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Locational marginal prices (LMPs) are influenced by various factors in the electricity market; knowing the sensitivity information
of LMPs is very important for both the purchase and the consumer.This paper presents a unitedmethod to compute the sensitivities
of LMPs based on the optimal power flow (OPF). The Karush-Kuhn-Tucher (KKT) system to solve LMPs can be transferred into
an equation system by using an NCP function, and then by using the properties of the derivative of the semismooth NCP function,
this paper provides a simultaneous obtention of the sensitivities of LMPs with respect to power demands, the cost of production,
voltage boundary, and so forth. Numerical examples illustrate the concepts presented and the proposed methodology by a 6-bus
electric energy system. Some relevant conclusions are drawn in the end.

1. Introduction

In electricity market, LMPs can reflect the actual cost of
electricity supply from both space and time, and it has gov-
erned the electricity business. It has now been implemented
or scheduled for implementation in U.S. energy regions in
the midwest (MISO), New England (ISO-NE), New York
(NYISO), theMid-Atlantic states (PJM), California (CAISO),
the southwest (SPP), and Texas (ERCOT) [1–4]. China is
building east power market with this pricing mechanism.
Therefore, more and more researchers began to focus on the
pricing mechanisms [1–6].

As is well known, LMPs are dual variables arising in
OPF problems, conditional on a given network topology.
Specifically, they are the shadow prices corresponding to the
nodal balance constraints that impose Kirchhoffs circuit law
at each bus. In the short run, when fuel prices and other
supply conditions are relatively stable, load is one of the most
significant factors driving the determination of LMPs. So
within an optimal power flow (OPF) framework, LMPs are
the sensitivities (dual variables) associated with the active
power balance equations [4, 7, 8]. When LMPs govern the
electricity business, a fundamental question is how LMPs

change as parameters change. These dual variables might
require adjustments to be interpreted as LMPs within some
market clearing frameworks, and the parameters which influ-
ence LMPs in the power market include the load demand,
production costs, and voltage boundary.

The changes in LMPs as parameters vary provide insight
on the functioning and behavior of the electric energy
system. This sensitivity information might help producers
and consumers to establish their respective bidding strategies
and the regulator to assess the degree of competitiveness of
the electricity market. However, we only consider the local
sensitivities which provide information for small changes, not
for large changes in this paper.

In the literature, sensitivity calculations are generally
related to the power flow problem [9, 10] or the OPF problem
involving sensitivities of the objective function and the primal
variables with respect to parameters [8]. In [7], the sensi-
tivities of certain primal variables (power injections) with
respect to certain dual variables (LMPs) are calculated. But
the objective function is considered linear and only equality
constraints are taken into account. References [6, 8] provide
a perturbation approach to sensitivity analysis similar to the
one presented in [11, 12] and apply it to the OPF problem.
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Within a vertically integrated electric utility framework,
paper [13] uses the results of [8] to carry out a valuation
of the transmission impact in a resource bidding process.
Reference [14] builds a systemmodel to quantitatively analyze
the effects of various factors such as load uncertainty, thermal
limit, capacity reserve, market power, and their interactions
on the mean and standard deviation of the LMPs. Reference
[15] gives a global analysis of system variable sensitivities
when LMPs are derived from DCOPF solutions for day-
ahead energy market. All the existing work only considered
the LMPs sensitivities with respect to several variables in
different cases. However, in this paper, we will calculate the
sensitivities of all dual variables with respect to all parameters
of the problem in a general nonlinear programming case
including equality and inequality constraints. We use the
results reported in [16] and give a new expression to calculate
the sensitivities based on the semismooth KKT system.

The construction of this paper is as follows. In Section 2,
we give the marginal price mathematical model and define
the sensitivity of the LMPs based on OPF. In Section 3, we
transfer the KKT system of the OPF problem into a system
of semismooth equations and present the local sensitivity
formulas for both the cases of regular nondegenerate and the
cases of regular degenerate solutions. In Section 4, numerical
examples are given by an electricity system with 6 nodes. In
Section 5, we get some conclusions of this paper.

2. Mathematical Model of the LMPs
Based on OPF

In a competitive electricity market, the settlement between
the independent system operator (ISO) and the participants
is based on locational marginal prices (LMPs). LMP at a
given node of a power system is the sensitivity of operational
cost to the change in load at that node, and it is calculated
using an optimal power flow (OPF) program.WhenLMPs are
used for settlement of transactions, consumers are charged
more than the average cost of production of electricity due
to the nonlinear nature of the power flow and the constraints
imposed by the OPF. So mathematical model to calculate the
LMPs is as follows [4].

2.1. The Objective Function (Generation Cost Function). In
electricity market, in addition to the active production costs,
the production cost of the reactive power should also be
considered in this model, so the active and reactive power
cost function with a quadratic function curve is

min
𝑝𝐺,𝑞𝐺,V,𝛿

𝑧 = 𝑓 (𝑝𝐺, 𝑞𝐺, V, 𝛿, 𝑝𝐷, 𝑞𝐷, 𝑐) , (1)

where 𝑝𝐺 is the active power generation, 𝑞𝐺 is the reactive
power generation, V is the node voltage amplitude, 𝛿 is the
phase angle, 𝑝𝐷 is the active load demand, 𝑞𝐷 is the reactive
load demand, and 𝑐 indicates all other parameters associated
with the network and generator.

2.2. Equality Constraints (The Power Balance Equation).
Imposed by the OPF, we should consider the following
equality constraints:

𝑝𝐺𝑖
− 𝑝𝐷𝑖

− ℎ𝑝𝑖
(𝑝𝐺, 𝑞𝐺, V, 𝛿, 𝑝𝐷, 𝑞𝐷, 𝑐) = 0, 𝑖 = 1, 2, . . . , 𝑛𝐵,

𝑞𝐺𝑖
− 𝑞𝐷𝑖

− ℎ𝑄𝑖
(𝑝𝐺, 𝑞𝐺, V, 𝛿, 𝑝𝐷, 𝑞𝐷, 𝑐) = 0, 𝑖 = 1, 2, . . . , 𝑛𝐵,

(2)

where (2) are active and reactive power flow equations.

2.3. The Inequality Constraints

(a) Line flow constraints:

−(𝑠
max
𝑖𝑗

)

2

+ (𝑔𝑠𝑖𝑗
(𝑝𝐺, 𝑞𝐺, V, 𝛿, 𝑝𝐷, 𝑞𝐷, 𝑐))

2

≤ 0,

𝑖 = 1, 2, . . . , 𝑛𝐵, ∀𝑗 ∈ Ω𝑖,

(3)

where 𝑠max
𝑖𝑗

means the transmission capacity on the line 𝑖𝑗, 𝑔𝑠𝑖𝑗
is a composite power value on the line 𝑖𝑗, 𝑛𝐵 represents the
total number of nodes, andΩ𝑖 is the related node connecting
node 𝑖.

(b) Capacity constraints:

𝑝
min
𝐺

− 𝑝𝐺 ≤ 0, 𝑝𝐺 − 𝑝
max
𝐺

≤ 0,

𝑞
min
𝐺

− 𝑞𝐺 ≤ 0, 𝑝𝐺 − 𝑝
max
𝐺

≤ 0.

(4)

(c) Voltage constraints:

Vmin
− V ≤ 0, V − Vmax

≤ 0. (5)

(d) Voltage angles constraint:

−𝛿 − 𝜋 ≤ 0, 𝛿 − 𝜋 ≤ 0. (6)

For the sake of simplicity, it is assumed that all the needs
are not resilient. In order to derive the sensitivities of problem
(1)–(6), we transfer it into the following simply nonlinear
programming problems (NLPP):

min
𝑥

𝑧 = 𝑓 (𝑥, 𝑎) , (7)

s.t. ℎ (𝑥, 𝑎) = 0, (8)

𝑔 (𝑥, 𝑎) ≤ 0, (9)

where ℎ(𝑥, 𝑎) = (ℎ1(𝑥, 𝑎), . . . , ℎ𝑙(𝑥, 𝑎))
𝑇, 𝑔(𝑥, 𝑎) =

(𝑔1(𝑥, 𝑎), . . . , 𝑔𝑚(𝑥, 𝑎))
𝑇, 𝑥 ∈ 𝑅

𝑛 includes all the optimal
variables V, 𝛿, 𝑝𝐺, 𝑞𝐺, and 𝑎 ∈ 𝑅

𝑝 includes all the parameters
𝑝𝐷, 𝑞𝐷, 𝑐.

3. Derivation of the Sensitivity Formulas

In this section, we derive local sensitivity formulas of the
LMPs.Note that the LMPs are the Lagrangemultiplier vectors
for the active power flow equations. Sowe can derive the KKT
system of problem (7)–(9) firstly.
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3.1. Semismooth Equations Equivalent to the KKT Systems of
Problem. Let 𝑥∗ be a local optimal solution, and we assume
the linear independent constraint qualification is satisfied.
From the first-order optimal condition, there exists a pair of
vectors 𝜆∗ ∈ 𝑅

𝑙 and 𝜇
∗
∈ 𝑅
𝑚 satisfying the following KKT

systems [11, 12]:

∇𝑥𝑓 (𝑥
∗
, 𝑎) +

𝑙

∑

𝑘=1

𝜆
∗

𝑘
∇𝑥ℎ𝑘 (𝑥

∗
, 𝑎)

+

𝑚

∑

𝑗=1

𝜇
∗

𝑗
∇𝑥𝑔𝑗 (𝑥

∗
, 𝑎) = 0𝑛,

ℎ𝑘 (𝑥
∗
, 𝑎) = 0, 𝑘 = 1, 2, . . . , 𝑙,

𝑔𝑗 (𝑥
∗
, 𝑎) ≤ 0, 𝑗 = 1, 2 . . . , 𝑚,

𝜇
∗

𝑗
𝑔𝑗 (𝑥
∗
, 𝑎) = 0, 𝑗 = 1, 2, . . . , 𝑚,

𝜇
∗
≥ 0𝑚,

(10)

where 𝜆∗ and 𝜇
∗ are the KKT multipliers, also known as the

dual variables.
To obtain the sensitivity analysis, we perturb or modify

𝑥
∗, 𝜎, 𝜆∗, 𝜇∗, 𝑧∗ in such a way that the KKT systems (10) still

hold.Thus, we will usually differentiate the objective function
(7) and the KKT systems (10) directly. But in this kind of
method, onemust deal with a lot of compositions of equalities
and inequalities in the case of regular degenerate solution
(in this case, there is at least one dual variable 𝜇

∗

𝑗
= 0),

and the calculation and analysis become much complex. So
in this paper, we will transfer the KKT systems (10) into a
system of semismooth equations by using an NCP function;
then, we can get the united formulas to calculate the local
sensitivity for both the case of regular nondegenerate solution
(in this case, the dual variable 𝜇∗

𝑗
̸= 0) and the case of regular

degenerate solution by using the semismooth properties.
Let 𝜑 : 𝑅

2
→ 𝑅 be Fischer-Burmeister function (see

[17]); the definition is

𝜑 (𝑎, 𝑏) = √𝑎
2
+ 𝑏
2
− (𝑎 + 𝑏) . (11)

It is easy to see that 𝜑(𝑎, 𝑏) = 0 if and only if

𝑎 ≥ 0, 𝑏 ≥ 0, 𝑎
𝑇
𝑏 = 0. (12)

A function with this property is called an NCP function. For
the sake of convenience, we denote the Fischer-Burmeister
function as FB function. From [17], we know that the FB
function is differentiable everywhere except at the point (0, 0)
and it is semismooth at (0, 0). The definition and properties
of semismooth function can be found in [18].

By using the FB function, we transfer the KKT system (10)
into a system of semismooth equations:

∇𝑥𝑓 (𝑥
∗
, 𝜎) −

𝑙

∑

𝑘=1

𝜆
∗

𝑘
∇𝑥ℎ𝑘 (𝑥

∗
, 𝜎)

−

𝑚

∑

𝑗=1

𝜇
∗

𝑗
∇𝑥𝑔𝑗 (𝑥

∗
, 𝜎) = 0𝑛,

ℎ𝑘 (𝑥
∗
, 𝜎) = 0, 𝑘 = 1, 2, . . . , 𝑙,

𝜙 (𝑥
∗
, 𝜇
∗
, 𝜎) = 0𝑚,

(13)

where

𝜙 (𝑥
∗
, 𝜇
∗
, 𝜎)

= (𝜙1 (𝑥
∗
, 𝜇
∗
, 𝜎) , 𝜙2 (𝑥

∗
, 𝜇
∗
, 𝜎) , . . . , 𝜙𝑚 (𝑥

∗
, 𝜇
∗
, 𝜎))
𝑇
,

𝜙𝑗 (𝑥
∗
, 𝜇
∗
, 𝜎)

= 𝜑 (𝜇
∗

𝑗
, 𝑔𝑗 (𝑥

∗
, 𝜎))

= 𝜇
∗

𝑗
+ 𝑔𝑗 (𝑥

∗
, 𝜎) − √(𝜇

∗
𝑗
)

2

+ (𝑔𝑗 (𝑥
∗
, 𝜎))

2

,

𝑗 = 1, 2, . . . , 𝑚.

(14)

3.2. Local Sensitivity Formulas for the Case of Regular Nonde-
generate Solution. In this case, the dual variable 𝜇∗

𝑗
̸= 0. From

the properties of the FB function, we know that 𝜙𝑗(𝑥
∗
, 𝜇
∗
, 𝜎)

is continuously differentiable. So we differentiate the object
function (7) and the KKT system (10) as follows:

(∇𝑥𝑓 (𝑥
∗
, 𝜎))
𝑇
𝑑𝑥 + (∇𝜎𝑓 (𝑥

∗
, 𝜎))
𝑇
𝑑𝜎 − 𝑑𝑧 = 0,

(∇𝑥𝑥𝑓 (𝑥
∗
, 𝜎) −

𝑙

∑

𝑘=1

𝜆
∗

𝑘
∇𝑥𝑥ℎ𝑘 (𝑥

∗
, 𝜎)

−

𝑚

∑

𝑗=1

𝜇
∗

𝑗
∇𝑥𝑥𝑔𝑗 (𝑥

∗
, 𝜎))𝑑𝑥

+ (∇𝑥𝜎𝑓 (𝑥
∗
, 𝜎) −

𝑙

∑

𝑘=1

𝜆
∗

𝑘
∇𝑥𝜎ℎ𝑘 (𝑥

∗
, 𝜎)

−

𝑚

∑

𝑗=1

𝜇
∗

𝑗
∇𝑥𝜎𝑔𝑗 (𝑥

∗
, 𝜎))𝑑𝜎

− ∇𝑥ℎ (𝑥
∗
, 𝜎) 𝑑𝜆 − ∇𝑥𝑔 (𝑥

∗
, 𝜎) 𝑑𝜇 = 0𝑛,

(∇𝑥ℎ (𝑥
∗
, 𝜎))
𝑇
𝑑𝑥 + (∇𝜎ℎ (𝑥

∗
, 𝜎))
𝑇
𝑑𝜎 = 0𝑙,

(∇𝑥𝜙 (𝑥
∗
, 𝜇
∗
, 𝜎))
𝑇
𝑑𝑥 + (∇𝜇𝜙 (𝑥

∗
, 𝜇
∗
, 𝜎))

𝑇

𝑑𝜇

+ (∇𝜎𝜙 (𝑥
∗
, 𝜇
∗
, 𝜎))
𝑇
𝑑𝜎 = 0𝑚,

(15)
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where 𝐼 = {𝑗 = 1, . . . , 𝑚 | 𝑔𝑗(𝑥
∗
, 𝑎) = 0},𝑁 = {1, . . . , 𝑚} \ 𝐼,

∇𝑥𝜙𝑗 (𝑥
∗
, 𝜇
∗
, 𝜎) = {

∇𝑥𝑔𝑗 (𝑥
∗
, 𝜎) , 𝑗 ∈ 𝐼,

0, 𝑗 ∈ 𝑁.

∇𝜇𝜙𝑗 (𝑥
∗
, 𝜇
∗
, 𝜎) = {

0, 𝑗 ∈ 𝐼,

1, 𝑗 ∈ 𝑁.

∇𝜎𝜙𝑗 (𝑥
∗
, 𝜇
∗
, 𝜎) = {

∇𝜎𝑔𝑗 (𝑥
∗
, 𝜎) , 𝑗 ∈ 𝐼,

0, 𝑗 ∈ 𝑁.

(16)

Denote

𝐹𝑥 = ∇𝑥𝑓 (𝑥
∗
, 𝜎) , 𝐹𝜎 = ∇𝜎𝑓 (𝑥

∗
, 𝜎) ,

𝐹𝑥𝑥 = ∇𝑥𝑥𝑓 (𝑥
∗
, 𝜎) −

𝑙

∑

𝑘=1

𝜆
∗

𝑘
∇𝑥𝑥ℎ𝑘 (𝑥

∗
, 𝜎)

−

𝑚

∑

𝑗=1

𝜇
∗

𝑗
∇𝑥𝑥𝑔𝑗 (𝑥

∗
, 𝜎) ,

𝐹𝑥𝜎 = ∇𝑥𝜎𝑓 (𝑥
∗
, 𝜎) −

𝑙

∑

𝑘=1

𝜆
∗

𝑘
∇𝑥𝜎ℎ𝑘 (𝑥

∗
, 𝜎)

−

𝑚

∑

𝑗=1

𝜇
∗

𝑗
∇𝑥𝜎𝑔𝑗 (𝑥

∗
, 𝜎) ,

𝐻𝑥 = (∇𝑥ℎ (𝑥
∗
, 𝜎))
𝑇
, 𝐻𝜎 = (∇𝜎ℎ (𝑥

∗
, 𝜎))
𝑇
,

𝐺𝑥 = (∇𝑥𝑔 (𝑥
∗
, 𝜎))
𝑇
, 𝜙𝑥 = (∇𝑥𝜙 (𝑥

∗
, 𝜇
∗
, 𝜎))
𝑇
,

𝜙𝜎 = (∇𝜎𝜙 (𝑥
∗
, 𝜇
∗
, 𝜎))
𝑇
, 𝜙𝜇 = (∇𝜇𝜙 (𝑥

∗
, 𝜇
∗
, 𝜎))

𝑇

.

(17)

In matrix form, the system (15) can be written as

[
[
[

[

𝐹𝑥 𝐹𝜎 0 0 −1

𝐹𝑥𝑥 𝐹𝑥𝜎 −𝐻
𝑇

𝑥
−𝐺
𝑇

𝑥
0

𝐻𝑥 𝐻𝜎 0 0 0
𝜙𝑥 𝜙𝜎 0 𝜙𝜇 0

]
]
]

]

[
[
[
[
[

[

𝑑𝑥

𝑑𝜎

𝑑𝜆

𝑑𝜇

𝑑𝑧

]
]
]
]
]

]

= 0. (18)

Obviously, (18) is a system of linear equation, so we can
get all the sensitivities from (18) easily. Furthermore, (18) can
be written as

𝑈[𝑑𝑥, 𝑑𝜆, 𝑑𝜇, 𝑑𝑧]
𝑇
= 𝑆𝑑𝜎, (19)

where 𝑈, 𝑆 are

𝑈 =

[
[
[

[

𝐹𝑥 0 0 −1

𝐹𝑥𝑥 −𝐻
𝑇

𝑥
−𝐺
𝑇

𝑥
0

𝐻𝑥 0 0 0
𝜙𝑥 0 𝜙𝜇 0

]
]
]

]

, 𝑆 = −

[
[
[

[

𝐹𝜎

𝐹𝑥𝜎

𝐻𝜎

𝜙𝜎

]
]
]

]

. (20)

It is obvious that 𝑈 is a square matrix and we can easily
get the sensitivities of LMPs with respect to all parameters
according to formula (19). The condition to ensure the
application of (19) can be seen in [16].

3.3. Local Sensitivity Formulas for the Case of Regular Degen-
erate Solution. In this case, there exists the case of 𝜇∗

𝑗
=

𝑔𝑗(𝑥
∗
, 𝜎) = 0, 𝑗 ∈ 𝐼0 = {𝑗 ∈ 𝐼 | 𝜇

∗

𝑗
= 0}. So 𝜙𝑗(𝑥

∗
, 𝜇
∗
, 𝜎)

is not differentiable but semismooth at this time. From the
semismooth properties of

𝜑 (𝜇
∗

𝑗
, 𝑔𝑗 (𝑥

∗
, 𝜎))

= 𝜇
∗

𝑗
+ 𝑔𝑗 (𝑥

∗
, 𝜎) − √(𝜇

∗
𝑗
)

2

+ (𝑔𝑗 (𝑥
∗
, 𝜎))

2

,

(21)

we know that if the changes of 𝜇∗
𝑗
or 𝑔𝑗(𝑥

∗
, 𝜎) (denoted by

𝑑𝜇
∗

𝑗
or 𝑑𝑔𝑗) are not equal to zero, we have

𝜙𝑗 (𝑥
∗
+ 𝑑𝑥, 𝜇

∗
+ 𝑑𝜇, 𝜎 + 𝑑𝜎) − 𝜙𝑗 (𝑥

∗
, 𝜇
∗
, 𝜎)

= 𝜑 (𝜇
∗
+ 𝑑𝜇, 𝑔𝑗 (𝑥

∗
+ 𝑑𝑥, 𝜎 + 𝑑𝜎)) − 𝜑 (𝜇

∗
, 𝑔𝑗 (𝑥

∗
, 𝜎))

= 𝑉𝑗𝑥𝑑𝑥 + 𝑉𝑗𝑎𝑑𝜎 + 𝑉𝑗𝜇𝑑𝜇 + 𝑜 (




(𝑑𝑥, 𝑑𝜎, 𝑑𝜇)





) ,

(22)

where 𝐼+ = 𝐼 \ 𝐼0 = {𝑗 ∈ 𝐼 | 𝜇
∗

𝑗
> 0},

𝑉𝑗𝑥 = ∇𝑥𝑔𝑗(𝑥
∗
, 𝜎)(1 − (𝑑𝑔𝑗/

√(𝑑𝑔𝑗)
2
+ (𝑑𝜇𝑗)

2
)), 𝑉𝑗𝜎 =

∇𝜎𝑔𝑗(𝑥
∗
, 𝜎)(1− (𝑑𝑔𝑗/

√(𝑑𝑔𝑗)
2
+ (𝑑𝜇𝑗)

2
)), and𝑉𝑗𝜇 = 1− (𝑑𝜇𝑗/

√(𝑑𝑔𝑗)
2
+ (𝑑𝜇𝑗)

2
).

So in the case of regular degenerate solution, if 𝑑𝜇∗
𝑗
or 𝑑𝑔𝑗

is not equal to zero and we aim to perturb 𝑥∗, 𝜎, 𝜆∗, 𝜇∗, 𝑧∗ in
such a way that the KKT systems still hold, we have

(∇𝑥𝑓 (𝑥
∗
, 𝜎))
𝑇
𝑑𝑥 + (∇𝜎𝑓 (𝑥

∗
, 𝜎))
𝑇
𝑑𝜎 − 𝑑𝑧 = 0,

(∇𝑥𝑥𝑓 (𝑥
∗
, 𝜎) −

𝑙

∑

𝑘=1

𝜆
∗

𝑘
∇𝑥𝑥ℎ𝑘 (𝑥

∗
, 𝜎)

−

𝑚

∑

𝑗=1

𝜇
∗

𝑗
∇𝑥𝑥𝑔𝑗 (𝑥

∗
, 𝜎))𝑑𝑥

+ (∇𝑥𝜎𝑓 (𝑥
∗
, 𝜎) −

𝑙

∑

𝑘=1

𝜆
∗

𝑘
∇𝑥𝜎ℎ𝑘 (𝑥

∗
, 𝜎)

−

𝑚

∑

𝑗=1

𝜇
∗

𝑗
∇𝑥𝜎𝑔𝑗 (𝑥

∗
, 𝜎))𝑑𝜎

− ∇𝑥ℎ (𝑥
∗
, 𝜎) 𝑑𝜆 − ∇𝑥𝑔 (𝑥

∗
, 𝜎) 𝑑𝜇 = 0𝑛,

(∇𝑥ℎ (𝑥
∗
, 𝜎))
𝑇
𝑑𝑥 + (∇𝜎ℎ (𝑥

∗
, 𝜎))
𝑇
𝑑𝜎 = 0𝑙,

(∇𝑥𝜙 (𝑥
∗
, 𝜇
∗
, 𝜎))
𝑇
𝑑𝑥 + (∇𝜇𝜙 (𝑥

∗
, 𝜇
∗
, 𝜎))

𝑇

𝑑𝜇

+ (∇𝜎𝜙 (𝑥
∗
, 𝜇
∗
, 𝜎))
𝑇
𝑑𝜎 = 0,

(23)
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where

∇𝑥𝜙𝑗 (𝑥
∗
, 𝜇
∗
, 𝜎) =

{
{

{
{

{

∇𝑥𝑔𝑗 (𝑥
∗
, 𝜎) , 𝑗 ∈ 𝐼+,

𝑉𝑗𝑥, 𝑗 ∈ 𝐼0,

0, 𝑗 ∈ 𝑁.

∇𝜇𝜙𝑗 (𝑥
∗
, 𝜇
∗
, 𝜎) =

{
{

{
{

{

0, 𝑗 ∈ 𝐼+,

𝑉𝑗𝜇, 𝑗 ∈ 𝐼0,

1, 𝑗 ∈ 𝑁.

∇𝜎𝜙𝑗 (𝑥
∗
, 𝜇
∗
, 𝜎) =

{
{

{
{

{

∇𝜎𝑔𝑗 (𝑥
∗
, 𝜎) , 𝑗 ∈ 𝐼+,

𝑉𝑗𝜎, 𝑗 ∈ 𝐼0,

0, 𝑗 ∈ 𝑁.

(24)

Though (23) is not a system of linear equations, we can
get the corresponding values of 𝑉𝑗𝑥, 𝑉𝑗𝜎, 𝑉𝑗𝜇 according to
the adjustment of the active inequality with (𝜇

∗

𝑗
, 𝑔𝑗(𝑥
∗
, 𝜎)) =

(0, 0). We consider two cases as follows.

(i) If we want this inequality to remain active, we take
𝑑𝑔𝑗 = 0,𝑑𝜇𝑗 > 0, sowe get𝑉𝑗𝑥 = ∇𝑥𝑔𝑗(𝑥

∗
, 𝜎),𝑉𝑗𝜇 = 0,

and 𝑉𝑗𝜎 = ∇𝜎𝑔𝑗(𝑥
∗
, 𝜎).

(ii) If we want this inequality to become inactive, we can
take 𝑑𝜇𝑗 = 0, 𝑑𝑔𝑗 > 0, and get 𝑉𝑗𝑥 = 0, 𝑉𝑗𝜇 = 1, and
𝑉𝑗𝜎 = 0.

So we can also get linear equations to calculate all
the sensitivities for the case of regular degenerate solution
according to the adjustment of the active inequality with
(𝜇
∗

𝑗
, 𝑔𝑗(𝑥
∗
, 𝜎)) = (0, 0) as follows:

[
[
[
[
[

[

𝐹𝑥 𝐹𝜎 0 0 0 −1

𝐹𝑥𝑥 𝐹𝑥𝜎 −𝐻
𝑇

𝑥
−𝐺
𝑇

𝐼𝑥
0 0

𝐻𝑥 𝐻𝜎 0 0 0 0
𝐺𝐼𝑥 𝐺𝐼𝜎 0 0 0 0
0 0 0 0 𝐼



𝑁
0

]
]
]
]
]

]

[
[
[
[
[

[

𝑑𝑥

𝑑𝜎

𝑑𝜆

𝑑𝜇

𝑑𝑧

]
]
]
]
]

]

= 0, (25)

where 𝐺𝐼𝑥 and 𝐺𝐼𝜎 represent the partial derivatives with
respect to 𝑥 and 𝑎 of all the active inequalities which include
the corresponding inequalities with (𝜇𝑗, 𝑔𝑗(𝑥

∗
, 𝜎)) = (0, 0)

but are required to remain active. 𝐼
𝑁

is the unit matrix
whose cardinality is equal to the number of all inactive
inequalities which include the corresponding inequalities
with (𝜇𝑗, 𝑔𝑗(𝑥

∗
, 𝜎)) = (0, 0) but are required to become

inactive. The condition to ensure the application of (25) can
be seen in [16].

Expressions (19) and (25) allow deriving sensitivities of
the LMPs with respect to active and reactive power demands.
The simplicity of expressions (19) and (25) should be noted.
The computational complexity of building matrices and
evaluating expressions (19) and (25) ismoderate even for large
scale electric energy systems.

4. Numerical Example

The 6-bus electric energy system shown in Figure 1 is taken
from [6]. The OPF model of this problem is

min
𝑝𝐺𝑖
,𝑞𝐺𝑖
,𝑖=1,...,3;V𝑗 ,𝛿𝑗,𝑗=1,...,6

3

∑

𝑖=1

(𝑎𝑖𝑝𝐺𝑖
+ 𝑏𝑖𝑝
2

𝐺𝑖
)

𝑝𝐺𝑖
− 𝑝𝐷𝑖

= V𝑖
6

∑

𝑗=1

V𝑗 (𝐺𝑖𝑗 cos (𝛿𝑖 − 𝛿𝑗) + 𝐵𝑖𝑗 sin (𝛿𝑖 − 𝛿𝑗)) : 𝜆𝑖,

𝑖 = 1, . . . , 6;

𝑞𝐺𝑖
− 𝑞𝐷𝑖

= V𝑖
6

∑

𝑗=1

V𝑗 (𝐺𝑖𝑗 sin (𝛿𝑖 − 𝛿𝑗) − 𝐵𝑖𝑗 cos (𝛿𝑖 − 𝛿𝑗)) ,

𝑖 = 1, . . . , 6;

(V𝑖V𝑗(𝐺𝑖𝑗 cos (𝛿𝑖 − 𝛿𝑗) + 𝐵𝑖𝑗 sin (𝛿𝑖 − 𝛿𝑗)) − 𝐺𝑖𝑗V
2

𝑖
)

2

+ (V𝑖V𝑗 (𝐺𝑖𝑗 sin (𝛿𝑖 − 𝛿𝑗) − 𝐵𝑖𝑗 cos (𝛿𝑖 − 𝛿𝑗))

−V2
𝑖
(𝐵𝑖𝑗 −

𝐵
𝑆

𝑖𝑗

2

))

2

≤ (𝑠
max
𝑖𝑗

)

2

, 𝑖 = 1, . . . , 6, 𝑗 ∈ Ω𝑖;

𝑝
min
𝐺𝑖

≤ 𝑝𝐺𝑖
≤ 𝑝

max
𝐺𝑖

, 𝑖 = 1, . . . , 3;

𝑞
min
𝐺𝑖

≤ 𝑞𝐺𝑖
≤ 𝑞

max
𝐺𝑖

, 𝑖 = 1, . . . , 3;

Vmin
≤ V𝑖 ≤ Vmax

, 𝑖 = 1, . . . , 6;

−𝜋 ≤ 𝛿𝑖 ≤ 𝜋, 𝑖 = 2, . . . , 6;

𝛿1 = 0,

(26)

where 𝑎𝑖, 𝑏𝑖, 𝐺𝑖𝑗, 𝐵𝑖𝑗, 𝛿𝑖 − 𝛿𝑗, 𝐵
𝑆

𝑖𝑗
, 𝑠max
𝑖𝑗

are the linear cost coeffi-
cient of generator 𝑖, the quadratic cost coefficient of generator
𝑖, the element of the real part of the admittance matrix, the
element of the imaginary part of the admittance matrix, the
charging susceptance of line 𝑖𝑗, and the transmission capacity
of line 𝑖𝑗, respectively.The optimal solution of the OPF above
is illustrated in Table 1. Other data are given in Tables 2 and
3, respectively, where the unit of 𝑝∗

𝐺𝑖
is MW, the unit of 𝑞∗

𝐺𝑖
is

MVAr, the unit of V∗
𝑖
is p.u., the unit of 𝛿∗

𝑖
is rad, and the unit

of 𝜆∗
𝑝𝑖
is S/MWh. And Vmin

= 0.9 and Vmax
= 1.1.
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Bus 2
(GENCO 2)

Bus 3
(GENCO 3)

Bus 1
(GENCO 1)

Bus 5 
(ESCO 2)

Bus 4 
(ESCO 1)

Bus 6 
(ESCO 3)

∼

∼

∼

Figure 1: 6-bus electric energy system.

Table 1: OPF solution.

Bus 𝑝
∗

𝐺𝑖
𝑞
∗

𝐺𝑖
V∗
𝑖

𝛿
∗

𝑖
𝜆
∗

𝑃𝑖

1 132.5 37.3 1.100 0.000 8.977
2 160.6 92.9 1.100 −0.047 9.161
3 60.0 82.8 1.098 −0.091 9.43
4 — — 1.018 −0.091 9.733
5 — — 1.006 −0.121 9.866
6 — — 1.034 −0.128 9.711

Because the optimal solution is known and it is a regular
nondegenerate solution, we can get the sensitivities of the
LMPs of the active load demand by using formula (19):

[

𝜕𝜆𝑖

𝜕𝑝𝐷𝑖

] =

[
[
[
[
[
[
[

[

2.162 0.098 0.492 3.852 1.610 0.639

0.098 0.100 0.103 0.106 0.108 0.106

0.492 0.103 0.843 1.023 0.412 0.644

3.852 0.106 1.032 9.014 3.271 1.327

1.610 0.108 0.412 3.271 2.124 0.701

0.639 0.106 0.644 1.327 0.701 0.847

]
]
]
]
]
]
]

]

,

(27)

where 𝑖 is row and 𝑗 is column.
As can be seen from the above data, sensitivity coefficients

of the LMPs with respect to all load demands are positive;
they indicate that the LMPs and the load demands are
changing in the same direction. Because generator 2 is the
marginal generator, values in column/row 2 are small and
close to 0.1. The derivative of the LMP in bus 2 with respect
to the demand in that bus equals the derivative with respect
to demand of the marginal cost of the generator in that bus,
because this generator is the swing generator. The highest
price sensitivity occurs in bus 4. This indicates that this
bus might suffer a comparatively significant price volatility.
Observe that the high price volatility of bus 4 is not a trivial
property of the system, thus demonstrating the added value
of the proposed analysis.

Sensitivities of LMPs with respect to reactive power
demands are provided in the matrix below. Units are
($/MWh)/(puMVAr):

[

𝜕𝜆𝑖

𝜕𝑞𝐷𝑖

] =

[
[
[
[
[
[
[

[

0 0 0 2.135 0.666 0.170

0 0 0 0.005 0.005 0.003

0 0 0 0.551 −0.091 −0.040

0 0 0 5.215 1.530 0.379

0 0 0 1.910 1.033 0.293

0 0 0 0.750 0.188 0.076

]
]
]
]
]
]
]

]

. (28)

We can observe that these sensitivities are much smaller
than the sensitivities with respect to active power demands.
Note that the first three columns of the matrix of LMPs
derivatives with respect to reactive power demands are zero
because reactive power has no cost (in this particular exam-
ple) and is in between its bounds for each of the generators at
the first three buses.

Sensitivities with respect to the voltage single upper
bound and sensitivities with respect to generator (linear and
quadratic) cost parameters 𝑎𝑗 and 𝑏𝑗 are provided by the
vectors below:

[

𝜕𝜆𝑖

𝜕Vmax ] =

[
[
[
[
[
[
[

[

−1.758

−0.034

−1.041

−6.501

−3.761

−1.941

]
]
]
]
]
]
]

]

, [

𝜕𝜆𝑖

𝜕𝑎𝑗

] =

[
[
[
[
[
[
[

[

0 0.980 0

0 1.000 0

0 1.029 0

0 1.063 0

0 1.077 0

0 1.060 0

]
]
]
]
]
]
]

]

,

[

𝜕𝜆𝑖

𝜕𝑏𝑗

] =

[
[
[
[
[
[
[

[

0 314.9 0

0 321.4 0

0 330.8 0

0 341.4 0

0 346.1 0

0 340.6 0

]
]
]
]
]
]
]

]

.

(29)

As it can be seen, sensitivities with respect to the voltage
single lower bound are zero, as no lower bound limit is
reached for voltages. Sensitivities of LMPswith respect to cost
coefficients are zero for generators working at their respective
maximum or minimum power output. Note also that the
derivative of the LMP in bus 2 with respect to the linear cost
term of the generator in that bus is 1 because that generator is
the swing generator. Finally, we can see that the sensitivities
with respect to line design parameters (resistance, reactance,
susceptance, and capacity) and generator design parameters
(capacity, minimum power output, and cost parameters) are
also readily available.

5. Conclusion

Within an OPF framework, this paper provides a new calcu-
lation method for the sensitivities of the LMPs. We analyze
changes in LMPs with respect to operational parameters
such as demands, generator cost parameters, and voltage
bounds. However, the changes with respect to line design
parameters such as resistance, reactance, susceptance, and
capacity and generator design parameters including capacity
andminimumpower output can be similarly computed at the
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Table 2: Generator data and demand data.

Bus 𝑝
max
𝐺𝑖

𝑝
min
𝐺𝑖

𝑞
max
𝐺𝑖

𝑞
min
𝐺𝑖

𝑎𝑖 𝑏𝑖 𝑝𝐷𝑖
𝑞𝐷𝑖

1 132.5 112.5 150.0 −150.0 8.5 0.0005 0.0 0.0
2 165.0 140.0 150.0 −150.0 9.0 0.0005 0.0 0.0
3 80.0 60.0 150.0 −150.0 9.5 0.0005 0.0 0.0
4 — — — — — — 120.0 80
5 — — — — — — 115.0 82.0
6 — — — — — — 104.0 66.0

Table 3: Line data.

Line 𝑅𝑖𝑗 𝑋𝑖𝑗 𝐵
𝑆

𝑖𝑗
𝑆
max
𝑖𝑗

1-2 0.10 0.20 0.04 36.0
1-4 0.05 0.20 0.04 72.0
1-5 0.08 0.30 0.06 63.6
2-3 0.05 0.25 0.06 36.0
2-4 0.05 0.10 0.02 91.2
2-5 0.10 0.30 0.04 42.0
2-6 0.07 0.20 0.05 72.0
3-5 0.12 0.26 0.05 36.0
3-6 0.02 0.10 0.02 84.0
4-5 0.20 0.40 0.08 18.0
4-6 0.10 0.30 0.06 14.4

same time. We present the local sensitivity formulas of LMPs
for both the cases of regular nondegenerate and the cases of
regular degenerate solutions. So the main conclusion is that
it can consider the sensitivity analysis in the broader sense;
a simple matrix form of the sensitivities for the LMPs with
respect to all parameters is given. Numerical results are also
given to show that this method is effective.
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