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Dispersion polymerization has beenwidely applied to the synthesis ofmonodispersemicron-sized polymer colloidal spheres.Many
efforts have been devoted to studying the influence of initial conditions on the size and uniformity of the resultant microspheres,
aiming to synthesize micron-size monodisperse colloidal spheres. However, the inner contradiction between the size and the
size distribution of colloidal spheres hinders the realization of this goal. In this work, we drew our attention from the initial
conditions to the growth stage of dispersion polymerization.We tracked the size evolution of colloidal sphere during the dispersion
polymerization, through which we established a kinetic model that described the relationship between themonomer concentration
and the reaction time.The model may provide a guideline to prepare large polymer colloidal spheres with good monodispersity by
continuousmonomer feeding during the growth stage tomaintain the concentration ofmonomer at a constant value in a dispersion
polymerization process.

1. Introduction

As a new functional macromolecule material, monodisperse
polymer microspheres have many applications in environ-
mental conservation, biomedicine, colloid science, electronic
informationmaterial, andmany other areas [1–3] due to their
superiority of good sphericity, size tunability, large specific
surface area, and excellent absorbability [4–6]. Particularly,
monodisperse micron-sized spheres are ideal materials as
advanced coatings [7], fillers of chromatographic column
[8, 9], standard particles of electron microscope and Coulter
particle size testers, and spacers in LCD [10], which has drawn
increasing interest to synthesize monodisperse micron-sized
spheres [11, 12].

The first report on monodisperse polymer colloidal
spheres was the polystyrene spheres prepared by Vanderhoff
and Brandford [13]. So far, many synthesis strategies have
been developed such as emulsion polymerization, suspension
polymerization, dispersion polymerization, and seed swelling
polymerization. In view of the demand of micron size
and monodispersity, the former two methods are excluded

because they cannot meet the two requirements at the same
time. Emulsion polymerization can only gain monodisperse
colloidal spheres with the size below 1𝜇m. Suspension
polymerization may achieve large microspheres with size
ranging from 10𝜇mto 100𝜇mwhile themicrospheres possess
a bad monodispersity [14]. The latter two methods are
suitable for the synthesis of uniform colloidal spheres with
micron size. Seed swelling polymerization, including the
dynamics swelling developed by Okubo et al. [15] and two-
step swelling initiated by Ugelstad et al. [16], can attain
colloidal spheres with larger sphere diameter. However, in
terms of the whole process, seed swelling polymerization
is complex. In addition, the monodispersity is determined
not only by the swelling process itself, but also by the
initial monodispersity of the seeds prepared by dispersion
polymerization in advance. Thus, the key point is how to
gain larger microspheres with uniform size by dispersion
polymerization.

To attain larger microspheres with excellent monodis-
persity, many efforts have been made to explore the influ-
ence of the initial condition of the reaction system on
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the resultant microspheres, such as the dosage of monomer,
initiator, and dispersing agent. Generally, with the increase
in the monomer’s initial concentration, the sphere diameter
increases and the distribution of sphere diameter broad-
ens. Thus, there is a suitable range for monomer’s initial
concentration to achieve uniform and large microspheres
[17, 18]. Similarly, increasing the concentration of initiator
leads to higher reaction rate and larger sphere diameter while
it may also broaden the distribution of the sphere diame-
ter simultaneously [17, 19, 20]. In addition, the dispersing
agent which prevents microspheres from gelatinization and
stabilizes the reaction system requires a sufficient supply
to guarantee its functions. However, the increase in the
amount of the dispersing agent results in a smaller size
despite a better monodispersity [21–24]. In this view, the
inner contradiction between the size and the size distribution
of microspheres hinders the further increase of the size
of monodisperse microspheres. It is thus believed that the
inner contradiction cannot be solved solely by adjusting the
initial conditions.

Recently, Song et al. [25] employed two-stage disper-
sion polymerization to synthesize large and uniform dye-
contained polymer spheres. In this method, the dye-
comonomer,which significantly destroyed the finalmonodis-
persity if fed into the reaction at the beginning, was added
to the reaction system after the nucleation stage. Through
this strategy, the influence of the dye-comonomer on the
nucleation was avoided and a narrow size distribution of the
final colloidal spheres was guaranteed. It was expected that
two-stage or multistage dispersion polymerization strategy
paved a way to the synthesis of micron-sized large and
monodisperse polymer colloidal spheres. However, when and
how to feed the extra monomer into the reaction system
to achieve this goal remains debatable since most previous
works were mainly based on trial and error.

In this work, we focused on the whole process in one-
stage dispersion polymerization and tracked the size evolu-
tion of colloidal sphere at different reaction time. Based on
the experimental results, we established a theoretical model
to describe the relationship between themonomer concentra-
tion and the reaction time during dispersion polymerization.
The model was expected to provide guidance to the two-
stage or the multi-stage dispersion polymerization, aiming
to synthesize micron-sized large and monodisperse polymer
colloidal spheres.

2. Materials and Methods

2.1. Materials. All chemicals, including styrene (St, 99%,
Aldrich), anhydrous ethanol (99.95%, Aldrich), polyvinyl-
pyrrolidone (PVP,MW40000, TCI), and azobis(isobutyroni-
trile) (AIBN, Sinopharm Chemical Reagent Co., Ltd), were
used as received without further purification. Deionized (DI)
water (resistivity greater than 18.2MΩ⋅cm, Ultra Pure UV,
China) was used in all experiments.

2.2. Synthesis of PS Colloidal Microspheres by Using Disper-
sion Polymerization. Briefly, the synthesis was conducted in

a three-neck round-bottom flask equipped with a condenser
and immersed in a water bath with a preset temperature.
Firstly, the monomer of 17mL styrene and the stabilizer of
1.5 g PVP were dissolved in 98mL anhydrous ethanol and
then added to the flask. The solution was stirred with a
rate of 200 rpm and the temperature was kept at 70∘C while
nitrogen gas was continuously led into the flask to avoid the
oxidation of the initiator AIBN in the whole process. After
30 minutes, an initiator solution of 0.15 g AIBN dissolved in
28mL ethanol was introduced into the system. The reaction
continued for 24 h and then was stopped by cooling at
ambient conditions. To track the evolution of sphere size
during dispersion polymerization, themixture in the reaction
flask was sampled at specific intervals and dried on a glass
substrate. The sphere size was measured using an optical
microscope.

2.3. Characterization. The optical microphotographs of the
PS colloidal microspheres were taken using an optical micro-
scope (Olympus, BX51TRF), which was connected to a CCD
camera (Pixelink-B742) and a computer for real-time image
recording.

3. Results and Discussion

3.1. The Morphology of PS Colloidal Spheres Prepared by
Dispersion Polymerization. As can be seen from the optical
microscope photograph shown in Figure 1, micron-size PS
colloidal sphereswere obtained by using the one-stage disper-
sion polymerization method. The PS colloidal spheres were
spontaneously organized into a closely packed hexagonal
lattice on the glass substrate upon evaporation of solvent,
indicating the high monodispersity of the PS spheres. To
reduce the error in the measurement of the size of a single PS
sphere, we chose the closely packed area and measured the
direct distance between the several tangent microspheres in
line and calculated the average distance between neighboring
two spheres. According to the measured data in Figure 1, the
average diameter of the resultant PS colloidal spheres was
calculated to be 2.72𝜇m.

3.2. Growth Kinetics of PS Spheres during Dispersion Poly-
merization. The process of dispersion polymerization can
be basically divided into several stages. At the beginning of
the reaction, monomer, dispersing agent, and initiator are
all dissolved in the solvent. When the temperature reaches
the decomposition temperature of the initiator, the initiator
decomposes and produces radicals. The radicals trigger the
polymerization process, which results in formation of the
oligomers. When the chain length of the oligomers exceeds
a critical value, nucleation occurs and the oligomers precip-
itate from the solvent. At the same time, dispersing agents
are absorbed by the nuclei and form graft copolymers with
the polymer chains, which makes microspheres stable in
the solvent. Then the synthesis enters the stage of growth.
Monomer and copolymer in the solvent are persistently
captured by polymer nuclei to provide the motive power of
the growth, which keeps on until termination of the reaction.
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Figure 1: Optical microphotograph of PS colloidal spheres prepared
by dispersion polymerization.

In the process of dispersion polymerization, the nucleation
stage is a transition period for the system from homogenous
phase to heterogeneous phase. This period determines the
number of microspheres in the system which should be con-
stant during the polymerization to guarantee the uniformity
of final microspheres [21, 22, 26–28].

Knowing the evolution of monomer concentration dur-
ing dispersion polymerization is of importance especially for
synthesis of large and uniform colloidal spheres. Considering
the reaction mechanism involved in dispersion polymeriza-
tion, however, a large proportion of the monomers exist in
the solvent in the form of oligomers whose chain length
does not exceed the critical value for nucleation. Thus,
direct measurement of the monomer concentration is not
feasible. Herein, we establish a theoretical model to describe
monomer concentration at different reaction time based on
the diameter of microspheres measured at different time
intervals.

The following are the major assumptions used in formu-
lating the model. Firstly, in view of the good monodispersity
of the final microspheres, the reaction is considered as an
ideal dispersion polymerization, in which nucleation number
is just determined by the nucleation stage, and secondary
nucleation does not occur in the later growth stage. It is
also assumed that the number of microspheres remains
during growth stage equal to the nucleation number at the
beginning of reaction. Secondly, although the microspheres
in the growth stage may mostly seize the oligomer chains
rather than themonomers, it is considered that the increasing
rate of the microspheres’ weight or volume is proportional
to the equivalent concentration of the monomers, some of
which are in the form of free oligomers. Thirdly, considering
the actual slight volume change during the mixture process
of styrene and ethanol, which can hardly be observed in
the experiment, the deviation of volume is neglected in our
model to reduce the complexity of the calculation. Thus,
a simple approximation was adopted by the replacement of
the total volume of themixture of several liquidswith the sum
of their own volumes.

According to the conservation of mass, the relationship
between the product and the reactant at any time 𝑡 is given by

𝑁𝜌sphere 𝑉sphere = 𝑚0 − 𝐶𝑉, (1)

where𝑁 is the number of microspheres in the system at time
𝑡, 𝜌sphere is the density of polystyrene microspheres,𝑚

0
is the

initial mass of styrene monomer added into the system, 𝐶 is
the present concentration of surplus styrene in the system,
and 𝑉 is the total volume of the system at time 𝑡. 𝑉sphere,
the average volume of one sphere, can be described by the
formula of spheroidal volume

𝑉sphere =
𝜋

6
𝑑
3

, (2)

where 𝑑 is the average diameter of microspheres at time 𝑡.
The concentration of styrene in the system at time 𝑡 can

be expressed using

𝐶 =
𝜌styrene𝑉styrene

𝑉
=
𝜌styrene (𝑉 − 𝑉ethanol)

𝑉
, (3)

where 𝑉styrene stands for the surplus volume of styrene in
the system, while 𝑉ethanol stands for the surplus volume of
ethanol, which is equal to the initial volume with the loss in
the reaction ignored.

By putting together the three equations above, out comes
the relationship between the concentration of monomer and
the average diameter of microspheres at time 𝑡, which can be
given by

𝐶 =

𝜌styrene (𝑚0 − 𝑁𝜌sphere ⋅ (𝜋/6) 𝑑
3

)

𝑚
0
− 𝑁𝜌sphere ⋅ (𝜋/6) 𝑑

3 + 𝜌styrene𝑉ethanol
. (4)

Based on our experimental data, we input relevant param-
eters. The initial parameters were the same as the data
described in the experimental section, while the density of
microspheres was taken as that of polystyrene. According
to the former assumption, the number of microspheres was
a constant value which is equal to the nucleation number.
Thus, we set the time 𝑡 at the end of the reaction with the
microspheres’ diameter 𝑑 taken as the final size which was
2.72 𝜇m in our work, while the final concentration 𝐶final was
assumed to be one percent of the initial value. In this way,
the number of microspheres was approximately calculated as
follows:

𝑁 =
𝜌styrene𝑉0 − 𝐶final𝑉ethanol

𝜌sphere ⋅ (𝜋/6) 𝑑
3

final
≈ 1.347 × 10

12

. (5)

Thus, with the input of the initial parameters and the esti-
mated number of microspheres 𝑁, the relationship between
the monomer concentration and the microspheres diameter
at any time was attained.

To introduce the time dimension, we measured the
diameter of the PS spheres sampled from the reaction system
at different time intervals. According to the relationship
expressed in (4), we gained the corresponding monomer
concentration, which is shown in Table 1.
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Table 1: The sphere diameters and monomer concentration at
different time.

Reaction time
(h) Sphere diameter (𝜇m) Monomer

concentration (g/mL)
0 0 0.105
1 1.170 0.098
1.5 1.364 0.094
2 1.360 0.094
3 1.760 0.080
4 1.960 0.069
5 2.114 0.060
7 2.376 0.039
9 2.410 0.036
11 2.652 0.010
23 2.720 0.001

In order to further deduce the relationship between the
monomer concentration and the reaction time, we calculated
different function forms of monomer concentration versus
reaction time and processed the data with linear fitting. The
results are shown in Figure 2.

As can be seen in Figure 2, the linear fitting of ln𝐶 and
𝑡 has the largest correlation coefficient of 0.965. As a con-
sequence, we consider that the natural log of the monomer
concentration is linearly associated with the reaction time. In
other words, there exists an exponential relationship between
themonomer concentration and the reaction time, which can
be expressed using

𝐶 (𝑡) = 𝐶
0
𝑒
−𝑘𝑡

, (6)

where the initial monomer concentration 𝐶
0
can be attained

by the initial parameters in our experiment.Then, a program
was written to find optimal value of 𝑘 which minimized the
sum of squared relative errors between the theoretical curve
and the experimental points (𝑡

𝑖
, 𝐶
𝑖
). That was one value that

made the value of ∑
𝑖

[(𝐶
𝑖
− 𝐶(𝑡
𝑖
))/𝐶(𝑡

𝑖
)]
2 minimum. The

final result was obtained as follows:

𝐶 = 0.105 × 𝑒
−0.10𝑡

. (7)

Combining (4) with (7), the relationship between the col-
loidal sphere diameter and the reaction time could be derived.
The resultant curve is shown in Figure 3 in comparison to
the experimental data. As can be seen from Figure 3, the
theoretical curve matches the experimental data well.

3.3. Application of the Kinetic Model on Synthesis of Large
and Monodisperse Colloidal Spheres via Dispersion Polymer-
ization. Through the deformation of (3), the total volume of
the reaction system can be obtained as follows:

𝑉 =
𝜌styrene 𝑉ethanol

𝜌styrene − 𝐶
. (8)

Table 2: Different monomer feeding rates required at various
beginning time of continuous monomer feeding.

t (h) 𝐶 (g/mL) 𝑑𝐶/𝑑𝑡 (g/mL/h) 𝑉 (mL) Δ𝑉 (mL/h)
1 0.0950 −0.00950 140.9 1.48
2 0.0860 −0.00860 139.4 1.32
3 0.0778 −0.00778 138.0 1.18
4 0.0704 −0.00704 136.8 1.06
5 0.0637 −0.00637 135.7 0.95
6 0.0576 −0.00576 134.7 0.86
7 0.0521 −0.00521 133.9 0.77
8 0.0472 −0.00472 133.1 0.69
9 0.0427 −0.00427 132.4 0.62
10 0.0386 −0.00386 131.8 0.56
Δ𝑉 means the monomer feeding rate needed if the beginning of the
continuous monomer feeding is set at time 𝑡.

With the relationship between the monomer concentration
and the reaction time described in (7), the monomer con-
sumption rate at any time of the reaction can be easily
deduced by taking the derivative of the monomer concentra-
tion with respect to time:

Δ𝑉 =
1

𝜌styrene
⋅
𝑑𝐶

𝑑𝑡
⋅ 𝑉. (9)

Thus, assuming that the initiator does not lose efficacy
during the reaction, the monomer concentration will be
held at a constant value if one continuously feeds extra
monomer into the system according to the consumption rate
described in (9). This will be helpful to keep the system
at a high reaction rate, leading to the enlargement of the
diameter of the final PS colloidal microspheres. In fact, the
initiator efficiency will inevitably descend during the process
of dispersion polymerization; so in actual process, we can
meet the requirement of constant efficiency by replenishing
initiator during the reaction.

According to the analysis above, we calculated the rela-
tionship between the beginning time of themonomer feeding
and the monomer feeding rate within the present system of
our experiment, which is shown in Table 2. In this way, even
if an extra monomer is added into the reaction system, the
monomer concentration will still be low enough to avoid new
nucleation as long as one begins the continuous feeding of
extra monomer in the growth stage rather in the nucleation
state. As a consequence, the monodispersity of the colloidal
spheres is ensured. At the same time, continuous feeding of
extramonomer inevitably leads to colloidal sphereswith large
size.

4. Conclusion

In summary, a kinetic model has been established to describe
the exponential relationship between the monomer concen-
tration and the reaction time during synthesis of colloidal
spheres by using dispersion polymerization. Accordingly,
one may gain the quantitative relationship between the
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Figure 2: Linear fitting results of different function forms of concentration 𝐶 with reaction time 𝑡. (a) linear fitting of 𝐶 and 𝑡, 𝑟 = 0.800 (b)
linear fitting of 1/𝐶 and 𝑡, 𝑟 = 0.763 (c) linear fitting of 1/𝐶2 and 𝑡, 𝑟 = 0.703 (d) linear fitting of ln𝐶 and 𝑡, 𝑟 = 0.965.

monomer consumption rate and the reaction time. Taking
advantage of this model, it is possible to attain larger colloidal
spheres by continuously feeding monomer into the reaction
system during the growth stage according to the monomer
consumption rate. In this way, the reaction rate is kept at
a high constant all the time until the reaction is artificially
ended. Furthermore, secondary nucleation can be effectively
avoided because both the average concentration and the local
concentration of monomer in the reaction system are less
than the critical value. Ultimately, large and uniform colloidal
spheres can be prepared using the dispersion polymerization
technique.
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