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Magnetoelectric composite material is effective in transferring magnetic field into electric signal. In this paper, a nonlinear
finite element method is present to model the magnetoelectric composite of ferroelectric and magnetostrictive material. In the
method, the nonlinear and coupling behavior of magnetostrictive material such as Terfenol-D is considered. The nonuniform
magnetic, electric, and mechanical field distributions are present. An interfacial transferring coefficient is defined to investigate the
performance of interfacial mechanical coupling quantitatively, and the influence of the properties of interfacial bonding material
and interfacial cracks on magnetoelectric coefficient is discussed. A new laminate ME composite of curved interface is proposed to
overcome weak interfacial bonding.

1. Introduction

Magnetoelectric (ME) composite materials, composed of
magnetostrictive and ferroelectric materials, are effective in
converting magnetic field into electric signal. In particular,
the magnetic field deforms the magnetostrictive material due
to magnetostriction effect, which then stresses the ferroelec-
tric material through interfacial mechanical coupling, and
finally the ferroelectric material generates electric field due to
its piezoelectric property. ME composite is able to generate a
magnetoelectric coefficient of several V/cm-Oe, much higher
than single-phase material, which makes it a good candidate
for potential applications in sensors, transformers, energy
harvesters, and so on [1].

The studies on ME composites can be dated back to 1972
when van Suchtelen proposed the idea of ME conversion
through mechanical coupling between two-phase materials
[4]. Since then, several researchers fabricated such composite
and the obtained ME coefficient has been increasing [5–
12]. At the same time, much attention is also focused
on the theoretical and numerical investigations. Harshe et
al. developed a theoretical model dealing with the linear
behavior of ME composites [13]. Nan et al. predicted a
giant magnetoelectric effect of Terfenol-D and P (VDF-TrFE)

composites using Green’s function technique [14, 15]. The
shear-lag and demagnetization effects in laminatedME com-
posites were considered by Chang and Carman [16]. Nan
et al. discussed the influence of interfacial bonding on the
magnetoelectric coefficient [17]. The resonance behavior of
ME composite was investigated in [18–20]. Numerically, Liu
et al. [21] and Zhou et al. [22] calculated the magnetoelectric
effect using finite element method (FEM). In their models,
the nonlinear behavior of magnetostrictive material is con-
sidered. Linnemann et al. [23] proposed a constitutive model
for magnetostrictive and piezoelectric materials and gave
FEM examples. Nguyen et al. [24] modeled the nonlinear
behavior ofmagnetic sensor using FEM. In recent years, there
are several review articles on ME composites, which give a
comprehensive knowledge of the development and current
status about these materials [1, 25, 26].

Compared to analytical models, the finite element
method (FEM) has two advantages. First, FEM is able to
simulate the magnetic, electric, and mechanical field dis-
tribution in the composite regardless of the geometry and
configuration, while analytical models simplify the field dis-
tribution under certain assumptions which are only valid in
certain cases. Second, FEM can adopt nonlinear constitutive
relations more conveniently, which is crucial for modeling
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ME composite because the magnetostriction of the most
widely used magnetostrictive material (e.g., Terfenol-D) is
highly nonlinear and magnetomechanical coupling; that is,
the magnetostriction depends both on themagnetic field and
stresses.

In the existing works, FEM is usually used to predict
the ME coefficient. In our opinion, it is also desirable to
get knowledge of the nonuniform magnetic, electric, and
mechanical field distribution in this composite material,
especially for the laminate ME composite with cracks.
Because the ferroelectric ceramics usually used in ME com-
posites are quite brittle, the maximum stress in this material
should be monitored to assure their reliability. To achieve
this goal, the nonlinear and coupling constitutive relation of
the magnetostrictive material should be used in FEM. The
existing FEM models usually did not consider the coupling
behaviors, that is, the influence of stresses on magnetostric-
tion. Exceptionally, in [22] this coupling behavior was fully
considered using a constitutive relation which fit well with
experimental data. However their FEM example was one-
dimensional.

In this paper, we propose a finite element model for
ME composites, considering the nonlinear behaviors of both
magnetostrictive and ferroelectric materials. The nonlinear
and coupling constitutive models of magnetostrictive mate-
rials have been proposed by several scholars. We adopt the
model based on magnetic domain rotation [2, 28] in our
FEMbecause it predicts the experimental observed curvewell
and has profound physical background. For the ferroelectric
material, the nonlinearity originates from domain switching
under electric field and stresses. In our FEM, this ferroelectric
behavior is modeled using a FEM developed by Liu et al.
[27, 29] which reveals the fully coupled behaviors of elec-
tromechanical field and electric domainswitching, and the
computation is quite efficient.

The interfacial bonding condition significantly influences
themechanical coupling between layers ofME composites. In
most widely used ME composites, the mechanical coupling
is achieved through interfacial shearing, which strongly
depends on the properties of bonding material [17]. The
bonding layer of small shear modulus and large thickness
leads to weak interfacial coupling and reduced ME coeffi-
cient. ME coefficient is also affected by the imperfections of
the interfacial bonding, for example, the interfacial cracks. In
this paper, we define an interfacial transferring coefficient to
describe the effect of interfacial mechanical coupling quanti-
tatively and investigate the influence of stiffness and thickness
of bonding material on ME effect using our proposed FEM.
The influence of the interfacial cracks on ME coefficient
is also obtained. Afterwards we propose a modified ME
structure with curved interface and the FEM results show
that this structure achieves effective ME conversion even if
the interfacial bonding is weak.

We organize this paper as follows. The nonlinear FEM is
developed in Sections 2–4. In Section 2, the basic governing
equations are given and the FEM formula is derived. The
nonlinear behaviors of magnetostrictive material and ferro-
electric material are simulated in Sections 3 and 4 separately.
Several numerical examples are present in Sections 5 and 6.

In Section 5, the magnetic, electric, and mechanical field
distribution in the typical three-layer ME composite is
simulated. Section 6 focuses on the influence of interfacial
bonding on the properties of laminate ME composites.
Finally, the major conclusions are summarized in Section 7.

2. Basic Governing Equations
and FEM Formula

In our FEM model the material is assumed to have the
magnetic, electric, mechanic, magnetomechanical coupling
and electromechanical coupling properties. If the actual
material lacks a certain property, we set the corresponding
parameters and (if necessary) the field variables to be zero.

In this paper, only static magnetic and electric field is
considered, so that the displacement vectoru,magnetic scalar
potential 𝜙, and electric potential 𝜑 are chosen as basic
variables. The basic equations are listed as follows.

Generalized kinematics equations are

𝜀
𝑖𝑗
=
1

2
(𝑢

𝑖,𝑗
+ 𝑢

𝑗,𝑖
) ,

𝐻
𝑖
= −𝜙

,𝑖
,

𝐸
𝑖
= −𝜑

,𝑖
,

(1)

where 𝜀
𝑖𝑗
is the strain, 𝐻

𝑖
is the magnetic field, and 𝐸

𝑖
is the

electric field.
The generalized balance equations are

𝜎
𝑖𝑗,𝑗

+ 𝑓
𝑖
= 0, (2)

𝐵
𝑖,𝑖
= 0, (3)

𝐷
𝑖,𝑖
= 𝑝

𝑒
, (4)

where 𝜎
𝑖𝑗
, 𝐵

𝑖
, and 𝐷

𝑖
are the stress, magnetic induction, and

electric displacement.𝑓
𝑖
and𝑝𝑒 are themechanical body force

and electric volume charge. In (2), we neglect the influence of
magnetic body force as in [23], and the symmetry of stress
tensor is guaranteed. Constitutive equations are

𝜎
𝑖𝑗
= 𝑐

𝑖𝑗𝑘𝑙
(𝜀
𝑘𝑙
− 𝜀

∗

𝑘𝑙
) − 𝑒

𝑛𝑖𝑗
𝐸
𝑛
, (5)

B
𝑖
= 𝜇

0
(𝐻

𝑖
+𝑀

𝑖
) , (6)

𝐷
𝑖
= 𝑒

𝑖𝑘𝑙
(𝜀
𝑘𝑙
− 𝜀

∗

𝑘𝑙
) + 𝑘

𝑖𝑛
𝐸
𝑛
+ 𝐷

∗

𝑖
, (7)

𝜀
∗

𝑘𝑙
= 𝜀

𝑚∗

𝑘𝑙
+ 𝜀

𝑒∗

𝑘𝑙
(8)

in which 𝑐
𝑖𝑗𝑘𝑙

is the elastic stiff tensor, 𝑒
𝑛𝑖𝑗

is the piezoelectric
tensor, and 𝑘

𝑖𝑛
is the dielectric tensor. 𝜀∗

𝑘𝑙
is the sum of the

strain caused bymagnetostriction (𝜀𝑚∗
𝑘𝑙

) and electric domain-
switching (𝜀𝑒∗

𝑘𝑙
),𝑀

𝑖
is the magnetization caused by magnetic

domain rotation, and 𝐷∗

𝑖
is the electric displacement caused

by domainswitching.
The boundary conditions are summarized below.
The given force boundary on 𝑆𝜎 is

𝜎
𝑖𝑗
𝑛
𝑖
= 𝑇

𝑗
. (9)
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The given magnetic charge boundary on 𝑆𝐵 and electric
charge boundary on 𝑆𝐷 are

𝐵
𝑖
𝑛
𝑖
= 𝜎

𝑀
,

𝐷
𝑖
𝑛
𝑖
= 𝜎

𝐸
.

(10)

𝜎
𝑀

is the magnetic surface charge, an imaginary quantity,
which is introduced in the formulation when a scalar mag-
netic potential is used [23]. 𝜎

𝐸
is the electric surface charge,

and 𝑛
𝑖
represents the normal direction of the surface.

The given displacement, magnetic potential, and electric
potential boundary 𝑆𝑢, 𝑆𝜙, and 𝑆𝜑 are

𝑢
𝑖
= 𝑢

𝑖
,

𝜙 = 𝜙,

𝜑 = 𝜑.

(11)

Next we derive a potential energy for FEM via the vari-
ation principle. Virtual displacement 𝛿𝑢

𝑖
, magnetic potential

𝛿𝜙, and electric potential 𝛿𝜑 are assumed to satisfy the given
displacement and magnetic and electric potential boundary
conditions. The generalized balance equations and given
force, magnetic, electric charge boundaries are equivalent to
the following variation equations:

∫
𝑉

[(𝜎
𝑖𝑗,𝑖
+ 𝑓

𝑗
) 𝛿𝑢

𝑗
+ 𝐵

𝑖,𝑖
𝛿𝜙 + (𝐷

𝑖,𝑖
− 𝑝

𝑒
) 𝛿𝜑] d𝑉

− ∫
𝑆
𝜎

(𝜎
𝑖𝑗
𝑛
𝑖
− 𝑇

𝑗
) 𝛿𝑢

𝑗
d𝑆 − ∫

𝑆
𝐵

(𝐵
𝑖
𝑛
𝑖
− 𝜎

𝑀
) 𝛿𝜙 d𝑆

− ∫
𝑆
𝐷

(𝐷
𝑖
𝑛
𝑖
− 𝜎E) 𝛿𝜑 d𝑆 = 0.

(12)

Using Gauss theorem and constitutive equations (5) and
(6), the desired potential is

Π = ∫
𝑉

(
1

2
𝑐
𝑖𝑗𝑘𝑙
𝜀
𝑖𝑗
𝜀
𝑘𝑙
−
1

2
𝜇
0
𝐻
𝑖
𝐻
𝑖
− 𝑒

𝑘𝑖𝑗
𝐸
𝑘
𝜀
𝑖𝑗
−
1

2
𝑘
𝑖𝑗
𝐸
𝑖
𝐸
𝑗
) d𝑉

− ∫
𝑉

[𝑐
𝑖𝑗𝑘𝑙
𝜀
∗

𝑖𝑗
𝜀
𝑘𝑙
+ 𝜇

0
𝑀

𝑖
𝐻
𝑖
− (𝑒

𝑖𝑗𝑘
𝜀
∗

𝑗𝑘
− 𝐷

∗

𝑖
)] d𝑉

− ∫
𝑉

(𝑓
𝑖
𝑢
𝑖
− 𝑝

𝑒
𝜑) d𝑉 − ∫

𝑆
𝜎

𝑇
𝑖
𝑢
𝑖
𝑑𝑆 − ∫

𝑆
𝐵

𝜎
𝑀
𝜙 d𝑆

− ∫
𝑆
𝐷

𝜎
𝐸
𝜑 d𝑆.

(13)

The variation of (13) 𝛿Π = 0 is equal to (12).
For simplicity, we only study two dimensional cases in

this paper, although it is not difficult to extend to three
dimensional problems. Let û, 𝜀̂, and 𝜎̂ denote the generalized
displacement, strain, and stress:

û = [𝑢𝑥 𝑢
𝑦
𝜑 𝜙]

𝑇

,

𝜀̂ = [𝜀𝑥 𝜀
𝑦
𝛾
𝑥𝑦

−𝐸
𝑥
−𝐸

𝑦
−𝐻

𝑥
−𝐻

𝑦]
𝑇

,

𝜎̂ = [𝜎𝑥 𝜎
𝑦
𝜎
𝑥𝑦

𝐷
𝑥
𝐷
𝑦
𝐵
𝑥
𝐵
𝑦]

𝑇

.

(14)

The generalized stress and strain are linked by the constitutive
relation as

𝜎̂ = D̃𝜀̂ + C∗
. (15)

The matrix D̃ and matrix C∗ are reduced from three-dimen-
sional constitutive relations, which are given in Appendix A.

In an element, the generalized displacement can be inter-
polated as

û = Na, (16)

where a is the generalized nodal displacement and N is the
shape function as follows:

a = [a1 a
2
⋅ ⋅ ⋅ a

𝑚]
𝑇
,

a
𝑖
= [𝑢(𝑖)

𝑥
𝑢(𝑖)
𝑦

𝜑(𝑖) 𝜙(𝑖)] ,

N = [N1
N
2
⋅ ⋅ ⋅ N

𝑚] ,

N
𝑖
=
[
[
[

[

𝑁
𝑖
0 0 0

0 𝑁
𝑖
0 0

0 0 𝑁
𝑖
0

0 0 0 𝑁
𝑖

]
]
]

]

.

(17)

Then following the procedure of FEM, the stiff matrix and
force matrix of an element are formed as

K𝑒
= ∫

𝑉

1

2
B𝑇D̃B d𝑥 d𝑦,

P𝑒 = ∫
𝑉

B𝑇C∗ d𝑥 d𝑦 + ∫
𝑉

N𝑇f d𝑥 d𝑦

+ ∫
𝑆
𝜎

N𝑇Td𝑆 + ∫
𝑆
𝐵

N𝑇p𝑚d𝑆 + ∫
𝑆
𝐷

N𝑇p𝑒d𝑆,

(18)

where

B = [B1
B
2
⋅ ⋅ ⋅ B

𝑚] ,

B
𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[

[

𝜕𝑁
𝑖

𝜕𝑥
0

𝜕𝑁
𝑖

𝜕𝑦
0 0 0 0

0
𝜕𝑁

𝑖

𝜕𝑦

𝜕𝑁
𝑖

𝜕𝑥
0 0 0 0

0 0 0
𝜕𝑁

𝑖

𝜕𝑥

𝜕𝑁
𝑖

𝜕𝑦
0 0

0 0 0 0 0
𝜕𝑁

𝑖

𝜕𝑥

𝜕𝑁
𝑖

𝜕𝑦

]
]
]
]
]
]
]
]
]
]
]
]

]

𝑇

,

f = [𝑓𝑥 𝑓
𝑦
−𝑝𝑒 0]

𝑇

,

T = [𝑇
𝑥
𝑇
𝑦
0 0]

𝑇

,

p𝑒 = [0 0 𝜎
𝐸
0]

𝑇
,

p𝑚 = [0 0 0 𝜎
𝑀]

𝑇
.

(19)
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3. Coupling Magnetomechanical Field and
Magnetic Domain Distribution

In Section 2, the magnetostriction 𝜀𝑚∗
𝑘𝑙

andmagnetization𝑀
𝑖

are determined from magnetic domain distribution, which
evolve in the existence of magnetic field and stresses. This
corresponding coupling constitutive model is proposed by
Armstrong [28] and Pei and Fang [2], so we only give a brief
introduction here.

3.1. Determine Magnetostriction and Magnetization from
Domain Distribution. For each material point, nine rep-
resentative magnetic domain directions are chosen, which
are the eight easy magnetization axes plus the direction of
external field. The magnetization and magnetostriction of
each magnetic domain are:

𝑀
(𝑘)

𝑖
= 𝑀

𝑠
𝑚
𝑖
,

𝜀
(𝑘)

𝑖𝑗
=
{
{
{

3

2
𝜆
100

(𝑚2

𝑖
−
1

3
) , 𝑚

𝑖
= 𝑚

𝑗

3𝜆
111
𝑚
𝑖
𝑚
𝑗
, 𝑚

𝑖
̸= 𝑚

𝑗
,

(20)

where 𝜆
100

and 𝜆
111

are the saturated magnetostriction
measured in [100] and [111] directions, respectively. The
magnetization and magnetostriction of a material point are
obtained by averaging (20) over all representative domain
directions so that

𝑀
𝑖
=

9

∑
𝑘=1

𝑃
𝑘
𝑀

(𝑘)

𝑖
,

𝜀
𝑚∗

𝑖𝑗
=

9

∑
𝑘=1

𝑃
𝑘
𝜀
(𝑘)

𝑖𝑗
,

(21)

where 𝑃
𝑘
is the volume fraction of the 𝑘th domain, which

is determined from magnetic field and stresses as discussed
later in Section 3.2.

3.2. Determine Magnetic Domain Distribution from Magne-
tomechanical Field. It is assumed in [2, 28] that the domain
having lower free energy occupies more volume fraction and
a quantitative expression is given as [2]

𝑃
𝑘
= 𝑁 exp [

−𝐸
𝑘

𝜔
] , (22)

where𝐸
𝑘
and𝑁 are domain energy and normalization factor,

respectively, and 𝜔 is called energy distribution parameter,
whose expression is

𝜔 = 𝐴 + 𝐵
𝜎eq

𝜎
0

, (23)

where 𝐴, 𝐵, and 𝜎
0
are fitting parameters. 𝜎eq is the Mises

equivalent stress.
The total free energy of each domain is

𝐸 = 𝐸
𝐾
+ 𝐸el + 𝐸me + 𝐸𝐻 + 𝐸

𝜎
, (24)

where 𝐸
𝐾
, 𝐸el, 𝐸me, 𝐸𝐻, and 𝐸

𝜎
are the magnetocrystalline

anisotropy energy, elastic energy, magnetoelastic energy,
magnetic field energy, and stress energy, respectively.The first
three energy terms can be combined into one term with the
introduction of 𝐾󸀠 = 𝐾

1
+ Δ𝐾

1
≈ 𝐾

1
+ 9/4𝜆2

100
(𝐶

11
− 𝐶

12
) −

9/2𝜆2
111
𝐶
44
, where 𝐾

1
is the magnetocrystalline anisotropy

constant and 𝐶
11
, 𝐶

12
, and 𝐶

44
are elastic constants, so that

𝐸
𝐾
󸀠 = 𝐸

𝐾
+ 𝐸el + 𝐸me = 𝐾

󸀠
(𝑚

2

1
𝑚
2

2
+ 𝑚

2

2
𝑚
2

3
+ 𝑚

2

3
𝑚
2

1
) ,

𝐸
𝐻
= −𝜇

0
𝑀

𝑠
𝐻
𝑖
𝛼
𝑖
,

𝐸
𝜎
= −

3

2
𝜆
100

(𝑚
2

1
𝜎
11
+ 𝑚

2

2
𝜎
22
+ 𝑚

2

3
𝜎
33
)

− 3𝜆
111

(𝑚
1
𝑚
2
𝜎
12
+ 𝑚

2
𝑚
3
𝜎
23
+ 𝑚

1
𝑚
3
𝜎
31
) .

(25)

4. Coupling Electromechanical Filed
and Electric Domainswitching

4.1. Determine Electric andMechanical Properties fromElectric
Domains. In our FEMmodel, at eachmaterial point 42 repre-
sentative electric domains with the same volume fraction are
considered. At eachmaterial point, the constitutive equations
are written as

𝜀
𝑖𝑗
= 𝜀

𝑒∗

𝑖𝑗
+𝑀

𝐸

𝑖𝑗𝑘𝑛
𝜎
𝑘𝑛
+ 𝑑

𝑘𝑖𝑗
𝐸
𝑘
,

𝐷
𝑗
= 𝐷

∗

𝑗
+ 𝑑

𝑗𝑘𝑛
𝜎
𝑘𝑛
+ 𝑘

𝜎

𝑗𝑘
𝐸
𝑘

(26)

in which the elastic moduli 𝑀𝐸

𝑖𝑗𝑘𝑛
, piezoelectric moduli

𝑑
𝑘𝑖𝑗
, dielectric moduli 𝑘𝜎

𝑗𝑘
, remnant strain 𝜀𝑒∗

𝑖𝑗
, and electric

displacement 𝐷∗

𝑗
are calculated by averaging corresponding

values of each domain:

𝑀
𝐸

𝑖𝑗𝑘𝑛
=

1

𝑚

𝑚

∑
𝑙=1

𝑀
𝐸(𝑙)

𝑖𝑗𝑘𝑛
,

𝑑
𝑖𝑗𝑘

=
1

𝑚

𝑚

∑
𝑙=1

𝑑
(𝑙)

𝑖𝑗𝑘
,

𝑘
𝜎

𝑖𝑗
=

1

𝑚

𝑚

∑
𝑙=1

𝑘
𝜎(𝑙)

𝑖𝑗
,

𝜀
𝑒∗

𝑖𝑗
=

1

𝑚

𝑚

∑
𝑙=1

𝜀
∗(𝑙)

𝑖𝑗
,

𝐷
∗

𝑗
=

1

𝑚

𝑚

∑
𝑙=1

𝐷
∗(𝑙)

𝑗
,

(27)

where 𝑚 = 42 is the number of electric domains at each
material point. In deriving (27), the Reuss assumption is
adopted so that the stress and the electric field are the same
for all domains at each material point.

4.2. Determine Domainswitching from Electromechanical
Filed. Wedetermine the domainswitching behavior based on
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double Gibbs free energy criterion. The Gibbs free energy of
an electric domain in state 𝑆 is [30]

𝑔 (𝜎, E, 𝑆) = − (𝜀
𝑒∗(𝑆)

: 𝜎 +D∗(𝑆)
⋅ E + 1

2
𝜎 : ME(𝑆)

: 𝜎

+
1

2
E ⋅ k𝜎(𝑆) ⋅ E + E ⋅ d(𝑆) : 𝜎) .

(28)

The Gibbs free energy criterion assumes that if the dif-
ference of Gibbs energy between two domain states exceeds
a critical value, electric domain can switch to the state with
lower Gibbs energy. In our program, we first determine
the domain state with the lowest Gibbs energy, and then
the difference of free energy between the present state and
the new state is calculated. If the difference exceeds the
critical value, the domain switches to the new state. Next
the electric and mechanical fields are recalculated using the
newly switched domains and then the Gibbs free energy
criterion is used again to check whether this domain rotation
is allowed or not.

Summarizing Sections 3 and 4, the solving procedures of
our FEM are as follows.

(1) Determine the magnetic, electric, and mechanical
fields from an initial guessed domain states by solving
the FEM equations in Section 2.

(2) Update the magnetic domain distribution and the
electric domain state according to the criteria in
Sections 3.2 and 4.2, respectively.

(3) Repeat steps (1)-(2) until both the magnetic and
electric domains do not change.

The details of this iterative solving procedure are further
illustrated in Figure 1.

5. The Field Distribution in Laminate
ME Composite

Several numerical examples of the proposed FEM are given
in this and the following section. The simulated ferroelectric
material is PLZT (La/Zr/Ti = 8/65/35) and the magnetostric-
tive material is Tb

0.3
Dy

0.7
Fe

1.95
compound. Their material

constants are listed in Tables 1 and 2, respectively.

5.1. Constitutive Curve. Our program is first validated
by the experimental constitutive curves of PLZT and
Tb

0.3
Dy

0.7
Fe

1.95
from Hwang et al. [3] and Pei and Fang [2].

FromFigure 2, we can see that our numericalmodel can show
the irreversible 𝐷-𝐸 and 𝜀-𝐸 curves of ferroelectric material
and captures the key nature of ferroelectric hysteresis loop
and butterfly hysteresis loop. The nonlinear dependence of
magnetostriction andmagnetization onmagnetic field under
different stresses are also revealed. All of the four predicted
constitutive curves reasonably agree with the experimental
results.

5.2. The Field Distribution in Three-Layer ME Composite.
Figure 3 schematically shows a typical three-layer laminate

Table 1: Parameters of PLZT [27].

Name of parameters (unit) Value
Young’s module (GPa) 68
Poisson ratio 0.3
Dielectric rate (farad/m) 5.625 × 10−8

Macro piezoelectric rate 𝑑
333

(m/V) 1.188 × 10−9

Macro piezoelectric rate 𝑑
311

(m/V) −5.5 × 10−10

Macro piezoelectric rate 𝑑
113

(m/V) 1.856 × 10−9

Coercive field 𝐸
𝑐
(MV/m) 0.36

Macroremnant strain 𝜀𝑅
11
, 𝜀𝑅

22
−7.2 × 10−4

Macroremnant strain 𝜀𝑅
33

1.44 × 10−3

Remnant polarization 𝑃𝑅 (C/m2) 0.25

Table 2: Parameters of Tb0.3Dy0.7Fe1.95 [2].

Name of parameters (unit) Value
Elastic constant 𝐶

11
(GPa) 141

Elastic constant 𝐶
12
(GPa) 64.8

Magnetocrystalline anisotropy constant 𝐾
1
(J/m3) 60000

Magnetostriction along [100] 𝜆100 90 × 10−6

Magnetostriction along [111] 𝜆111 1640 × 10−6

Saturation magnetization𝑀
𝑠
(KA/m) 760

Fitting parameter 𝐴 (J/m3) 15000
Fitting parameter 𝐵 (J/m3) 30000
Fitting parameter 𝜎

0
(MPa) 75

ME composite, in which one ferroelectric layer is sandwiched
between two magnetostrictive layers. The geometry parame-
ters are chosen as 𝐿 = 10.0mm, 𝑡

𝑚
= 1.0mm, 𝑡

𝑝
= 1.0mm,

and 𝑡
𝑏

= 0.05mm. The spontaneous polarization of the
ferroelectric material is alone 𝑦 direction and a magnetic
field is applied along 𝑥 direction. The magnetostrictive and
ferroelectric materials are bonded through a thin elastic
bonding layer whose elastic constants and thickness can
be adjusted to model different bonding conditions. In this
example, we assume the materials are in perfect bonding
condition so we set the shear module of the bonding layer
to be 50GPa. The simulation is carried out in the 𝑥-𝑦 plane.

From the simulation results shown in Figure 4, it is
obvious that the magnetic, electric, and mechanical fields
are not uniform in each layer. Shear stress concentrates at
two ends of the interface (Figure 4(a)), while the normal
stress 𝜎

𝑥
reaches its maximum in the middle of the material

(Figure 4(b)). As shown in Figure 5, the maximal shear stress
and normal stress increase as the applied magnetic field
increases, but not in a proportional way since our FEM is
a nonlinear analysis. Analytical models usually assume the
stress is uniform along the thickness direction in each layer.
Our FEM results show that this assumption is valid only in
the middle of the material.
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Figure 1: FEM program flowchart. The electric domain status is recorded by an integer array ED, while the magnetic domain distribution,
that is, the volume fraction of each domain, is represented by a real array MD.

6. The Influence of Interfacial Bonding
on ME Effect

6.1. The Effect of the Modulus and the Thickness of Bonding
Layer onME Coefficient. In order to investigate the influence
of the modules and thickness of bonding layer quantitatively,
we define an interfacial transferring coefficient to describe
the interfacial bonding performance. As shown in Figure 6, at
the ends of the composite nominal stress increases from zero
to the peak value. In an effective interfacial bonding, the stress
should increase as quickly as possible, so the performance of
interfacial coupling can bemeasured by the stress transferred
to the piezoelectric layer by a unit length at the ends of a
sufficient long composite, namely,

𝐵 =
d𝜎(𝑝)

𝑥

d𝑥
, at the ends. (29)

If the bonding layer is tightly bonded to both the mag-
netostrictive and the ferroelectric layers without sliding,
𝐵 is determined as (refer to Appendix B for the detailed
derivation)

𝐵 =
2𝐸(𝑚)

𝑥
𝐸(𝑝)
𝑥
𝑡
𝑚

2𝐸(𝑚)𝑥 𝑡
𝑚
+ 𝐸

(𝑝)

𝑥 𝑡
𝑝

𝜀
∗

𝑥

× √
2𝐸(𝑚)

𝑥
𝑡
𝑚
+ 𝐸(𝑝)

𝑥
𝑡
𝑝

𝐸(𝑚)𝑥 𝐸
(𝑝)

𝑥 𝑡
𝑝
𝑡
𝑚

[
𝑡
𝑏

G(𝑏)

𝑥𝑦

+
1

6

𝑡
𝑝

G(𝑝)

𝑥𝑦

+
1

3

𝑡
𝑚

𝐺(𝑚)

𝑥𝑦

]

−1

,

(30)

where 𝜀∗
𝑥

is the magnetostriction. In the extreme case
G(𝑏)

𝑥𝑦
/𝑡
𝑏
→ ∞, we have

𝐵perfect =
2𝐸(𝑚)

𝑥
𝐸(𝑝)
𝑥
𝑡
𝑚

2𝐸(𝑚)𝑥 𝑡
𝑚
+ 𝐸

(𝑝)

𝑥 𝑡
𝑝

𝜀
∗

𝑥

× √
2𝐸(𝑚)

𝑥
𝑡
𝑚
+ 𝐸(𝑝)

𝑥
𝑡
𝑝

𝐸(𝑚)𝑥 𝐸
(𝑝)

𝑥 𝑡
𝑝
𝑡
𝑚

[
1

6

𝑡
𝑝

𝐺
(𝑝)

𝑥𝑦

+
1

3

𝑡
𝑚

𝐺(𝑚)

𝑥𝑦

]

−1

(31)

which gives rise to the best interfacial bonding condition one
can ever achieve. Then the interfacial transferring coefficient
is defined as the normalized term

𝐵 =
𝐵

𝐵perfect
= √

𝑡
𝑝
/𝐺(𝑝)

𝑥𝑦
+ 2 (𝑡

𝑚
/𝐺(𝑚)

𝑥𝑦
)

6 (𝑡
𝑏
/𝐺(𝑏)

𝑥𝑦 ) + 𝑡𝑝/𝐺
(𝑝)

𝑥𝑦 + 2 (𝑡
𝑚
/𝐺(𝑚)

𝑥𝑦 )
. (32)

In the case of Section 5.2, (32) gives 𝐵 = 0.95, which is
very close to the best interfacial bonding condition. In this
section we first reduce the shear module of the bonding layer
from 50GPa to 50MPa, where 𝐵 = 0.10 to model a weak
interfacial bonding condition. The simulated electric, mag-
netic andmechanical fields are shown in Figure 7. Comparing
with Figure 4, we can see that the stress and generated electric
field are much lower. The magnetoelectric coefficient

𝛼
𝐸
=
𝛿𝐸

𝛿𝐻
(33)

under different bonding conditions is given in Figure 8,
showing that a weak interfacial bonding significantly reduces
the ME coefficient.

6.2. The Effect of Interfacial Cracks on the Properties of ME
Composite. In this example, we investigate the case when
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Figure 2: Predicted and experimental constitutive curves: (a) ferroelectric hysteresis loop, (b) butterfly hysteresis loop, (c) magnetization of
Terfenol-D, and (d) magnetostriction of Terfenol-D under different prestresses. The experimental data are from [2, 3].

the interfacial cracks exist in the structure. Two typical cases
are studied. The first one is cracked at one end (Figure 9)
while the other is cracked in the middle (Figure 10). Simula-
tion results show that cracks at the ends of the material cause
stress concentration near the crack tip (Figures 9(a) and 9(b))
and a decrease inME coefficient due to the decreased effective
interface length to transfer mechanical coupling. However,
when the crack is in the middle, its influence is insignificant
(Figure 10) and the ME coefficient is not affected. This can
be explained by the nature of mechanical coupling through
laminated layers. The shearing transfer of stress starts from
the ends and the shear stress decreases towards themiddle. In

fact, in the middle of the interface, the shear stress is almost
zero, indicating that the coupling is almost accomplished.
Since the middle part of the interface plays little role in
mechanical coupling, a crack there has no influence. The
effect of crack length on ME coefficient is also investigated.
As shown in Figure 11, when cracks locate at the end, ME
coefficient decreases almost linearly as the crack grows, while
middle cracks do not affect ME coefficient before they grow
to the ends.

6.3. Laminate ME Composite with Curved Interface. In order
to overcome the influence of interfacial bonding condition on
themechanical coupling between adjacent layers, we propose
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Figure 3: Schematic illustration of the three-layer laminate ME
composite.

a modified ME structure with curved interface as shown
in Figure 12, where the interfacial normal stress plays an
important role in the mechanical coupling. The simulation
results of the curved structure are shown in Figure 13, and
the applied magnetic field and interfacial bonding condition
are the same as in Section 6.1. Comparing Figures 13(a) and
13(b) with Figures 7(a) and 7(b), we can conclude that the
modified structure achieves mechanical coupling effectively
even in poor bonding condition. As shown in Figure 14(a),
the interfacial transferring coefficient of the structure with
curved interface is higher than the flat interfacial. The
ME coefficient of this curved structure in different applied
magnetic field is shown in Figure 14(b), suggesting that
this structure improves the ME coefficient when interfacial
bonding is weak. However, the curved interfacial slightly
decreases the ME coefficient in good bonding conditions,
because the volume of magnetostrictive layer is decreased in
this structure.

7. Conclusion

A finite element model is proposed for simulating the non-
linear magnetomechanical and electromechanical behavior
based on domain evolvement. This model is used to simulate
the laminated magnetoelectric composite of magnetostric-
tive and ferroelectric material. The magnetic, electric, and
mechanical fields as well as the magnetoelectric coefficient
of a three-layer composite are calculated and discussed.
The influence of interfacial bonding is discussed based on
the simulation results. The effect of interfacial mechanical
coupling is investigated quantitatively by defining an inter-
facial transferring coefficient, which depends on the shear
modulus and thickness of bonding layer. A quantitative
relation between the interfacial transferring coefficient and
magnetoelectric coefficient is obtained. It is found that
the magnetoelectric coefficient strongly depends on the
interfacial transferring coefficient, where a poor interfacial
bonding results in ineffective mechanical coupling and low
magnetoelectric coefficient. To improve the performance of
laminated magnetoelectric composite, a modified structure
with curved interface is proposed.The simulated result proves
that the new structure can achieve goodmechanical coupling
even when the interfacial bonding is weak. We also inves-
tigate the influence of interfacial cracks on magnetoelectric
effect. Particularly, interfacial cracks located at the ends of
the material decrease the ME effect, while cracks in the

middle have little influence.The examples show that our FEM
is useful in the designing of magnetoelectric structures.

Appendices

A. The Elastic Stiff Matrix 𝐷 and Matrix 𝐶∗

in Planar Problems

In this appendix, we derive the matrix D̃ and C̃∗ in (15)
for planar strain and planar stress problems from three-
dimensional constitutive relations. Considering the problem
in 𝑥-𝑦 plane, the extended generalized stress and strain are
related as

𝜎̂
󸀠
= D̃󸀠

(𝜀̂
󸀠
− 𝜀̂

󸀠∗
) + 𝜎̂

󸀠∗
= D̃󸀠
𝜀̂
󸀠
+ C̃󸀠∗

, (A.1)

where

𝜀̂
󸀠
= [𝜀𝑥 𝜀

𝑦
𝛾
𝑥𝑦

−𝐸
𝑥
−𝐸

𝑦
−𝐻

𝑥
−𝐻

𝑦
𝜀
𝑧]
𝑇

, (A.2)

𝜀̂
󸀠∗
= [𝜀

∗

𝑥
𝜀∗
𝑦
𝛾∗
𝑥𝑦

0 0 0 0 𝜀∗
𝑧 ]

𝑇

, (A.3)

𝜎̂
󸀠
= [𝜎𝑥 𝜎

𝑦
𝜎
𝑥𝑦

𝐷
𝑥
𝐷
𝑦
𝐵
𝑥
𝐵
𝑦
𝜎
𝑧]
𝑇

, (A.4)

𝜎̂
󸀠∗
= [0 0 0 𝐷∗

𝑥
𝐷∗

𝑦
𝜇
0
𝑀

𝑥
𝜇
0
𝑀

𝑦
0]

𝑇

, (A.5)

D̃󸀠
=

[
[
[
[
[
[
[
[
[
[

[

𝑐
1111

𝑐
1122

𝑐
1112

𝑒
111

𝑒
211

0 0 𝑐
1133

𝑐
1122

𝑐
2222

𝑐
2212

𝑒
122

𝑒
222

0 0 𝑐
2233

𝑐
1112

𝑐
2212

𝑐
1212

𝑒
121

𝑒
221

0 0 𝑐
1233

𝑒
111

𝑒
122

𝑒
121

−𝑘
11

−𝑘
12

0 0 𝑒
133

𝑒
211

𝑒
222

𝑒
221

−𝑘
12

−𝑘
22

0 0 𝑒
233

0 0 0 0 0 −𝜇
0

0 0
0 0 0 0 0 0 −𝜇

0
0

𝑐
1133

𝑐
2233

𝑐
1233

𝑒
133

𝑒
233

0 0 𝑐
3333

]
]
]
]
]
]
]
]
]
]

]

=
[
[
[

[

D̃I I(7×7) D̃I II(7×1)

D̃II I(1×7) 𝐷II II(1×1)

]
]
]

]

,

(A.6)

C̃󸀠∗
= 𝜎̂

󸀠∗
− D̃󸀠
𝜀̂
󸀠∗
= [

C̃I(7×1)
𝐶II(1×1)

] . (A.7)

We rewrite (A.1) as

𝜎̂ = D̃I I𝜀̂ + D̃I II𝜀𝑧 + C̃I, (A.8)

𝜎
𝑧
= D̃II I𝜀̂ + 𝐷II II𝜀𝑧 + 𝐶II. (A.9)

In planar strain problem, 𝜀
𝑧
= 0, so we have

D̃ = D̃I I, C̃∗
= C̃I. (A.10)

In planar stress problem, 𝜎
𝑧
= 0, and 𝜀

𝑧
is solved from (A.9)

as

𝜀
𝑧
= −

1

𝐷II II
D̃II I𝜀̂ −

𝐶II

𝐷II II
. (A.11)
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Substitute (A.11) into (A.8), we have

𝜎̂ = (D̃I I −
1

𝐷II II
D̃I IID̃II I) 𝜀̂ + C̃I −

𝐶II

𝐷II II
D̃I II. (A.12)

Therefore

D̃ = (D̃I I −
1

𝐷II II
D̃I IID̃II I) , C̃∗

= C̃I −
𝐶II

𝐷II II
D̃I II.

(A.13)

B. The Interfacial Bonding Performance
of Three-Layer ME Composite

Considering the three-layer ME composite in Figure 3, we
assume that 𝜎

𝑦
≪ 𝜎

𝑥
in both the magnetostrictive and
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B =
d𝜎x

dx

Position x/L

𝜎x x

L

Figure 6: The definition of 𝐵, namely the stress transferred to the
piezoelectric layer by a unit length at the ends of the composite.

the piezoelectric material, so one-dimensional constitutive
relations are used:

𝜀
(𝑝)

𝑥
=

1

𝐸
(𝑝)

𝑥

𝜎
(𝑝)

𝑥
, (B.1)

𝜀
(𝑚)

𝑥
=

1

𝐸(𝑚)𝑥

𝜎
(𝑚)

𝑥
+ 𝜀

∗

𝑥
, (B.2)

𝛾
(𝑝)

𝑥𝑦
=

1

𝐺
(𝑝)

𝑥𝑦

𝜏
(𝑝)

𝑥𝑦
, (B.3)

𝛾
(𝑚)

𝑥𝑦
=

1

𝐺(𝑚)

𝑥𝑦

𝜏
(𝑚)

𝑥𝑦
, (B.4)

𝛾
(𝑏)

𝑥𝑦
=

1

𝐺(𝑏)

𝑥𝑦

𝜏
(𝑏)

𝑥𝑦
, (B.5)

where the superscript (𝑝) stands for the piezoelectric layer,
(𝑚) stands for the magnetostrictive layer, and (𝑏) stands for
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, 𝜏(𝑝)
𝑥𝑦

, 𝜏(𝑚)
𝑥𝑦

, and 𝜏(𝑏)
𝑥𝑦

are stresses;
𝜀(𝑝)
𝑥
, 𝜀(𝑚)

𝑥
, 𝛾(𝑝)

𝑥𝑦
, 𝛾(𝑚)

𝑥𝑦
, and 𝛾(𝑏)

𝑥𝑦
are strains; 𝐸(𝑝)

𝑥
and 𝐸(𝑚)

𝑥
are

Young’s moduli; 𝐺(𝑝)

𝑥𝑦
, 𝐺(𝑚)

𝑥𝑦
, and 𝐺(𝑏)

𝑥𝑦
are shear moduli; 𝜀∗

𝑥
is

the magnetostriction.
The displacements of the piezoelectric layer and the

magnetostrictive layer are related by

𝑢
(𝑝)

− 𝑢
(𝑚)

=
𝑡
𝑏
𝜏

𝐺(𝑏)

𝑥𝑦

+
1

6

𝑡
𝑝
𝜏

𝐺
(𝑝)

𝑥𝑦

+
1

3

𝑡
𝑚
𝜏

𝐺(𝑚)

𝑥𝑦

= 𝑁𝜏, (B.6)

where 𝜏 is the interfacial shear stress. In deriving (B.6), we
use the shear-lag model [31]. The balance of magnetostrictive
layer leads to

d(𝑡
𝑚
𝜎(𝑚)
𝑥

)

d𝑥
+ 𝜏 = 0 (B.7)

and the overall balance equation is

2𝑡
𝑚
𝜎
(𝑚)

𝑥
+ 𝑡

𝑝
𝜎
(𝑝)

𝑥
= 0. (B.8)

Equations (B.1), (B.2), and (B.6)–(B.8) and the geometry
relation

𝜀
(𝑚)

𝑥
=
d𝑢(𝑚)

d𝑥
, 𝜀

(𝑝)

𝑥
=
d𝑢(𝑝)

d𝑥
(B.9)

give rise to the equation

d2𝜎(𝑚)
𝑥

d𝑥2
−
2𝐸(𝑚)

𝑥
𝑡
𝑚
+ 𝐸(𝑝)

𝑥
𝑡
𝑝

𝑁𝐸(𝑚)𝑥 𝐸
(𝑝)

𝑥 𝑡
𝑝
𝑡
𝑚

𝜎
(𝑚)

𝑥
= 𝜀

∗

𝑥

1

𝑁𝑡
𝑚

. (B.10)

Under the traction free boundary condition at two ends,
namely,

𝑥 = ±
𝐿

2
, 𝜎

(𝑚)

𝑥
= 0, 𝜎

(𝑝)

𝑥
= 0, (B.11)

(B.10) is solved as

𝜎
(𝑚)

𝑥
= −

𝐸(𝑚)
𝑥

𝐸(𝑝)
𝑥
𝑡
𝑝

2𝐸(𝑚)𝑥 𝑡
𝑚
+ 𝐸

(𝑝)

𝑥 𝑡
𝑝

𝜀
∗

𝑥

× {1 −
sinh [√𝑀(𝐿/2 + 𝑥)]

sinh (√𝑀𝐿)

−
sinh [√𝑀(𝐿/2 − 𝑥)]

sinh (√𝑀𝐿)
} ,

(B.12)

where

𝑀 =
2𝐸(𝑚)

𝑥
𝑡
𝑚
+ 𝐸(𝑝)

𝑥
𝑡
𝑝

𝑁𝐸(𝑚)𝑥 𝐸
(𝑝)

𝑥 𝑡
𝑝
𝑡
𝑚

=
2𝐸(𝑚)

𝑥
𝑡
𝑚
+ 𝐸(𝑝)

𝑥
𝑡
𝑝

𝐸(𝑚)𝑥 𝐸
(𝑝)

𝑥 𝑡
𝑝
𝑡
𝑚

× [
𝑡
𝑏

𝐺(𝑏)

𝑥𝑦

+
1

6

𝑡
𝑝

𝐺
(𝑝)

𝑥𝑦

+
1

3

𝑡
𝑚

𝐺(𝑚)

𝑥𝑦

]

−1

.

(B.13)
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The stress in the piezoelectric layer is

𝜎
(𝑝)

𝑥
=

2𝐸(𝑚)
𝑥

𝐸(𝑝)
𝑥
𝑡
𝑚

2𝐸(𝑚)𝑥 𝑡
𝑚
+ 𝐸

(𝑝)

𝑥 𝑡
𝑝

𝜀
∗

𝑥

× {1 −
sinh [√𝑀(𝐿/2 + 𝑥)]

sinh (√𝑀𝐿)

−
sinh [√𝑀(𝐿/2 − 𝑥)]

sinh (√𝑀𝐿)
}

(B.14)

so

d𝜎(𝑝)
𝑥

d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=−𝐿/2
=
2√𝑀𝐸(𝑚)

𝑥
𝐸(𝑝)
𝑥
𝑡
𝑚

2𝐸(𝑚)𝑥 𝑡
𝑚
+ 𝐸

(𝑝)

𝑥 𝑡
𝑝

𝜀
∗

𝑥

cosh (√𝑀𝐿) − 1

sinh (√𝑀𝐿)
.

(B.15)

When the length of the composite 𝐿 is sufficiently large

cosh (√𝑀𝐿) − 1

sinh (√𝑀𝐿)
󳨀→ 1 (B.16)

the stress transferred by a unit length at the ends is

𝐵 =
2𝐸(𝑚)

𝑥
𝐸(𝑝)
𝑥
𝑡
𝑚

2𝐸(𝑚)𝑥 𝑡
𝑚
+ 𝐸

(𝑝)

𝑥 𝑡
𝑝

𝜀
∗

𝑥

× √
2𝐸(𝑚)

𝑥
𝑡
𝑚
+ 𝐸(𝑝)

𝑥
𝑡
𝑝

𝐸(𝑚)𝑥 𝐸
(𝑝)
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𝑡
𝑚

[
𝑡
𝑏

𝐺(𝑏)

𝑥𝑦

+
1

6
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𝑝

𝐺
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𝑥𝑦

+
1

3

𝑡
𝑚

𝐺(𝑚)

𝑥𝑦

]

−1

.

(B.17)
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