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A new adaptive L
1/2

shooting regularization method for variable selection based on the Cox’s proportional hazards mode being
proposed. This adaptive L

1/2
shooting algorithm can be easily obtained by the optimization of a reweighed iterative series of L

1

penalties and a shooting strategy of L
1/2

penalty. Simulation results based on high dimensional artificial data show that the adaptive
L
1/2

shooting regularizationmethod can bemore accurate for variable selection than Lasso and adaptive Lassomethods.The results
from real gene expression dataset (DLBCL) also indicate that the L

1/2
regularization method performs competitively.

1. Introduction

In the study of the dependence of survival time 𝑇 on cova-
riances 𝑋, the Cox’s proportional hazards model [1, 2] is the
most widely used model in survival analysis. Suppose the
dataset has a sample size of 𝑛 to study survival time 𝑇 on
covariate 𝑋, we use the data form of (𝑡

1
, 𝛿
1
, 𝑋
1
), . . . , (𝑡

𝑛
, 𝛿
𝑛
,

𝑋
𝑛
) to represent the individual’s sample, where 𝛿 is the

censoring indicator, the 𝑡
𝑖
denotes the survival time if 𝛿

𝑖
= 1

or otherwise censoring time.
By the Cox’s proportional hazards model, the hazard

function can be defined as

ℎ (𝑡 | 𝛽) = ℎ
0
(𝑡) exp (𝛽𝑇𝑋) , (1)

where baseline hazard function ℎ
0
(𝑡) is unspecified or un-

known and 𝛽 = (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑝
) is the regression coefficient

vector of 𝑝 variables.
The Cox’s partial log-likelihood is expressed as

𝑙 (𝛽) =

𝑛

∑

𝑖=1

𝛿
𝑖

{

{

{

𝑥
𝑇

𝑖
𝛽 − log(∑

𝑗∈𝑅𝑖

exp (𝑥𝑇
𝑗
𝛽))

}

}

}

, (2)

where 𝑅
𝑖
= {𝑗 ∈ 1, . . . , 𝑛, 𝑡 > 𝑡

𝑖
} denotes ordered risk set at

time 𝑡
𝑖
; 𝑡
𝑖
represents failure time.

In practice, not all the 𝑛 covariates may contribute to
the prediction of survival outcomes: some components of 𝛽
may be zero in the true model. To select important variables
under the proportional hazardsmodel (2), Tibshirani [3], Fan
and Li [4], and Zhang and Lu [5] proposed to minimize the
penalized log partial likelihood function as

−
1

𝑛
𝑙 (𝛽) + 𝜆

𝑝

∑

𝑗=1

𝑃 (𝛽
𝑗
) . (3)

The standard regularization algorithm cannot directly
be applied for nonlinear Cox model to obtain parameter
estimates. Therefore, Tibshirani [3] and Zhang and Lu [5]
proposed iterative procedure to transform the Cox’s partial
log-likelihood function (2) to linear regression problem
through an iteratively Newton-Raphon update. Here we
follow the approach of Zhang and Lu [5]: define the gradient
vector ∇𝑙(𝛽) = −𝜕𝑙(𝛽)/𝜕𝛽 and the Hessian matrix ∇2𝑙(𝛽) =
−𝜕𝑙
2
(𝛽)/𝜕𝛽𝜕𝛽

𝑇, then apply the Choleski decomposition to
obtain 𝑋𝑇 = {∇

2
𝑙(𝛽)}
1/2, and generate the pseudoresponse

vector 𝑌 = (𝑋𝑇)−1{∇2𝑙(𝛽)𝛽 − ∇𝑙(𝛽)}. Then Zhang and Lu [5]
suggested an optimization problemwith the penalty function:

𝛽 = argmin
{

{

{

(𝑌 − 𝑋𝛽)
𝑇

(𝑌 − 𝑋𝛽) + 𝜆

𝑝

∑

𝑗=1

𝑃 (𝛽
𝑗
)
}

}

}

. (4)
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The Lasso penalty is 𝑃(𝛽
𝑗
) = |𝛽

𝑗
|, which shrinks small coef-

ficients to zero and hence results in a sparse representation
of the solution. However, estimation of large 𝛽’s may suffer
from substantial bias in 𝜆 if chosen too big and may not
be sufficiently spare if 𝜆 is selected too small. Hence, Fan
and Li [4] proposed the smoothly clipped absolute deviation
(SCAD) penalty, which avoids excessive penalties on large
coefficients and enjoys the oracle properties. The adaptive
penalty is 𝑃(𝛽

𝑗
) = |𝛽

𝑗
|/|𝛽
󸀠

𝑗
|, where the weights 1/|𝛽󸀠

𝑗
| are

chosen adaptively by data. The values chosen for 1/|𝛽󸀠
𝑗
| are

crucial for guaranteeing the optimality of the solution.
The above-mentioned series of Lassomethodswere based

on the L
1
penalty. Xu et al. [6, 7] and Liang et al. [8] have pro-

posed L
1/2

regularization method which has the L
1/2

penalty
𝑃(𝛽
𝑗
) = |𝛽

𝑗
|
1/2. The theoretical analyses and experiments

show that the L
1/2

regularization is more effective than Lasso
both in theory and practice. In this paper, we investigate the
adaptive L

1/2
shooting regularization to solve the Cox model.

The rest of the paper is organized as follows. Section 2
describes an adaptive L

1/2
shooting regularization algorithm

to obtain estimates from the Cox model. Section 3 evaluates
ourmethod by simulation studies and application to real gene
expression dataset (DLBCL). Finally we give a brief discus-
sion.

2. Adaptive L1/2 Shooting Regularization
Method for the Cox Model

The log partial likelihood function of the Coxmodel with the
L
1/2

penalty is

𝛽
1/2

= arg min{1
𝑛

𝑛
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𝑖=1
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𝑖
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2
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󵄨󵄨󵄨󵄨

1/2

} , (5)

where 𝜆 is the tuning parameter.
In this section, we proposed the adaptive L

1/2
shooting

algorithm to optimize the Cox model in an approximate lin-
ear form.The following is the complete algorithm procedure.

Step 1. Initial coefficients value 𝛽0 = (𝛽
0

1
, 𝛽
0

2
, . . . , 𝛽

0

𝑝
) =

(1, 1, . . . , 1) and 𝑡 = 0.

Step 2. Compute ∇𝑙, ∇2𝑙, 𝑋, 𝑌, and 𝜔
𝑗
= 1/√𝛽

𝑡

𝑗
based on 𝛽𝑡

𝑗

(1 ≤ 𝑗 ≤ 𝑝), define RSS = (𝑌−𝑋𝛽)𝑇(𝑌 −𝑋𝛽), 𝑆
𝑗
= 𝜕RSS/𝜕𝛽𝑡

𝑗

(1 ≤ 𝑗 ≤ 𝑝), and write 𝛽𝑡 as (𝛽𝑡
𝑗
, (𝛽
𝑡

−𝑗
)
𝑇
)
𝑇, where 𝛽𝑡

−𝑗
is the

(𝑝 − 1)-dimensional vector consisting of all 𝛽𝑡’s other than
𝛽
𝑡

𝑗
, let 𝑆
0
= 𝑆
𝑗
(0, 𝛽
𝑡

−𝑗
) for each 𝑗 = 1, . . . , 𝑝.

Step 3. Solve 𝛽𝑡+1= argmin{(𝑌−𝑋𝛽)𝑇(𝑌−𝑋𝛽)+𝜆∑𝑝
𝑗=1
|𝛽
𝑗
|
1/2
}

(1 ≤ 𝑗 ≤ 𝑝), using the L
1/2

shooting regularization approach:
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1

2
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𝑗
.

(6)

Step 4. Solve 𝛽𝑡+1 = argmin{(𝑌−𝑋𝛽)𝑇(𝑌−𝑋𝛽)+𝜆∑𝑝
𝑗=1
|𝛽
𝑗
|/

√𝛽
𝑡

𝑗
} (1 ≤ 𝑗 ≤ 𝑝), using the modified reweighed iterative ap-

proach of the L
1
shooting approach.

Step 4.1. Start with 𝛽𝑡,𝑚 = (𝛽𝑡,𝑚
1
, 𝛽
𝑡,𝑚

2
, . . . , 𝛽

𝑡,𝑚

𝑝
) = 𝛽
𝑡, set inner

iteration count𝑚 = 0.

Step 4.2. At each iterative step 𝑚, for each 𝑗 = 1, . . . , 𝑝,
update:
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(7)

where 𝑥
𝑗
is the 𝑗th column of 𝑋. A new estimator 𝛽𝑡,𝑚

𝑗
is

formed after updating all 𝛽
𝑗
’s and let𝑚 = 𝑚 + 1.

Step 4.3. Update 𝜔
𝑗
and 𝑆

0
and repeat Step 4.2 until 𝛽𝑡,𝑚

converge.

Step 5. Let 𝑡 = 𝑡 + 1 and update 𝛽𝑡+1
𝑗

= min(𝛽𝑡,𝑚
𝑗
, 𝛽
𝑡∗

𝑗
) and 𝑗 =

1, . . . , 𝑝 and repeat Steps 2, 3, and 4 until𝛽𝑡+1 does not change.

In Steps 2 and 4.3, we modify shooting algorithm with
weight 1/√|𝛽𝑡

𝑗
| based on last estimate 𝛽𝑡 at each iteratively

step. It is possible that some 𝛽𝑡 become zero during the iter-
ative procedure. So to guarantee the feasibly, we replace
1/√|𝛽

𝑡

𝑗
| with 1/√|𝛽

𝑡

𝑗
+ 𝜀| when implementing, where 𝜀 is

any fixed positive real number. Steps 3 and 4 implement
the shooting strategy of L

1/2
penalty and the reweighed

iterative strategy of L
1
penalties, respectively. Step 5 selects

the minimum of 𝛽𝑡, which is obtained by Steps 3 and 4, to
improve the converge speed of the algorithm.

This algorithm gives exact zeros for some coefficients
and it converges quickly based on our empirical experience.
Similarly to Theorem 3 in Fu [9], we can show that the adap-
tive L

1/2
shooting regularization algorithm is guaranteed to

converge to the global minimum of the log partial likelihood
function of the Cox model (5).

3. Numerical Studies

3.1. Simulation Study for the High Dimensional Artificial Da-
taset. In this section,we compare the performance of the Las-
so, the adaptive Lasso, and the adaptive L

1/2
shooting regular-

izationmethod, underCox’s proportional hazardsmodel.The
cross-validated partial likelihood (CVPL) method is used to
estimate the tuning parameter 𝜆 in these three algorithms. In
our simulation studies, we use theGempertzmodel suggested
by Qian et al. [10] to generate the Cox model datasets in the
setting:
𝛽

=(

14

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−0.7, −0.5, −0.3, −0.1, 0, 0, 0, 0, 0, 0, 0.4, 0, 0, 0.7,

986

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

1000

).

(8)
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Table 1: The simulation results based on the high dimensional simulated dataset by the three methods over 100 replications. The columns
include the average number of the selected variable (Var), the average number of the correct zeros (Corr), the average number of the incorrect
zeros (Incorr), and the integrated Brier score (IBS). (Lasso: the Lasso method, A-L: the adaptive Lasso method, and L

1/2
: the adaptive L

1/2

shooting regularization method).

𝑛
25% censoring 40% censoring

Method Var Corr (994) Incorr (0) IBS Var Corr (994) Incorr (0) IBS

200
Lasso 81.29 917.29 0.26 0.1502 96.38 906.83 0.31 0.1516
A-L 41.06 962.47 0.35 0.1474 59.05 948.89 0.43 0.1503
L
1/2

17.79 984.28 0.42 0.1440 20.42 974.15 0.53 0.1498

250
Lasso 98.46 903.07 0.11 0.1462 148.87 883.85 0.15 0.1493
A-L 64.10 949.46 0.17 0.1446 74.42 933.74 0.26 0.1478
L
1/2

27.38 972.95 0.25 0.1421 31.91 968.03 0.34 0.1458

300
Lasso 167.82 883.18 0.01 0.1448 177.50 869.83 0.03 0.1479
A-L 72.95 932.49 0.02 0.1436 80.97 927.42 0.06 0.1459
L
1/2

33.45 967.12 0.03 0.1418 38.64 958.38 0.06 0.1427

350
Lasso 196.24 847.84 0.00 0.1441 204.22 834.53 0.00 0.1463
A-L 82.80 928.07 0.00 0.1428 89.18 921.54 0.00 0.1441
L
1/2

37.58 959.78 0.00 0.1405 40.15 948.63 0.00 0.1412

We considered the cases with 25% and 40% of censoring
and used four samples, 𝑛 = 200, 250, 300, and 350. The
simulation results obtained by the three methods reported in
Table 1. Since this simulation dataset has 6 relevant features (6
nonzero coefficients) in the 1000 ones, the idealized average
numbers of variables selected (the Var column) and correct
zeros (the Corr column) by each method are 6 and 994,
respectively. From the Var and Corr columns of Table 1,
the results obtained by the L

1/2
regularization method are

obviously better than those of other methods for different
sample sizes and censoring settings. For example, when 𝑛 =
200 and the censoring is 25%, the average numbers (Var)
from the Lasso, the adaptive Lasso, and the L

1/2
regularization

methods are 81.29, 41.06, and 17.79 (best). The correct zeros’
numbers (Corr) of the three methods are 917.29, 962.47, and
984.28 (best), respectively. The results obtained by the L

1/2

method are obviously close to the idealized values in the
Var and Corr columns. Moreover, in the IBS (the integrated
Brier score) column, the IBS’s value of the Lasso, the adaptive
Lasso, and the L

1/2
shooting regularization method are

0.1502, 0.1474, and 0.1440. This means that the L
1/2

shooting
regularization method performs slight better than the other
two methods for the prediction accuracy. Similar results are
observed for the 40% censoring case.

As shown in the Incorr columns of Table 1, the idealized
average number is 0 if the method can correctly identify all
relevant variables at each run,whereas itsmaximal value is 6 if
the method incorrectly identifies all the nonzero coefficients
to zero in all runs. When the sample size is relative small
(𝑛 = 200 and censoring rate = 25%), the average number of
the incorrect zeros from the Lasso is 0.26, from the adaptive
Lasso is 0.35 and from the L

1/2
regularization shooting

method is 0.42. The adaptive L
1/2

shooting regularization
method performs worse than the other two methods. When
𝑛 increases to 350, all the three algorithms never evaluated
the nonzero coefficients to zero.This means that the adaptive
L
1/2

shooting regularization method shrinks the small effect

covariates to zeromore easily than the Lasso and the adaptive
Lassowhen the sample size is relative small. Similar results are
observed for the 40% censoring case.

3.2. Experiments on the Real Gene Expression (DLBCL) Da-
taset. To further demonstrate the utility of the L

1/2
regulari-

zation shooting procedure in relating microarray gene ex-
pression data to censored survival phenotypes, we re-ana-
lyzed a published dataset of DLBCL by Rosenwald et al. [11].
This dataset contains a total of 240 patients with DLBCL,
including 138 patient deaths during the followups with a
median death time of 2.8 years. Rosenwald et al. [11] divided
the 240 patients into a training set of 160 patients and a
test set of 80 patients and built a multivariate Cox model.
The variables in the Cox model included the average gene
expression levels of smaller sets of genes in four different
gene expression signatures together with the gene expression
level of BMP6. It should be noted that in order to select
the gene expression signatures, they performed a hierarchical
clustering analysis for genes across all the samples (including
both training and test samples). In order to compare our
results with those in Rosenwald et al. [11], we used the same
setting of training and test datasets in our analysis.

We applied the adaptive L
1/2

shooting regularization
method to first build a predictive model using the training
data of 160 patients and all the 7399 genes as features (predic-
tors). Table 2 shows the GeneBank ID and a brief description
of top ten genes selected by our proposed L

1/2
regularization

method. It is interesting to note that eight of these genes
belong to the gene expression signature groups defined in
Rosenwald et al. [11]. These three signature groups include
Germinal-center B-cell signature, MHC, and lymph-node
signature. On the other hand, two genes selected by the L

1/2

method are not in the proliferation signature group defined
by Rosenwald et al. [11].

Based on the estimated model with these genes, we
estimated the risk scores using the method proposed by
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Table 2: GeneBank ID and descriptions of the top 10 genes selected by the adaptive L
1/2

shooting regularization method based on the 160
patients in the training dataset. Indicated are the gene expression signature groups that these genes belong to; Germ: Germinal-center B-cell
signature, MHC:MHC class II signature, and Lymph: lymph-node signature. Genes NM 005191 and X82240 do not belong to these signature
groups.

GeneBank ID Signature Description
NM 005191 Homosapiens CD80 molecule (CD80), mRNA
AA714513 MHC major histocompatibility complex, class II, DR beta 5
AA598653 Lymph osteoblast specific factor 2 (fasciclin I-like)
AA767112 MHC major histocompatibility complex, class II, DP beta 1
LC 24433 Lymph
AA840067 Germ TCL1A T-cell leukemia/lymphoma 1A
X82240 Homosapiens mRNA for T-cell leukemia
AA700997 Germ cell associated 1
AA505045 Germ Homosapiens, clone MGC:3963 IMAGE:3621362, mRNA, complete CDs
AA805575 Germ Thyroxine-binding globulin precursor
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Figure 1: The Kaplan-Meier curves for the high- and low-risk groups defined by the estimated scores for the 80 patients in the test dataset.
The scores are estimated based on the models estimated by the Lasso method (plot (a)), the adaptive Lasso method (plot (b)), and the L

1/2

regularization shooting method (plot (c)). The maximal follow-up time is 20 years.

Gui and Li [12]. To further examine whether clinically rele-
vant groups can be identified by the model, we used zero as a
cutoff point of the risk scores and divided the test patients into
two groups based on whether they have positive or negative
risk scores (𝑓(𝑥) = 𝛽𝑇𝑥).

As a comparison, the Lasso, the adaptive Lasso, and the
L
1/2

regularization methods are validated on the test dataset
of 80 patients defined in Rosenwald et al. [11], and their
corresponding Kaplan-Meier curves are shown in Figure 1. In
Figure 1, the horizontal coordinate is the predictive survival
time (years) and the vertical coordinate is the predictive sur-
vival probabilities. The 𝑃 value (lower the better to indicate
statistical significance) of the Lasso for the test dataset is
0.0011, which is significantly larger than 0.0006 and 0.0004 of
the adaptive Lasso and the L

1/2
regularization methods. This

means that lasso method performs the worst for the survival
prediction compared with other two methods.

On the other hand, in order to assess how well the model
predicts the outcome, we also use the idea of the integrated
Brier score (IBS) for the test dataset including censored

Table 3: The integrated Brier score (IBS) obtained by the Lasso,
the adaptive Lasso and the adaptive L

1/2
shooting regularization

method for DLBCL dataset. (Lasso: the Lasso method; A-L: the
adaptive Lasso method; L

1/2
: the adaptive L

1/2
shooting regulariza-

tion method).

Lasso A-L L
1/2

IBS 0.2306 0.2026 0.2017

observations as our criteria. In Table 3, the IBS’s value of
the Lasso, the adaptive Lasso, and the adaptive L

1/2
shooting

regularization method are 0.2306, 0.2026, and 0.2017. We can
see that the adaptive Lasso and the adaptive L

1/2
shooting

regularization methods perform slight better than Lasso for
the prediction accuracy.

4. Discussion and Conclusion

In this paper, we have presented the novel adaptive L
1/2

shooting regularization method, which is used for variable
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selection in the Cox’s proportional hazards model. Its perfor-
mance is validated by both simulation and real case studies.
In the experiments, we use the high-dimensional and low-
sample size dataset, with applications to microarray gene
expression data (DLBCL). Results indicate that our proposed
adaptive L

1/2
shooting regularization algorithm is very com-

petitive in analyzing high dimensional survival data in terms
of sparsity of the final prediction model and predictability.
The proposed L

1/2
regularization procedure is very promising

and useful in building a parsimonious predictive model used
for classifying future patients into clinically relevant high-risk
and low-risk groups based on the gene expression profile and
survival times of previous patients.The procedure can also be
applied to select important geneswhich are related to patient’s
survival outcome.
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