prepared by the dispersion of metal on an insoluble solid
supports via covalent anchoring to keep the metal on the
surface where catalysis reaction takes place [18, 22].
Heterogeneous catalyst is considered to be a better choice
for the synthesis of commodity materials [23-25]. Nowadays,
silica, carbon, clay, zeolite, metal oxide polymers, and other
mesoporous materials are being used as inorganic solid
supports [26, 27]. Supported materials can be obtained as
complexes with transition metals and Schiff base ligands
by heterogenization process [28]. The application of sup-
ported polymers in catalytic oxidation has gained much
attention because of their inertness and nontoxic, nonvolatile,
and recyclable criteria [29]. Among inorganic supports,

the mesoporous materials have been proven to be ideal
catalyst supports due to their three-dimensional open pore
network structures, high surface area and porosity, high
reusability and heat stability, and uniform and interconnected
pores which offer a reliable and well-separated atmosphere
for the deposition of dynamic components and interactive
surfaces between the catalysts and reactants [30-38]. Various
support materials along with their major features are pre-
sented in Table 1.

Heterogeneous catalysts promote oxidation reactions via
attracting oxygen from oxidants, such as TBHP (tert-BuO,H)
and HP (H,0,) [39, 40]. In the last decade, TBHP has been
used as oxidant for various oxidation reactions such as alkyl
benzene and benzyl alcohol oxidation. In this review, we
described heterogeneous catalysts, their synthesis schemes
on various supports, and applications in selected oxidation
reactions. The comparative features of homogeneous and
heterogeneous catalysts are presented in Figure 1.

2. Heterogeneous Catalysts

In heterogeneous catalysis reaction, the catalysts and reac-
tants exist in different phases. In reality, the vast majority of
heterogeneous catalysts are solids and the vast majority of
reactants are either gases or liquids [14]. A phase separation
catalysis reaction greatly helps in reactant, product, and
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(1) Difficult separation

(2) Reactor corrosion ]
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Disadvantages |
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(4) Product J

(5) Complicated handling ]

Vs

reactants, and products)
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\
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(2) Difficult to study and hence reaction
mechanisms are often unknown

FIGURE 1: Special features, advantages, and disadvantages of homo- and heterogeneous catalysts.

catalyst separation at the end of the reaction. Heterogeneous
catalysts are also easier to prepare and handle. These catalysts
consist of fine nanosized powders supported on technically
inert oxide substrates exhibiting all possible crystallographic
faces. The catalyst is often a metal to which chemical and
structural promoters or poisons are added to enhance the
efficiency and/or the selectivity. Currently, heterogeneous
catalysis is dominating in industries for chemical trans-
formation and energy generation. Approximately 90% of
all industrial practices indulge in heterogeneous catalysis.
The most recent applications of heterogeneous catalysts are
summarized in Table 2.

3. Heterogeneous Metal Catalysts
in Oxidation Reactions

Over the last few decades, scientists have paid tremen-
dous attention to heterogeneous catalysts to overcome the

limitations of their homogeneous counterparts to increase
products yields and minimize side reactions. Herein, we
reported a summary of selected oxidation reactions catalyzed
by supported metal catalysts.

3.1. Conversion of Glucose to Gluconic Acid. Recently, the
aerobic oxidation of glucose to gluconic acid (Figure 2)
has gained much consideration because of its water-soluble
cleansing properties and application in food additives and
beverage bottle detergents [41]. In the past, the oxidation of
glucose was carried out via biochemical pathways which are
cumbersome, multistep process, not recyclable, and expen-
sive [42]. The development of catalytic route is probably an
alternative pathway for the large scale production of gluconic
acid from glucose. In 1970s, researchers used to dope Pt
or Pd onto some heavy metals such as bismuth. However,
several limitations, such as instability, poor selectivity, and
low conversion rate, were encountered with this procedure
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FIGURE 2: Conversion of glucose to gluconic acid.
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without any supporting materials [42]. On the other hand,
bismuth on palladium or Pt/Pd on carbon supports demon-
strated high selectivity and stability and excellent conversion
rate, overcoming the limitations of the heavy metal supports.
Some features such as catalyst type and the role of bismuth
support are still a disputed issue [42].

Prati and Rossi (1997) [43] studied the oxidation of
1,2-diols and found excellent selectivity with gold catalyst
over platinum and palladium catalysts. The gold catalyst
showed unusual selectivity in the oxidation of alcohol to its
corresponding carboxylates whereas Pd or Pt showed lower
selectivity to oxidize ethane-1,2-diol. From this observation,
they also concluded that Au is less sensitive to overoxidation
and/or self-poisoning than Pd or Pt. Gold clusters and
nanoparticles (NPs) deposited on the metal oxide surface
such as Al,O; and ZrO, demonstrated unexpected catalytic
activity in the oxidation of glucose with better turnover fre-
quency (TOE reaction rate per Au atom surface). In addition
to carbon and metal oxide supports, some inorganic polymers
such as silica could be used as catalytic supports for small
Au nanoparticles (>10nm in diameter) [43]. The catalytic
effect of Au nanoparticles (2.5nm) held by polymer gel
was demonstrated by Ishida et al., [44]. Polymer supported
AuNPs exhibited higher catalytic performance than Au/C in
the oxidation of primary alcohols such as benzyl alcohol to
benzaldehyde in absence of base [45]. The catalytic activity
of various catalysts for glucose oxidation is summarized in
Table 3.

3.2. Selective Oxidation of Silanes to Silanols. Silane is an
inorganic compound having the silicon atom with chemical

formula SiH,. It is a colorless flammable gas with a sharp
and repulsive smell, somewhat similar to that of acetic acid.
Silane has interest as a precursor of silicon metal. Silane
may also be referred to many compounds containing sili-
con, such as trichlorosilane (SiHCl;), trimethyl(phenyl)silane
(PhSi(CHj;);), and tetramethylsilane (Si(CH;),) (Scheme 1).

The oxidation of silane to corresponding silanols (as
for example dimethylphenylsilane to dimethylphenylsilanol,
Scheme 2) is a key reaction to manufacture building blocks
for the synthesis of silica based polymers [46] and nucle-
ophilic couplers in organic synthesis. In the past, silanols
synthesis was often carried out by stoichiometric oxidation
of organosilanes, hydrolysis of halosilanes, or alkali treat-
ment of siloxanes which incurred environmental hazards. In
contrast, the catalytic oxidation of silanes with water is an
ecofriendly process since it produces silanols with high selec-
tivity, producing only hydrogen as a by-product. Supported
gold nanoparticles have shown higher catalytic activity and
selectivity on silane oxidation over other transition metal
catalysts [47]. Mitsudome et al. [48] oxidized aliphatic silanes
to silanols using hydroxyapatite supported AuNPs in water
at 80°C. Nanoporous gold also showed high reactivity and
selectivity towards silanes in acetone at room temperature
[49].

Recently, John et al. [50] have synthesized carbon nano-
tube-supported gold nanoparticles which showed turnover
frequency (TOF) 0f 18,000 h™" for silane oxidation in tetrahy-
drofuran (THF) at room temperature. However, the prepa-
ration of Au CNT (carbon nanotube) hybrids involved a
multistep layer-by-layer assembly which needed expensive
reagents which have limited its practicability. Li et al. [47]
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TaBLE 4: Comparison of supported gold catalysts for the oxidation of triethylsilane [47].
Catalysts Reaction condition Conversion rate (%)  Yield (%)
Substrate Solvent ~ Reaction temperature ~ Time (min)  Au/substrate (mol%)
Au/SiO, Water 25°C 3 0.4 99 99
Au/TiO, Water 25°C 3 0.4 81 81
Au/Fe,0, Triethylsilane  Water 25°C 3 0.4 36 36
Au/ZnO Water 25°C 3 0.4 89 89
Au/CeO, Water 25°C 3 0.4 98 98
Hydrogenation, H
ydrog 2 2H,0,
H, + 0, Catalyst H,0,
H,0 + 1/20,

Decomposition

ScHEME 3: Hydrogen peroxide formation, hydrogenation, and decomposition.

prepared silica supported gold catalysts for the selective
oxidation of silanes. However, they observed that silica
supported gold catalysts are more active than reducible oxides
(TiO,, Fe,0;, CeO,, etc.) supported AuNPs. Highly dis-
persed silica supported gold catalysts override the reducible
oxides supported AuNPs due to superior adsorption of silane
substrate on silica support. Surprisingly, for the oxidation
of dimethylphenylsilane in THF at room temperature, the
Au/SiO, catalyst afforded a TOF of 59,400 h™", which is the
highest TOF reported to date.

The other oxide supported gold catalysts, such as
Au/TiO,, Au/ZnO, and Au/Fe,O; were less active than
Au/SiO,, and they afforded a maximum conversion of 90%.
However, the activity of Au/CeO, catalyst was very similar to
the Au/SiO, catalyst (Table 4).

3.3. Oxidation of Hydrogen to Hydrogen Peroxide (H,O,).
H,0, is an essential chemical which has long been used
mainly as strong oxidant in various oxidative reactions and
bleaching agent as well as a disinfectant. It is a green oxidant
since its sole by-product is water. In the current decades, a
lot of attention has been paid to the green catalysts and green
chemicals to ensure safety issues in health and environment.
Industries have been using supported Pd catalysts for more
than 90 years for the direct synthesis of H,O, from H, and
O,. However, the synthesized H,O, is unstable and under-
goes low-temperature decomposition or hydrogenation to
water (Scheme 3) [51]. Recently, Edwards et al. [52] used
Au-catalysts synthesized via coprecipitation or deposition-
precipitation method and found very low H,O, conversion
rate. They also observed that the addition of Au to Pd catalysts
by impregnation enhances H,O, formation. They compared
five different catalyst supports, namely, Al,O;, Fe,O;, TiO,,
S§iO,, and carbon, and found the high conversion with
carbon-supported Au-Pd (Au-Pd/C).

In 2010, Song et al. [53] observed that KMnO, treated
activated carbon in an acidic solution enhances H,O, pro-
duction (78%) from hydroxylamine due to the creation of
surface active quinoid species during oxidation. Structure

and surface analyses revealed that KMnO, treatment pro-
duced more phenolic but less carboxylic groups on the
activated carbon under acidic condition, confirming the
crucial role of the quinoid groups. It was also proposed that
the quinoid groups served as electron acceptors and redox
mediators in the formation of H,0, [53].

3.4. Carbon Monoxide (CO) Oxidation. In the last decade,
CO oxidation has become an important research area because
of its involvement in a number of processes, such as methanol
synthesis, water gas shift reaction, carbon dioxide lasers,
and automotive exhaust controls [54]. Carbon monoxide is
a lethal gas for animal life and toxic to the environment
[55]. The oxidation of CO is a difficult process and hence
a highly active oxidation catalyst is required for its efficient
removal from the environment [55]. In the past, the gold was
considered to be inert for CO oxidation [56].

However, Haruta et al. [57] demonstrated that highly
dispersed gold prepared on various metal oxide supports
by coprecipitation and deposition-precipitation methods is
highly active in CO oxidation even below 0°C temperature.
They found that catalytic performance significantly depends
on the catalysts preparation methods and the highest activity
was demonstrated by TiO, supported gold or platinum
catalysts prepared by deposition-precipitation (DP). The gold
catalysts prepared by photodeposition (PD) and impregna-
tion (IMP) methods were less active than those prepared
by deposition-precipitation. This is because the catalysts
prepared by DP method contain higher loading of Au
(>2wt%) on smaller particles and are with better dispersion.
Collectively, these features enable the catalyst to show higher
activity, oxidizing ~100% of CO at temperatures below —20°C.
In 1997, Yuan et al. [58] synthesized highly active gold
catalysts for CO oxidation simply by grafting Au-phosphine
complexes (AuL;NO; or AugLg (NO;);; L = PPh;) onto
precipitated Ti(OH), surfaces. This Au-phosphine-Ti(OH),
complex was active even below the 0°C. Apart from this, Na*
ions positively and Cl™ ions negatively affect the Au-catalyzed
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FIGURE 3: Plausible mechanism for CO oxidation on oxide supported gold catalyst. On the left, a CO molecule is chemisorbed onto a low
coordination number gold atom (yellow sphere), and a hydroxyl ion is moved from the oxide support (pink sphere) to an Au (III) ion,
creating an anion vacancy. On the right they have reacted to form a carboxylate group, and an oxygen molecule occupies the anion vacancy
as O%” (white sphere). This then oxidizes the carboxylate group by abstracting a hydrogen atom, forming carbon dioxide, and the resulting
hydroperoxide ion HO, ™ then further oxidizes carboxylate species to form another carbon dioxide, restoring two hydroxyl ions to the support
surface, completing the catalytic cycle. (Adapted with permission from Springer) [145].

Catalysts

CH;CH=CH, + O, + H, — CH3C{IZ—/CH2 +H,0

(@]

Propene epoxide

|Polyether polyols (66%)

| Propene g

lycols (30%)

| Propene glycols ether (4%)

| Polyurethanes or foam | |

Polyesters

Solvents |

ScHEME 4: Synthetic products from propene epoxidation reaction.

CO oxidation. Figure 3 represents the initial stages of CO
oxidation at the edge of an active gold particle.

3.5. Epoxidation of Propene. The oxidation of propene to
epoxide is an important reaction for the synthesis of various
industrial chemicals such as polyether polyols (precursor
of polyurethane or foams), propene glycol, and propene
glycol ethers (Scheme 4) [59]. In the past, chlorohydrin and
hydroperoxide mediated processes were used for the syn-
thesis of propene epoxide. Chlorohydrin process produces
environmentally hazardous chlorinated by-products and the
hydroperoxide process is much expensive and produces
styrene and tert-butyl alcohol as by-products. Silver catalysts
were used in this reaction but poor selectivity and turnover
were observed [60]. However, titania supported gold effi-
ciently catalyzed the epoxidation reaction at 30-120°C with
more than 90% selectivity in the presence of hydrogen [61].

3.6. Oxidation of Alcohol. The oxidation of alcohols to its
corresponding aldehydes or ketones is a crucial reaction in
organic synthesis. Ketones, specially, acetone, are widely used
in the production of various organic as well as fine chemicals
[62]. Traditional chemical routes use stoichiometric chem-
icals such as chromium (VI) reagents, dimethyl sulfoxide,
permanganates, periodates, or N-chlorosuccinimide which
are expensive and hazardous. Several homogeneous catalysts
such as Pd, Cu, and Ru are found to selectively catalyze
alcohol oxidation. However, homogeneous catalysis requires
high pressure oxygen and/or organic solvent, incurring cost
and environmental burdens [63]. The present ecological
deterioration has forced researchers to look for novel and
environmentally friendly catalytic schemes for the oxidation
of alcohol. Prati and Porta [64] demonstrated that Au/C
catalyst shows higher selectivity toward aldehyde in the oxi-
dation of primary alcohols. Subsequently, Endud and Wong
[65] synthesized porous Si/Sn bimetallic catalyst through
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MeO Toluene
b Meo s g RN
MeO -~ 24 h reflux
Nanohybrid APTMS
Si0,/Al, 04

Ferrocenecarboxaldehyde

1

0 5i " NNH, + MeOH

o’

OH
Nanohybrid SiO,/Al,0;-APTMS

Fe nanocatalysts on nanohybrid
$i0,/AL0;-APTMS

FIGURE 4: Synthesis of heterogeneous Fe nanocatalysts by the immobilization of Fe on functionalized SiO,-Al,O; mixed oxide 3-
aminopropyltrimethoxysilane (3-APTMS). Adapted with permission from Elsevier [18].

postsynthesis modification of rice husk ash as Si precursor
and SnCl, as tin source. Using TBHP oxidant, the tin
modified MCM-48 showed much selectivity toward aldehyde
or ketone in the oxidation of benzyl alcohols [65].

Chaki et al. [66] looked into the catalytic activity of
gold by adding silver (5-30% Ag content) into gold particles
for aerobic oxidation of alcohols. It showed that <10% Ag
accelerates the catalytic activity of Au. Recently, Kidwai and
Bhardwaj [67] described that gold nanoparticles (AuNP)
are highly active in alcohol oxidation with hydrogen perox-
ide as oxidant. They observed that AuNPs, with extended
surface area, exhibit higher catalytic activity over others.
Additionally, gold catalyzed reactions are free from chemical
hazards and toxic solvents and produce water as the only side
product. This methodology was a great contribution towards
the development of sustainable green chemistry.

4. Heterogeneous Catalysts in the Oxidation of
Alkyl Substituted Benzene

In this Section, we described various catalysts, their synthetic
schemes, and performance for the oxidation of alkyl substi-
tuted benzenes which are an important compound in organic
synthesis.

4.1. Fe Nanocatalysts. Habibi et al. [18] synthesized Fe nano-
catalyst which oxidized alkyl substituted benzene. They
prepared the heterogeneous nano-Fe catalyst on the SiO,/
Al,O; supports through the covalent immobilization of fer-
rocenecarboxaldehyde which acts as iron source (Figure 4).
In the presence of fert-butyl hydroperoxide (TBHP) oxi-
dant, this catalyst produces acetophenone, benzaldehyde,
and benzoic acid from ethylbenzene with 89% selectivity to
acetophenone (Scheme 5).

This catalytic scheme provided certain benefits including
the low cost raw materials, commercially available simple

(¢
s Me  Acetophenone
¢
©/\ R Benzaldehyde
0)
Ethylbenzene
N OH  Benzoic acid

ScHEME 5: Products from the catalytic oxidation of ethyl aromatic
with novel Fe nanocatalysts.

chemicals, and catalysts reusability for the further oxidation
of ethylbenzene. The side chain carbonyl group is produced
by TBHP oxidant without any solvent at a substrate/TBHP
ratio of 1: 1, at 50-120°C in a day.

This novel Fe nanocatalyst exhibited higher conversion
rate (>84%) of ethylbenzene with 90% selectivity toward
acetophenone which is the precursor of many products such
as resins, chalcones, drugs, fine chemicals, and optically
active alcohols. The comparative performances of various
catalysts for alkyl benzene oxidation are given in Table 5.

4.2. Manganese (I1I) Porphyrin Complexes in the Oxidation of
Alkyl Substituted Benzene. Silica bound manganese (III) por-
phyrin complexes, [Mn(TMCPP)](TMCPP: 5, 10, 15, 20-tet-
rakis-(4-methoxycarbonylphenyl)-21,23H-porphyrin], selec-
tively catalyzes the oxidation of alkyl substituted benzene
to its corresponding ketone. Ghiaci et al. [68] synthesized
manganese porphyrin complexes by immobilization onto
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OH + (EtO);Si(CH,);NH, o> Si(CH,);NH,
OH le) -~

Surface silanol  3-Aminopropyltriethoxysilane ~ SF-3-APTS

Group of silica

0
0

0 >Si(CH2)3NH
o /

Mn porphyrin
complex

MeO

NaH, TMCPP, THE reflux,
72h N,, MnCl,-4H, 0,
DME, 140°C, 4h, N,

OMe

(6]

FIGURE 5: The synthetic scheme of manganese porphyrin complex by immobilization on silica support (Adapted with permission from

Elsevier [68]).

silica support. This catalyst complex showed high selec-
tivity and efficiency toward hydrocarbon oxidation due to
its shape selectivity toward substrate and matrix support
that provided special atmosphere for C-H oxidation [69].
For catalysts synthesis, the silica gel was made active at
high temperature (500°C) followed by modification with 3-
aminopropyltriethoxysilane that acts as silica source under
inert gas (N,) atmosphere. The details of the preparation of
this catalyst are described elsewhere (Figure 5). The effects of
various parameters such as oxidants, solvents, and tempera-
ture on the oxidation of substituted benzene were studied and
the maximum catalysis was obtained with TBHP oxidant at
150°C under solvent free conditions.

4.3. Ag/SBA-15 Catalysts in the Oxidation of Alkyl Substituted
Benzene. The C-H bond of alkyl substituted benzene can be
selectively oxidized to its corresponding ketones by Ag/SBA-
15 catalysts with TBHP as oxidant. Recently, Anand et al. [35]
synthesized the silica supported Ag catalysts by impregnation
method and found that Ag/SBA-15 is an environmentally
friendly catalyst for the breaking of alkyl benzene C-H
bond. They used tetraethyl orthosilicate as silica source and
silver nitrate as silver source. The schematic of the synthetic
scheme is given in Figure 6, and the details could be obtained
from bibliography [35]. The prepared catalyst showed the
best conversion rate in presence of tert-butyl hydroperoxide

TaBLE 6: Effect of various solvents on the Ag/SBA-15 catalyzed
oxidation of alkyl substituted benzene at 90°C in presence of 70%
TBHP oxidant [35].

Solvent Conversion (%) Selectivity (%)
Acetophenone  1-phenylethanol

Toluene 92 92 8

DMEF 15 80 20

Acetonitrile 85 86 12

Water 65 89 10

No solvent 92 99 1

oxidant with 92% and 99% selectivity towards ketone under
solvent free condition (Table 6).

4.4. Nickel Substituted Copper Chromite Spinels. Another
form of catalysts, called nickel substituted copper chromite
(Cu,Cr,05) spinels, can efficiently catalyze the oxidation
of alkyl substituted benzene. George and Sugunan (2008)
[9] synthesized nickel substituted copper chromite spinels
using copper nitrate, nickel nitrate, and chromium nitrate
via coprecipitation method. In the first step, a solution of
copper, nickel, and chromium nitrate was prepared in water.
The pH of the solution adjusted to 6.5-8.0 with the stepwise
addition of 15% ammonium solution under constant stirring.
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Calcination
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FIGURE 6: Synthesis of Ag/SBA-15 catalysts by impregnation method.
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1 P s s

Copper nitrate Nickel nitrate

Nickel substituted copper
chromite spinels

Chromium nitrate

£

=

Solution of copper, nickel,
and chromium nitrate

Adjust pH 6.5-8.0 by adding
15% ammonium solution,
heat

Precipitants

FIGURE 7: Synthesis of nickel substituted copper chromite spinels.

TABLE 7: Recipe for the preparation of various nickels substituted
copper chromite spinels [9].

Catalysts composition (Cu,_,Ni, Cr,0,) Designation
CuCr,0, (x=0) CCr

Cu0.75Ni0.25Cr,O, (x = 0.25) CNCr-1
Cu0.5Ni0.5Cr,0, (x = 0.5) CNCr-2
Cu0.25Ni0.75Cr, 0, (x = 0.75) CNCr-3
NiCr,O, (x =1) NCr

The precipitate was maintained at 70-80°C for 2h and aged
for 24 h. Finally, the precipitate was filtered, washed, and
dried at 353K for 24 h and calcined at 923K for 8h to get
the spinels. Figure 7 depicts the complete procedure for the
synthesis of nickel substituted copper chromite spinel. The
recipe of George and Sugunan (2008) [9] for the preparation
of nickel substituted copper chromite spinels catalyst is given
in Table 7.

Catalytic activity of each spinel for the oxidation of ethyl-
benzene was studied in detail [9] and it was found that CNCr-
2 type chromite spinel provides the maximum conversion
rate (56.1%) with 68.7% selectivity towards acetophenone
(Table 8) under solvent free conditions [9]. Nickel substituted

chromites were compared with those simple chromites, and
the nickel chromites demonstrated superior activity.

4.5. Silica Supported Cobalt (II) Salen Complex. The aero-
bic oxidation of alkyl substituted benzene was successfully
carried out over silica supported cobalt (II) salen complex
in presence of O, in N-hydroxyphthalimide (NHPI) solvent
[70]. Rajabi et al. [70] prepared the silica supported cobalt
salen complexes by chemical modification of di-imine cobalt
complex using cobalt acetate as a source of cobalt ion
(Figure 8). At first Salicylaldehyde was added to the excess
amount of absolute MeOH at room temperature and the
3-aminopropyltrimethoxysilane was added to the mixture.
The solution turned into yellow color due to the formation
of imine which contains a carbon-nitrogen double bond, a
hydrogen atom (H), or an organic group is attached to the
nitrogen. The addition of cobalt (II) acetate to the imine
compound allows the new ligands to complex the cobalt.
Prior to surface modification, nanoporous silica was activated
by inserting into concentrated HCI and subsequent washing
with deionized water (Figure 8).

Rajabi et al. [70] also investigated the catalytic activity
of immobilized cobalt catalysts for ethylbenzene oxidation
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TaBLE 8: Oxidation of ethylbenzene by nickel substituted copper chromite spinels [9].

T
Catalysts Conversion (%) Selectivity (%)
Acetophenone 1-phenylethanol Others
CCr 32.9 13.9 83.4 2.7
CNCr-1 44.7 51.9 46.4 1.7
CNCr-2 56.1 68.7 28.1 3.2
CNCr-3 55.5 55.6 39.6 4.8
NCr 20.2 59.1 19.4 21.5
Reaction conditions: temperature 70°C, time 8 h, EB: TBHP ratio 1: 2, catalyst weight 0.1 g, solvent 10 mL acetonitrile [9].
TaBLE 9: Oxidation reaction of ethylbenzene by reused silica supported Co(II) catalysts.
TP
Entry Run Temperature ("C) Selectivity (%) Yield (%)
Alcohol Acetophenone
1 First 100 9 91 78
2 Second 100 10 90 78
3 Third 100 10 90 77
4 Fourth 100 10 90 70
CHO
N7 6i(Me0)
@E * o Me0)s T TN — ©?H 3
OH OH
Salicylaldehyde 3-Aminopropyltrimethoxysilane Imine compound
Cobalt (IT)
acetate
N
—O
L0 7NN F (MeO),8i~ "N Z
s
-0 Surface
5 © dificati 0
o) Co” modification Co
w ~
~0 SiO, o]
o
_(());Si\/\/N\ (MeO)sSi o~ N
~ Co/SiO, Di-imine cobalt complex

FIGURE 8: Preparation of silica supported cobalt (II) catalysts by surface chemical modification. Adapted with permission from Elsevier [70].

with O, in N-hydroxyphthalimide and other solvents and
acetic acid was found to be the best solvent. The selectivity
and the conversion rate were increased with temperature. The
heterogeneous catalysts were reused four times and a little
change in activity was observed (Table 9).

4.6. Nanosized Gold-Catalysts. Materials in nanometer size
show properties distinct from their bulk counterparts,
because nanosized clusters have electronic structures that
have high dense states [71]. Biradar and Asefa (2012) [40]
described the oxidation of alkyl substituted benzene over
silica supported gold nanoparticles. Supported AuNPs were
prepared by in situ impregnation method [40] to keep
the catalyst well dispersed on the support surfaces. Briefly,

a solution of Pluronic P-123 was added to water and
hydrochloric acid. Desired amount of TEOS (tetraethoxysi-
lane) was added to the aqeous acidic Pluronic P-123 solution
under stirring. The resulting precipitates was subsequently
filtered and washed several time under ambient state to
get mesostructured SBA-15. For the synthesis of SBA-15
supported gold catalysts, HAuCl, solution was made in
ethanol/water (1: 4 ratios) and was well dispersed on the silica
support (Figure 9). The lower sized AuNPs demonstrated
higher TON (turnover number) and lower TOF (turnover
frequency) (Table 10). Solvent effects on oxidation reaction
were studied and acetonitrile appeared to be the best solvent.
It produced 79% conversion with 93% selectivity towards the
ketone products.
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TaBLE 10: Oxidation of ethylbenzene by three different types of Au/SBA-15 catalysts [40].
o
Entry Catalysts/ samp le Wt.% Conversion (%) Selectivity (%) TON TOF (h™)
(Au average size) (mmol Au/g) Ketone Alcohol
1 SBA-15 — ~0 ~0 ~0 ~0 ~0
) Au/SBA-15 catalyst 1.08% 68 94 6 764 23
(5.4 +1.2nm) (54.8 ymol/g)
3 Au/SBA-15 catalyst 3.86% 79 93 7 274 3
(6.9 £ 1.7 nm) (196.0 ymol/g)
4 Au/SBA-15 catalyst 4.56% 89 94 6 256 7
(8.4 +2.3nm) (231.5 ymol/g)

Reaction condition: substrate, ethylbenzene, 1 mmol; oxidant: 80% TBHP (aq.), 2 mmol; solvent: acetonitrile, 10 mL; catalyst: Au/SBA-15 sample with 15 mg
overall mass; reaction temperature: 70°C; internal standard: chlorobenzene (0.5 mL); reaction time: 36 h; and reaction atmosphere: air [40].

PEO PPO

Pluronic P-123 Pluronic P-123 solution

H,0, HCl HAuCl,
e ke S —
Q o Q Calcination

SBA-15 Au/SBA-15

FIGURE 9: Schematic diagram for the synthesis of SBA-15 supported gold catalysts.

Filtration, wash

i [CH;-COO™], Mn**
ﬁ “ Stirring
Cetyl trimethyl

ammonium bromide

Calcination

FIGURE 10: Schematic diagram for the synthesis of Mn containing MCM-41 catalysts.

4.7. Mn-Containing MCM-41 Catalyst for the Vapor Phase
Oxidation of Alkyl Substituted Benzene. Vapour-phase oxi-
dation of alkyl substituted benzene was performed with
carbon dioxide-free air as an oxidant over MnO, impreg-
nated MCM-41 catalysts [72]. Vetrivel and Pandurangan [72]
synthesized MCM-41 on C;4H;; (CH;);N*Br~ template. The
Mn containing MCM-41 mesoporous molecular sieves were
prepared by impregnating MCM-41 into manganese acetate
solutions under stirring overnight. Finally, the solution was
filtered, washed, evaporated, and calcined at a specific tem-
perature to obtain Mn containing MCM-41 (Figure 10). They
also optimized the reaction conditions by varying reaction
temperature, weight hourly space velocity, and time on
stream. They carried out a number of reactions with the
six types of washed and unwashed Mn containing catalysts.
In every case, acetophenone was the major products which
increase with the increase of metal content in the catalysts.
The high conversion rate to acetophenone was obtained with
Mn-MCM-41 catalysts with high Mn content. The unwashed
catalysts showed higher reactivity than that of washed one
due to the high density of active site in the unwashed catalysts.

5. Preparation Method of
Supported Metal Catalysts

A high number of methods have been proposed for the syn-
thesis supported heterogeneous metal catalysts [71]. Table 11
is a summary of the major methods frequently used in
catalysts synthesis.

6. Concluding Remark

This review provides an extensive overview of the literature
regarding the applications and synthesis of some heteroge-
neous catalysts for oxidation catalysis. Advantages and dis-
advantages of certain candidature support materials are pre-
sented. Special emphasis is given to heterogeneous catalysis,
specially the metal-support synergy. The role of appropriate
solvent that codissolves the catalysts and substrate to ease
the pretreatment and oxidation process is tabulated for better
understanding. In line with the goal of industrial process,
reaction conditioning and utilization of appropriate and
cheap catalysts are briefly outlined. Future research should
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focus on the synthesis and application of more efficient
heterogeneous catalysts as well as synergizing the catalyst cost
for large scale synthesis.
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