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Compressive sensing is a sampling method which provides a new approach to efficient signal compression and recovery by
exploiting the fact that a sparse signal can be suitably reconstructed from very few measurements. One of the most concerns
in compressive sensing is the construction of the sensing matrices. While random sensing matrices have been widely studied,
only a few deterministic sensing matrices have been considered. These matrices are highly desirable on structure which allows
fast implementation with reduced storage requirements. In this paper, a survey of deterministic sensing matrices for compressive
sensing is presented.We introduce a basic problem in compressive sensing and some disadvantage of the random sensing matrices.
Some recent results on construction of the deterministic sensing matrices are discussed.

1. Introduction

Consider a scenario that x ∈ R𝑛 is a vector wewish to recover.
Let y ∈ R𝑚 (𝑚 ≪ 𝑛) be a linearmeasurements of the vector x,
which is given by

y = Ax, (1)

where A is the measurement matrix or sensing matrix.
Because this system is underdetermined, the recovery prob-
lem of the vector x from the measurement vector y is an
ill-posed problem. However, two papers by Donoho [1] and
Candès et al. [2] gave us a breakthrough by exploiting sparsity
in recovery problems. The authors show that a sparse signal
can be reconstructed from very fewmeasurements by solving
via 𝑙
0
-minimization

min
z∈R𝑛

‖z‖
0

subject to Az = y, (P
0
)

𝑙
1
-minimization

min
z∈R𝑛

‖z‖
1

subject to Az = y, (P
1
)

or adopting a strategy between (P
0
) and (P

1
)

min
z∈R𝑛

‖z‖
𝑞

subject to Az = y. (P
𝑞
)

The sufficient conditions for having the solution of (P
0
) to

coincide with that of (P
1
) are dependent on either mutual

coherence or Restricted Isometry Property (RIP).These con-
ditions are closely related to each other and play an important
role in the construction of sensing matrices. Consider A =

[a
1
⋅ ⋅ ⋅ a
𝑛
] is an 𝑚 × 𝑛 sensing matrix we investigate. Then its

mutual coherence is defined as

𝜇 (A) = max





⟨a
𝑖
, a
𝑗
⟩











a
𝑖




2






a
𝑗





2

, 𝑖, 𝑗 = 1, . . . , 𝑛. (2)

Lemma 1 (see [3]). For an 𝑚 × 𝑛 sensing matrix A, the Welch
bound is given by

√

𝑛 − 𝑚

𝑚 (𝑛 − 1)

≤ 𝜇 (A) ≤ 1. (3)

The existence and uniqueness of the solution can be
guaranteed as soon as the measurement matrixA satisfies the
RIP of order 𝑘; that is,

(1 − 𝛿
𝑘
) ‖z‖2
2
≤ ‖Az‖2

2
≤ (1 + 𝛿

𝑘
) ‖z‖2
2
, where ‖z‖

0
≤ 𝑘.

(4)
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The smallest value of 𝛿
𝑘
is called the Restricted IsometryCon-

stant (RIC). A strict condition 𝛿
2𝑠

< 1 also guarantees exact
solution via 𝑙

0
-minimization. However, the problem (P

0
)

remains NP-hard; that is, it cannot be solved in practice. For
0 < 𝑞 ≤ 1, there is no numerical scheme to compute solutions
with minimal 𝑙

𝑞
-norm as well. Furthermore, the problem

(P
1
) is a convex optimization problem, and in fact, it can be

formulated as a linear optimization problem.Then solving via
𝑙
1
-minimization is efficient with high probability. Hence,

most researchers are interested in the recovery via 𝑙
1
-mini-

mization.
There are two common ways to solve these problems.

First, we can exactly recover x via 𝑙
1
-minimization by solving

the problem (P
1
) or (P

1,𝜖
) which is given as

min
z∈R𝑛

‖z‖
1

subject to 



Az − y

2
≤ 𝜖. (P

1,𝜖
)

The second method is using greedy algorithms for 𝑙
0
-

minimization, such as Matching Pursuit (MP), Orthogonal
Matching Pursuit (OMP), or their modifications [4–8].

However, in order to ensure unique and stable recon-
struction, the sensing matrix A must satisfy some criteria.
One of the well-known criteria is 2𝑘-RIP. More attention has
been paid to random sensing matrices generated by identi-
cal and independent distributions (i.i.d.) such as Gaussian,
Bernoulli, and random Fourier ensembles, to name a few.
Their applications have been shown in medical images pro-
cessing [9], geophysical data analysis [10], communications
[11, 12], and other various signal processing problems. Even
though random sensing matrices ensure high probability in
reconstruction, they also havemany drawbacks such as exces-
sive complexity in reconstruction, significant space require-
ment for storage, and no efficient algorithm to verify whether
a sensing matrix satisfies RIP property with small RIC
value. Hence, exploiting specific structures of deterministic
sensing matrices is required to solve these problems of the
random sensing matrices.

Recently, several deterministic sensing matrices have
been proposed. We can classify them into two categories.
First are thosematriceswhich are based on coherence [13–15].
Second are those matrices which are based on RIP or some
weaker RIPs [16–20]. In this paper, we introduce some
highlighted results such as deterministic construction of
sensingmatrices via algebraic curves over finite fields in term
of coherence and chirp sensingmatrices, second-order Reed-
Muller codes, binary Bose-Chaudhuri-Hocquenghem (BCH)
codes, and the sensing matrices with statistical RIP in terms
of the RIP.

The rest of this paper is organized as follows. Section 2
introduces some random sensingmatrices and their practical
disadvantages. In Section 3, we present some highlighted
results in terms of deterministic constructions. Section 4
concludes this paper.

2. Random Sensing Matrices and
Their Drawbacks

Recall that x ∈ R𝑛 is the vector we want to recover. Because
the number of measurements is much smaller than its

dimension (𝑚 ≪ 𝑛), we cannot find a linear identity recon-
struction map; that is, unique solution does not exist for all
x in R𝑛. However, if we assume that the signal x belongs to a
certain subset Σ

𝑘
⊂ R𝑛 which is the set of all 𝑘-sparse vectors

as

Σ
𝑘
(x) = {x ∈ R

𝑛

: 𝑥
𝑖
= 0, 𝑖 ∉ 𝑇} (5)

for each index set 𝑇 ⊆ {1, . . . , 𝑛}, the 𝑘-best approximation is
given by

𝜎
𝑘
(x)
𝑞
= inf {‖x − z‖

𝑞
, ‖z‖
0
≤ 𝑘} , (6)

where ‖ ⋅ ‖
𝑞
can be any norm inR𝑛. Aswe noted above, the use

of randomly generated sensingmatrices has becomepowerful
in compressive sensing. For an upper bound

𝑘 ≤

𝑐𝑚

log (𝑛/𝑚)

, (7)

where 𝑐 is a positive constant, the i.i.d. Gaussian matrix
achieves the 𝑘-RIP as well, which guarantees to recover sparse
signals with high probability [21, 22]. The condition in (7) is
also known to hold for the symmetric Bernoulli distribution
case and changed to 𝑘 ≤ 𝑐𝑚/(log 𝑛)

6 for the Fourier
measurements [23]. For noiseless recovery, it can be stated as
follows.

Theorem 2 (see [24]). If z ∈ R𝑛 is a 𝑘-sparse vector and the
sensing matrix A satisfies

𝛿
𝑘
(A) + 𝛿

2𝑘
(A) + 𝛿

3𝑘
(A) < 1, (8)

then x is the unique minimizer to (P
1
).

In practice, the original signals may be affected by noise,
so the recovered signals are not exact, and rather they are
almost sparse instead. Hence, some modified criteria were
proposed as follows.

Theorem 3 (see [25]). Suppose that x ∈ Σ
𝑘
and the noise e =

Az − 𝑦 satisfies ‖e‖
2
≤ 𝜖. If the sensing matrix A has RIP such

that

𝛿
3𝑘

(A) + 3𝛿
4𝑘

(A) < 2, (9)

then x∗ which is the output of the reconstruction algorithm
applied to x via (P

1,𝜖
) will obey





x∗ − x

2
≤ 𝑐𝜖, (10)

where the constant 𝑐 depends on sparsity 𝑘.

A new result on RIC was proposed by Candès as follows.

Theorem 4 (see [25]). Given x ∈ Σ
𝑘
(x) and an upper bound

of noise ‖e‖
2
= ‖Az − y‖

2
≤ 𝜖, if the sensing matrix A has RIP

such that

𝛿
2𝑘

< √2 − 1, (11)
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then any solution x∗ of (P
1,𝜖

) obeys





x∗ − x

2
≤ 𝑐
1
𝜖 + 𝑐
2

𝜎
𝑘
(x)
2

√𝑘

, (12)

where 𝑐
1
and 𝑐

2
are two positive constants depending on

sparsity 𝑘.

Several inequalities in terms of RIC have been discovered,
such as 𝛿

2𝑘
< 2/(3 + √2) in [26], 𝛿

2𝑘
< 3/(4 + √6) in [27],

or 𝛿
2𝑘

< 2/(2 + √5) in [28], to name a few. In sum, we can
obtain stable and unique solution by using tools from random
sensing matrices.

Random matrices are easy to construct and ensure high
probability reconstruction. However, they also have many
drawbacks. First, storing random matrices requires a lot of
storage. Second, there is no efficient algorithm verifying RIP
condition. So far, it is not a good approach because of its lack
of efficiency. The recovery problems may be difficult when
the dimension of the signal becomes large, and we have to
construct a measurement matrix that satisfies RIP with a
small 𝛿

𝑘
, such as Theorem 4.

3. Deterministic Sensing Matrices

3.1. Chirp Sensing Matrices. A discrete chirp of length 𝑚 has
the form

𝐴
𝑟,𝜔

=

1

√𝑚

exp {

2𝜋𝑖

𝑚

𝜔𝑙 +

2𝜋𝑖

𝑚

𝑟𝑙
2

} , 𝑙, 𝜔, 𝑟 ∈ Z
𝑚
, (13)

where 𝑟 is the chirp rate and 𝜔 is the base frequency. The full
chirp sensing matrix A of size 𝑚 × 𝑚

2 can be written as

Achirp = [U
𝑟
1

U
𝑟
2

⋅ ⋅ ⋅ U
𝑟
𝑘

] . (14)

Each matrix U
𝑟
𝑡

(𝑡 = 1, . . . , 𝜔) is an 𝑚 × 𝑚 matrix with
columns given by the chirp signals having a fixed chirp rate 𝑟

𝑡

with base frequency 𝜔 varying from 0 to 𝑚 − 1. For instance,
given 𝑘 = 2 and 𝑟,𝑚, 𝑙 ∈ {0, 1}, we obtain

U
𝑟
1

= [

1 1

1 𝑒
𝑖𝜋] , U

𝑟
2

= [

1 1

𝑒
𝑖𝜋

𝑒
𝑖𝜋+𝑖2𝜋] . (15)

Hence, we get the 2 × 4 deterministic sensing matrix A as

Achirp = [U
𝑟
1

U
𝑟
2

] = [

1 1 1 1

1 𝑒
𝑖𝜋

𝑒
𝑖𝜋

𝑒
𝑖𝜋+𝑖2𝜋] . (16)

Note that when 𝑟 = 𝑟
1
= 0, the matrix U

𝑟
1

corresponding to
chirp rate 𝑟

1
becomes the Discrete Fourier Transform (DFT)

matrix.
Most of the sensing chirp matrices admit a fast recon-

struction algorithm which reduces the complexity to
𝑂(𝑘𝑚 log𝑚).

3.2. Second-Order Reed-Muller SensingMatrices. Thesecond-
order Reed-Muller code is given as follows:

𝜙P,b (a) =

(−1)
𝑤(b)

√2
𝑝

𝑖
(2b+Pa)𝑇a

, (17)

where P is a 𝑝×𝑝 binary symmetric matrix, b is a 𝑝×1 binary
vector in Z2

𝑝
, and 𝑤(b) is the weight of b, that is, number

of bit-1 entries. In practice, the matrices P are set as all-zero
matrices or the matrices with zero diagonals. Thus, there are
only 2

𝑝(𝑝−1)/2 matrices P satisfying this condition, which are
{P1, . . . ,P2𝑝(𝑝−1)/2}, and the functions {𝜙P,b(a)} are real valued.
The set

FP = {𝜙P,b | b ∈ Z
𝑝

2
} (18)

forms a basis of Z𝑝
2
. The inner product on FP is defined as

follows. For any two vectors 𝜙P,b and 𝜙P ,b inFP,

⟨𝜙P,b, 𝜙P ,b⟩ =

{

{

{

1

√2
𝑞

2
𝑞 times,

0 2
𝑝

− 2
𝑞 times,

(19)

where 𝑞 = rank(P−P).The deterministic sensingmatrix has
the form

ARM = [UP
1

UP
2

⋅ ⋅ ⋅ UP
2
𝑝(𝑝−1)/2

]
2
𝑝
×2
𝑝(𝑝+1)/2

, (20)

where UPi
is the unitary matrix corresponding to F

𝑃
𝑖

(𝑖 =

1, . . . , 2
𝑝(𝑝−1)/2

). Note that if we set 𝑚 = 2
𝑝 and 𝑛 = 2

𝑝(𝑝+1)/2,
we get an 𝑚 × 𝑛 sensing matrix ARM. For instance, let 𝑝 = 2;
then

Z
2

2
= {[

0

0
] , [

0

1
] , [

1

0
] , [

1

1
]} . (21)

There are only 2
2(2−1)/2

= 2 binary symmetric matrices P of
size 2 × 2 satisfying the condition. These are

P
1
= [

0 0

0 0
] , P

2
= [

0 1

1 0
] . (22)

Hence, we get the deterministic sensing matrix A as

ARM = [UP
1

UP
2

]

=

[
[
[

[

1 −1 −1 1 1 −1 −1 1

1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1

1 1 1 1 −1 −1 −1 −1

]
]
]

]22×23

.

(23)

Reconstruction algorithms using the second-order Reed-
Muller sensing matrices can outperform the standard com-
pressive sensing using randommatrices via 𝑙

1
-minimization,

especially when the original signal is not sparse and the noise
is present. Moreover, the nesting of the Delsarter-Goethals
sets of the Reed-Muller codes is still feasible if the dimension
of the original signal is large [17, 29].

3.3. Binary BCHMatrices. Denote 𝑛 as a divisor of 2𝑝 − 1 for
some integer 𝑝 ≥ 3, and 𝛾 ∈ GF(2𝑝) as a primitive 𝑛th root
of unity and assume that 𝑝 is the smallest integer for which
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𝑛 divides 2
𝑝

− 1. If we set 𝛼 = 𝛾
(2
𝑝

−1)/𝑛, then 𝛼 has order 𝑛.
Define a codeC over GF(2𝑝) by

H =

[
[
[
[
[
[
[
[
[
[
[

[

1 𝛼 𝛼
2

⋅ ⋅ ⋅ 𝛼
(𝑛−1)

1 𝛼
3

𝛼
6

⋅ ⋅ ⋅ 𝛼
3(𝑛−1)

...
...

...
...

...
1 𝛼
2𝑖−1

𝛼
2(2𝑖−1)

⋅ ⋅ ⋅ 𝛼
(𝑛−1)(2𝑖−1)

...
...

...
...

...
1 𝛼
2𝑙−1

𝛼
2(2𝑙−1)

⋅ ⋅ ⋅ 𝛼
(𝑛−1)(2𝑙−1)

]
]
]
]
]
]
]
]
]
]
]

]𝑙×𝑛

. (24)

The BCH codeC is defined by

C = {𝑐 ∈ F
2
𝑛 | 𝐻 ⋅ 𝑐

†

= 0} . (25)

In other words, if we denoteN as the null-space of the above
matrix of GF(2𝑝), then the BCH codeC = N ∩ F

2
𝑛 .

An example of binary matrices formed by BCH code is
given as follows. Let 𝑛 = 15, 𝑝 = 4, and 𝑡 = 1, and let 𝛾 be a
primitive element ofGF(24) = GF(16) satisfying 𝛾

4

+𝛾+1 = 0.
Then 𝛼 = 𝛾

(2
𝑝

−1)/𝑛

= 𝛾
(2
4

−1)/15

= 𝛾. The BCH code is the set
of 15 tuples that lie in the null space of the matrix

H = [1 𝛼 𝛼
2

⋅ ⋅ ⋅ 𝛼
14

] . (26)

Since

𝑔 (𝑥) = (𝑥
4

+ 𝑥 + 1) (𝑥
4

+ 𝑥
3

+ 𝑥
2

+ 𝑥 + 1)

= 𝑥
8

+ 𝑥
7

+ 𝑥
6

+ 𝑥
4

+ 1

(27)

satisfies 𝑔(𝛼
3

) = 0, we have
[1 0 0 0 1 0 1 1 1 0 0 0 0 0 0]

𝑇 as a
codeword in the BCH code. The binary matrix is obtained as
follows:

Abin

=
[
[

[

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

]
]

]

.

(28)

Since BCH code is cyclic, we can describe it in terms of a
generator polynomial which is the smallest degree polyno-
mial having zeros 𝛼, 𝛼

3

, . . . , 𝛼
2𝑖−1

, . . . , 𝛼
2𝑙−1. The advantages

of these matrices are deterministic construction, simplicity
in sampling process, and reduced computational complexity
compared with the DeVoice’s binary sensing matrices. How-
ever, the generated matrices formed by BCH codes do not
acchieve the RIP constraint yet.

3.4. Sensing Matrices with Statistical Restricted Isometry Prop-
erty. In [18], the authors proposed some weaker Statistical
Restricted Isometry Properties (StRIPs) defined as follows.

Definition 5 (StRIP). An 𝑚 × 𝑛 matrix 𝐴 is called StRIP of
order 𝑘 with constant 𝛿 and probability 1 − 𝜖 if

Pr (‖Ax‖2 − ‖x‖2) ≥ 1 − 𝜖 (29)

with respect to a uniform distribution of vector x among all
𝑘-sparse vectors in R𝑛 of the same norm.

Definition 6 (UStRIP). An 𝑚 × 𝑛 matrix 𝐴 is called UStRIP
of order 𝑘 with constant 𝛿 and probability 1 − 𝜖 if it satisfies
StRIP and

{z ∈ R
𝑛

: Az = Ax} = {x} (30)

with probability exceeding 1 − 𝜖 with respect to a uniform
distribution of vector x among all 𝑘-sparse vectors in R𝑛 of
the same norm.

These constructions allow recovery methods for which
expected performance is sublinear in 𝑛 and quadratic in
𝑚, compared to the superlinear in 𝑛 of the BP or the MP
algorithms. The criteria are simple; however, when satisfied
by a deterministic sensing matrix, they guarantee successful
recovery in an exponentially small fraction of 𝑘-sparse sig-
nals. The authors also showed that such sensing matrices sat-
isfying these aforementioned properties could be constructed
by chirps, second-order Reed-Muller codes, and BCH codes
[16–18].

3.5. Deterministic Construction of Sensing Matrices via Alge-
braic Curves over Finite Fields. In [14], DeVore used polyno-
mials over finite field F

𝑝
to construct binary sensing matrices

of size 𝑝
2

× 𝑝
𝑘+1, where 𝑝 is a primer number. Let {𝑎

0
, 𝑎
1
,

. . . , 𝑎
𝑟
} be a subset of F

𝑞
, and let𝑃

𝑟
be the set of all polynomials

of degree no more than 𝑟 on F
𝑝
as

𝑃
𝑟
= {𝑓 ∈ F

𝑝
[x] : deg𝑓 ≤ 𝑘} . (31)

There are 𝑛 = 𝑝
𝑟+1 such polynomials. Any polynomial 𝑃 ∈ 𝑃

𝑟

can be described as a mapping

𝑃 : F
𝑝
→ F
𝑝
,

(𝑥
0

, 𝑥
1

, . . . , 𝑥
𝑟

) → 𝑃 (x) = 𝑎
0
𝑥
0

+ 𝑎
1
𝑥
1

+ ⋅ ⋅ ⋅ + 𝑎
𝑟
𝑘𝑥
𝑟

.

(32)

The set of (x, 𝑃(x)) is a subset of F
𝑝
×F
𝑝
. We order the element

of F
𝑝
× F
𝑝
as (0, 0), (0, 1), . . . , (𝑝 − 1, 𝑝 − 1). For given F

𝑝
, the

set F
𝑝
× F
𝑝
has 𝑚 = 𝑝

2 of order pairs. For each 𝑃 ∈ 𝑃
𝑟
, we

denote k
𝑃
as the vector indexed on F

𝑝
× F
𝑝
which is defined

by

[𝑃
0,0

, . . . , 𝑃
0,𝑝−1

, 𝑃
1,0

, . . . , 𝑃
1,𝑝−1

, . . . , 𝑃
𝑝−1,0

, . . . , 𝑃
𝑝−1,𝑝−1

]

𝑇

,

(33)

where

𝑃
𝑖,𝑗

= {

1, if 𝑃 (𝑖) = 𝑗,

0, otherwise
(34)

for 𝑖, 𝑗 = 0, 1, . . . , 𝑝 − 1.

Theorem7. LetA
0
be the𝑚×𝑛matrices with columns v

𝑃
,𝑃 ∈

𝑃
𝑟
with these columns ordered lexicographically with respect

to the coefficients of the polynomial. Then the matrix A =

(1/√𝑝)A
0
satisfies the RIP of order 𝑘 < 𝑝/𝑟+1with RIC value

𝛿
𝑘
= (𝑘 − 1)𝑟/𝑝.
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There are several deterministic constructions of sensing
matrices via algebraic curves over finite fields called algebraic
geometry codes [30–33]. Goppa’s code is one of well-known
results which contain many linear codes with many good
parameters. Hence, these kinds of sensing matrices are good
candidates in reconstruction issues using compressive sens-
ing.

3.6. Binary Sensing Matrices Generated by Unbalanced
Expander Graphs. In [20], a large class of deterministic sen-
sing matrices based on unbalanced expander graphs, that is,
the combinatorial structures, was proposed. Denoting [𝑛] =

{1 ⋅ ⋅ ⋅ 𝑛}, these bipartite graphs are formalized through the
following definitions.

Definition 8. A bipartite graph with 𝑛 left vertices, 𝑚 right-
vertices, and left-degree 𝑑 is specified by a function Γ : [𝑛] ×

[𝑑] → [𝑚], where Γ(𝑥, 𝑦) denotes the 𝑦th neighbor of 𝑥. For
a set 𝑆 ⊂ [𝑁], we write Γ(𝑆) to denote its set of neighbors
{Γ(𝑥, 𝑦) : 𝑥 ∈ 𝑆, 𝑦 ∈ [𝐷]}.

Definition 9. Abipartite graph Γ : [𝑛]×[𝑑] → [𝑚] is a (𝐾, 𝐴)

expander if for every set 𝑆 ⊂ [𝑛] of size 𝑘, we have |Γ(𝑆)| ≥

𝐴 ⋅ 𝐾.

They constructed a large class of binary and sparse
matrices satisfying a different form of the RIP property called
RIP-𝑝 as

(1 − 𝛿
𝑘
) ‖z‖𝑝
𝑝
≤ ‖Az‖𝑝

𝑝
≤ (1 + 𝛿

𝑘
) ‖z‖𝑝
𝑝
, where ‖z‖

0
≤ 𝑘.

(35)

If the sensing matrixA is an adjacency matrix of high-quality
unbalanced expander, then the RIP-𝑝 holds for 1 ≤ 𝑝 ≤ 11 +

𝑂(1)/ log(𝑛).

Theorem 10 (see [19]). Consider any 𝑚 × 𝑛 matrix A
0
which

is the adjacency matrix of an (𝑘, 𝜖) unbalanced expander 𝐺 =

(𝐴, 𝐵, 𝐸), |𝐴| = 𝑛, |𝐵| = 𝑚with left degree 𝑑, such that 1/𝜖 and
𝑑 < 𝑛. Then the scaled matrix A = (1/√𝑑)A

0
satisfies the RIP

with RIC value 𝛿 = 𝑐𝜖 for some positive constant 𝑐 > 1.

This approach utilizes sparse matrices interpreted as
adjacencymatrices of sparsity to recover an approximation to
the original signal. The new property RIP-𝑞 suffices to guar-
antee exact recovery algorithms.

4. Concluding Remarks

In this paper, various deterministic sensing matrices have
been investigated and presented in terms of coherence and
RIP. The advantages of these matrices, in addition to their
deterministic constructions, are the simplicity in sampling
and recovery process as well as small storage requirement. It
can be possible to make further improvement in both recon-
struction efficiency and accuracy using these deterministic
matrices in compressive sensing, particularly when some a
priori information on location of nonzero components is
available.
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