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This paper proposes a nonnegative mix-norm convex optimization method for mitotic cell detection. First, we apply an imaging
model-based microscopy image segmentation method that exploits phase contrast optics to extract mitotic candidates in the input
images.Then, a convex objective function regularized bymix-normwith nonnegative constraint is proposed to induce sparsity and
consistence for discriminative representation of deformable objects in a sparse representation scheme. At last, a Support Vector
Machine classifier is utilized formitotic cell modeling and detection.Thismethod can overcome the difficulty in feature formulation
for deformable objects and is independent of tracking or temporal inference model.The comparison experiments demonstrate that
the proposed method can produce competing results with the state-of-the-art methods.

1. Introduction

Measurement of the proliferative behaviors of cells in vitro
is important to many biomedical applications, such as drug
discovery, stem cell manufacturing, and tissue engineering.
Recently, the need for extended-time observation and the
proliferation of high-throughput imaging have made auto-
matic mitotic cell detection mandatory.

The state-of-the-art methods for this task generally fall
into two categories. (1) Spatial feature-based method: this
kind of methods detects mitotic cells directly in an image
depending on spatial visual characteristics. Liu et al. [1]
considered mitotic cell as a special visual pattern and train
a Support Vector Machine classifier with region features for
identification. Li et al. [2] extracted volumetric Haar-like
features and implemented a cascade framework to classify
spatiotemporal sliding windows of an image sequence. Since
the current low level visual features usually have low dis-
crimination for nonrigid and deformable objects, this kind
of methods always achieves unsatisfactory performances. (2)

Sequential feature-basedmethod: this kind ofmethods usually
implement object tracking or temporal inference models
to leverage sequential features for decision. Yang et al. [3]
extracted individual cell trajectories by cell tracking and
identified mitoses with the dynamic features of the mother
and daughter cells during mitosis progression. To handle
the difficulty by cell tracking, temporal inference models are
implemented to leverage the temporal context for mitosis
event recognition. Gallardo et al. [4] trained a hiddenMarkov
model for mitosis recognition with cell shape and appearance
dynamics. Liu et al. [5] applied a hidden-state conditional
random field to learn the sequential structure of mitosis
progression. Liang et al. [6] implemented a conditional
random field model [7] to further localize different mitotic
phases based on the visual features of the nuclei.

Although much work has been done on this task, there
still exist several limitations. On one hand, the state-of-
the-art visual features can not discriminatively represent
mitotic cells with irregular appearance changes as shown in
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Figure 1 and therefore the spatial feature-based method only
has relatively low generalization. On the other hand, the
sequential feature-based method involves temporal inference
model to take advantage of temporal context. Learning the
complicated transition amongmultiple stateswill induce high
computational complexity and make the system far from
the requirement of real-time mitotic cell recognition for
biological analysis.

To tackle this challenging task, we propose a nonneg-
ative mix-norm convex optimization method for mitotic
cell detection. First, we apply an imaging model-based
microscopy image segmentation method that exploits phase
contrast optics to extract mitotic candidates in the input
images. Then, a convex objective function regularized by
mix-normwith nonnegative constraint is proposed to induce
sparsity and consistence for discriminative representation
of deformable objects. At last, a Support Vector Machine
classifier is utilized for model learning and detection on the
extracted candidate regions. The main contribution lies in
two folds. (1) This method can overcome the difficulty in
feature formulation for deformable objects. (2) It is indepen-
dent of tracking or temporal inference model and can greatly
reduce the computational complexity.

The rest of paper is structured as follows. In Section 2,
we briefly introduce the systematic workflow. Then, the
mitotic cell representation is illustrated in Section 3. The
experimental method and results will be detailed in Sections
4 and 5. At last, conclusion is presented.

2. System Overview

The proposed method was designed to automatically identify
mitotic cell in phase contrast microscope images. To achieve
this goal, the method proceeds through tree consecutive
steps.
(i)Mitotic Candidate Extraction.This step aims to extract can-
didate regions, 𝐶 = {𝐶

𝑖
}
𝑁

𝑖=1
(𝐶
𝑖
∈ 𝑅
𝑚×𝑛, 𝑚 and 𝑛 separately

mean the width and height of one region), that poten-
tially contain mitotic cells from the original image, while
eliminating most background regions to reduce the search
space for refinement. We adopted the imaging model-based
microscopy image segmentation method proposed in our
previous work [1, 8] to detect mitotic cells in the input
sequence. Since this step is not the main focus of this paper,
we only briefly introduce it as follows. Please refer to [1, 8] for
more details.

Under a positive phase contrast microscope, adherent
stem cells growing in culture appear as dark objects sur-
rounded by bright halos. We have proposed an imaging
model-based microscopy image segmentation method [1,
8] to restore the ideal image in which pixel values are
positive inside cell regions while being uniformly zero in the
background. The objective function is

𝑂 (f) = 󵄩󵄩󵄩󵄩Pf − g
󵄩󵄩󵄩󵄩

2

2
+ 𝑤smoothf

⊤Lf + 𝑤sparse‖Df‖1,

subject to 𝑓
𝑘
≥ 0, ∀𝑘.

(1)

During mitosis, stem cells usually appear as drastically
intensified halo artifacts, which often completely immerse
the cell while their volume reaches minimum. By comparing
these two phenomena, we found that the visual pattern of the
mitotic region in the inverted phase contrast microscopy, −𝑓,
is similar to the visual appearance of the normal cell region
in the original microscopy, 𝑓. Therefore, we can selectively
enhance only mitotic regions by modifying 𝑓 = −𝑓 and
formulate the objective function equation

𝑂(f) = 󵄩󵄩󵄩󵄩󵄩Pf + g
󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝑤smoothf

⊤

Lf + 𝑤sparse
󵄩󵄩󵄩󵄩󵄩
Df󵄩󵄩󵄩󵄩󵄩1,

subject to 𝑓
𝑘
≥ 0, ∀𝑘,

(2)

where g and f are𝑁-dimensional vectorized representations
of the observed image 𝑔(𝑖, 𝑗) and the artifact-free image𝑓(𝑖, 𝑗)
with onlymitotic cells, respectively, with𝑁 being the number
of pixels in the image; L and D are, respectively, a Laplacian
matrix and a diagonal matrix defining local smoothness and
sparseness with corresponding weights𝑤smooth and𝑤sparse [8,
9]. The similarity-based Laplacian matrix L is defined by L =
D−W.W is a symmetric matrix whose off-diagonal elements
are defined a 𝑊

𝑚𝑛
= 𝑒
−(𝑔
𝑚
−𝑔
𝑛
)
2

/𝜎
1 where 𝑔

𝑚
and 𝑔

𝑛
denote

intensities of neighboring pixels𝑚 and 𝑛,𝜎
1
is the mean of all

possible (𝑔
𝑚
− 𝑔
𝑛
)
2 in the image, and D is a diagonal degree

matrix where𝐷
𝑚𝑚
= ∑
𝑛
𝑊
𝑚𝑛
. ‖ ⋅ ‖
𝑝
denotes the 𝐿𝑝 norm; the

nonnegativity constraint on f enforces the assumption that
the cell-induced phase shifts to be restored are unidirectional;
hence the restored pixel values are positive inside cell regions
while being uniformly zero in the background; P is a𝑁 × 𝑁
matrix such that the 𝑘th element of the vector Pf can be
computed by the convolution between f and the discretized
point spread function PSF(𝑢, V) = 𝛿(𝑢, V) − airy(√𝑢2 + V2),
where airy(⋅) is an obscured Airy pattern [10–12].

The image f can be obtained by minimizing 𝑂(f) using
iteratively reweighted nonnegative multiplicative update [9].
Samples are shown in Figure 3.
(ii) Mitotic Cell Representation. This step aims to represent
𝐶
𝑖
with a high level feature vector which directly denotes the

similarity between one sample and the bases of the dictionary
in the sparse representation scheme. Given a training set
consisting of positive andnegativemitotic cell regions and the
corresponding low level image feature set 𝑋 = {𝑋

𝑖
}
𝑁

𝑖=1
(𝑋
𝑖
∈

𝑅
𝑑×1
), this step means to decompose𝑋

𝑖
over a dictionaryΦ

(Φ = {𝜙
𝑖
}
𝑀

𝑖=1
, 𝜙
𝑖
∈ 𝑅
𝑑×1 is basis denoting a classic visual

pattern) such that 𝑋
𝑖
= Φ ⋅ 𝑤

𝑖
+ 𝑟
𝑖
where 𝑤

𝑖
∈ 𝑅
𝑀×1 is a

sparse vector and 𝑟
𝑖
∈ 𝑅
𝑑×1 is the residual. Since 𝑤

𝑖
denotes

the correlation between 𝑋
𝑖
and each basis, it can be utilized

as the feature representation of one sample. We proposed
a convex objective function regularized by mix-norm with
nonnegative constraints to simultaneously obtain the optimal
𝑊
∗
= {𝑤

∗

𝑖
}
𝑁

𝑖=1
and Φ∗. This method will be detailed in

Section 3.
(iii) Mitotic Cell Detection. Under the sparse representation
scheme, each test candidate region with 𝑋

𝑡
as its low level

image feature can be represented as a linear combination of
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(a) (b)

Figure 1: (a) Mitotic cell samples; (b) Nonmitotic cell samples.

bases in Φ∗ by coefficient 𝑤
𝑡
. Therefore, 𝑤

𝑡
also reflects the

relationship between 𝑋
𝑡
and bases and can be utilized as the

characteristic representation for test. In our work, an SVM
classifier was trained with the high level feature set 𝑊∗ =
{𝑤
∗

𝑖
}
𝑁

𝑖=1
. Then it is utilized to predict each test sample, 𝑤

𝑡
,

as mitotic cell or not. SVM is a supervised binary classifier
that constructs a linear decision boundary or a hyperplane
to optimally separate two classes. Literature show that SVM
usually has high generalization ability especially when only
small amount of training data is available [14].

3. Mitotic Cell Representation

3.1. Problem Formulation. For the representation of one
mitotic cell,𝑋

𝑖
, we designed the objective function as follows

Obj (𝑤
𝑖
, 𝛾
1
, 𝛾
2
) =

󵄩󵄩󵄩󵄩𝑋𝑖 − Φ ⋅ 𝑤𝑖
󵄩󵄩󵄩󵄩

2

2
+ 𝛾
1
Sparsity (𝑤

𝑖
)

+ 𝛾
2
Consistence (𝑤

𝑖
) ,

subject to 𝑤
𝑖
≥ 0,

(3)

where ‖ ⋅ ‖
2
means a𝐿

2
norm; the relative importance of three

terms is controlled by the positive weights 𝛾
1
and 𝛾

2
; the non-

negative constrain (𝑤
𝑖
≥ 0) is imposed because 𝑤

𝑖
represents

the similarity between one sample and bases. The optimal
decomposed coefficient 𝑤∗

𝑖
can be achieved by solving 𝑤∗

𝑖
=

argmin
𝑤
𝑖

Obj(𝑤
𝑖
, 𝛾
1
, 𝛾
2
).Theobjective function in (3) consists

of three parts.
(i) Fidelity. The first term penalizes the sum-of-squares
difference between the reconstructed and original sample.
Assuming that there are enough training samples of mitotic
cell regions so that the dictionary Φ consisting of all these
samples is overcomplete, it is obvious that a new mitotic
cell image can be faithfully represented only by the linear
combination of mitotic bases. However, it is impossible to
enumerate all mitotic cases for training set in reality. The
sparse coding in this way will be rather unstable. A feasible
compensation is to utilize the samples of nonmitotic cell
regions. By tuning 𝑤

𝑖
, the negative samples might by very

helpful for reconstructionwhen there are only limitedmitotic
bases.Therefore, theFidelity termwill utilize bothmitotic and
nonmitotic samples for reconstruction.
(ii) Sparsity. In the sparse coding scheme, it is usually
expected that a mitotic sample should be reconstructed
with both low residual and few mitotic bases. Although a
nonmitotic sample can also be reconstructed with the same
dictionary and the acceptable residual, it will leverage lots
of bases for compensation and result in a dense 𝑤

𝑖
. Lasso

penalty is well known to impose sparsity for decomposition

[15]. Therefore, ‖𝑤
𝑖
‖
1
(𝐿
1
norm of 𝑤

𝑖
) is implemented for

Sparsity term.
(iii) Consistence. In the framework of sparse representation,
overcomplete dictionary always exists and consequently the
dictionary would be redundant. It is known that to induce
sparsity the lasso tends to select only one basis from the
group of bases which have high correlations in between and
consequently lead to the nonunique solutions. To handle this
problem, in the objective function equation (3) for mitotic
cell representation, we impose the ridge penalty ‖𝑤

𝑖
‖
2
(𝐿
2

norm of𝑤
𝑖
) forConsistence term. Zou andHastie [16] mathe-

matically demonstrated that strict convexity could guarantee
the consistence in the extreme situation with identical bases.
Since the linear combination of the lasso and ridge penalties
is strictly convex, the regularizations of the objective function
equation (4) can benefit from preserving the consistence.
Furthermore, Zou and Hastie [16] derived the upper bound
of the difference between the coefficients of two different
bases to quantitatively describe the consistence effect by the
elastic net penalty [16, Theorem 1]. FollowingTheorem 1, the
difference between the coefficients of two bases is almost 0 if
these bases are highly correlated. Therefore, the Consistence
term can theoretically avoid the nonunique solutionwhen the
dictionary is redundant.

In this way, the proposed convex objective function
regularized by mix-norm with nonnegative constraint can be
formulated as follows:

Obj (𝑤
𝑖
, 𝛾
1
, 𝛾
2
) =

󵄩󵄩󵄩󵄩𝑋𝑖 − Φ ⋅ 𝑤𝑖
󵄩󵄩󵄩󵄩

2

2
+ 𝛾
1

󵄩󵄩󵄩󵄩𝑤𝑖
󵄩󵄩󵄩󵄩1 + 𝛾2

󵄩󵄩󵄩󵄩𝑤𝑖
󵄩󵄩󵄩󵄩2,

subject to 𝑤
𝑖
≥ 0.

(4)

3.2. Optimization. Given a training set of 𝑁 samples, 𝑋 =

{𝑋
𝑖
}
𝑁

𝑖=1
, where 𝑋

𝑖
denotes the extracted visual feature of

each training candidate, there exists a latent dictionary of
bases where each basis characterizes a special visual pattern
of mitotic cell region or nonmitotic cell region such that
a new image can be sparsely reconstructed with respect to
this dictionary. Therefore, the goal of optimization of the
objective function is to discover the optimal dictionary Φ∗
and reconstruction coefficients 𝑤∗

𝑖
for the corresponding

𝑋
𝑖
. This task can be achieved by solving the optimization

problem following:

(Φ
∗
,𝑊
∗
) = arg min

Φ∈C,𝑊∈R𝑀×𝑁

𝑁

∑

𝑖=1

(
󵄩󵄩󵄩󵄩𝑋𝑖 − Φ ⋅ 𝑤𝑖

󵄩󵄩󵄩󵄩

2

2

+𝛾
1

󵄩󵄩󵄩󵄩𝑤𝑖
󵄩󵄩󵄩󵄩1 + 𝛾2

󵄩󵄩󵄩󵄩𝑤𝑖
󵄩󵄩󵄩󵄩

2

2
) ,

subject to 𝑤
𝑖
≥ 0,

(5)
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where 𝑊 = {𝑤
𝑖
}
𝑁

𝑖=1
and the convex set C = {Φ ∈ R𝑑×𝑀,

s.t., for all i, ‖𝜙i‖
2
2 ≤ 1}. Since the optimization problem

above is not convex with respect to both Φ and 𝑊, we
follow the coordinate decent framework and propose the
Iterative Updating method and summarize it in Algorithm 1,
which is well tailored from the online learning algorithm [17].
Assuming the training set consisting of i.i.d. samples from a
distribution 𝑝(𝑥), the proposed algorithm randomly draws
one sample 𝑥

𝑡
at a time and alternates the sparse coding step

for computing 𝑤𝑡 of 𝑥
𝑡
over the dictionary Φ𝑡−1 obtained at

the previous iteration and the dictionary updating step for
computing the new dictionaryΦ𝑡 with respect to𝑤𝑡. The two
main components of the method are, respectively, presented
below.

3.2.1. Sparse Coding. Given the obtained dictionary in (𝑡 −
1)th iteration, Φ𝑡−1, the coefficient of 𝑋

𝑡
in 𝑡th iteration, 𝑤𝑡,

for updating, is independent of others. Therefore, we can
optimize them independently as follows:

𝑤
𝑡
= arg min

𝑤∈R𝑀×1
(
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑡
− Φ
𝑡−1
⋅ 𝑤
󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛾
1‖𝑤‖1 + 𝛾2‖𝑤‖

2

2
) ,

subject to 𝑤 ≥ 0.
(6)

For this convex objective function regularized by L1/L2
mix-norm with nonnegative constraint, we adopt the linear-
time projection method on the L1/L2 mix-norm regulariza-
tion [17]. To fulfill the nonnegative constraint, we only keep
themembers of 𝑤 which are greater than 0 and set the others
with 0 in each interaction.

With the optimal dictionaryΦ∗, the optimal decomposi-
tion coefficients𝑊∗ can be achieved by

𝑊
∗
= arg min

𝑊∈R𝑀×𝑁

𝑁

∑

𝑖=1

(
󵄩󵄩󵄩󵄩𝑋𝑖 − Φ

∗
⋅ 𝑤
𝑖

󵄩󵄩󵄩󵄩

2

2
+ 𝛾
1

󵄩󵄩󵄩󵄩𝑤𝑖
󵄩󵄩󵄩󵄩1 + 𝛾2

󵄩󵄩󵄩󵄩𝑤𝑖
󵄩󵄩󵄩󵄩

2

2
) ,

subject to 𝑤
𝑖
≥ 0.

(7)

3.2.2. Dictionary Updating. During the 𝑡th iteration, the
algorithm will aggregate the previous information computed
from loop 1 to loop 𝑡 for dictionary updating. Given the
obtained 𝑤𝑡 for 𝑋

𝑡
in 𝑡th iteration, the expected dictionary

in 𝑡th iteration, Φ𝑡, can be obtained by minimizing the
average error over all 𝑡 iterations. (Here 1 ≤ 𝑡 ≤ 𝑇max
(the maximum iteration) and 𝑇max is independent of the
sample number,𝑁, of the training set.) Therefore, Φ𝑡 can be
optimized by

Φ
𝑡
= argmin

Φ∈C

1

𝑡

𝑡

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑖
− Φ ⋅ 𝑤

𝑖󵄩󵄩󵄩󵄩󵄩

2

2
. (8)

The constraint ‖𝜙𝑡
𝑖
‖
2

2
≤ 1(∀𝑖) is implemented to avoid basis

𝜙
𝑡

𝑖
being arbitrarily large, which would result in arbitrarily

small value of 𝑤. Equation (8) can be solved as illustrated in
Algorithm 2.

4. Experimental Method

4.1. Data. Two challenging phase contrast image sequences
of C3H10T1/2 mouse mesenchymal stem cell populations
(American Type Culture Collection, Manassas, VA) were
acquired, each containing 1436 images.The growing environ-
ment consists of Dulbecco’s Modified Eagle’s Media (DMEM;
Invitrogen, Carlsbad, CA), 10% fetal bovine serum (Invit-
rogen, Carlsbad, CA) and 1% penicillin streptomycin (PS;
Invitrogen, Carlsbad, CA). The cells were observed during
growth under a Zeiss Axiovert 135TV inverted microscope
with a 5x, 0.15N.A. objective and phase contrast optics. Time-
lapse image acquisition was performed every 5minutes using
a 12-bit Qimaging Retiga EXi Fast 1394 CCD camera at
500ms exposure with a gain of 1.01. Each image consists of
1392 × 1040 pixels with a resolution of 19 𝜇m/pixel.

After image acquisition, the bounding box of eachmitotic
cell was manually annotated by an expert biologist using
a labeling tool with a graphical user interface and then
resized to an image patch of 25 × 25 pixels. The nonmitotic
candidates in the same size were automatically and randomly
selected. Totally, the training set consists of 222 positive
samples and 783 negative samples from one image sequence
and the test set consists of 359 positive samples and 1267
negative samples from the other.

4.2. Experiments. Any state-of-the-art visual feature can be
utilized for low level image representation. To demonstrate
that the proposed method does not need specific object-
dependent visual feature formulation with high discrimina-
tive capability, we extracted the pixel-wise intensity feature
as well as three representative visual features for compari-
son. Pixel-wise intensity feature (Raw) represents the global
intensity distribution of one image and implicitly contains
appearance characteristics.This feature is formed by concate-
nating each pixel intensity in raster order [9]. Histogram of
Oriented Gradients (HoG), GIST, and Scale Invariant Feature
Transform (SIFT) are widely utilized to represent the shape
characteristic, local structural information, and local visual
saliency, respectively. Due to the limited space, please refer to
[18–20] for more details.

For dictionary construction, we need to discover which
visual feature and what configuration of 𝛾

1
and 𝛾
2
are the best

combination. Specifically, by fixing 𝛾
1
and 𝛾
2
, we can compare

the performances of the learned SVMmodels with respect to
four kinds of visual features. Moreover, by fixing the visual
feature, we can compare the performances of the configura-
tions of 𝛾

1
and 𝛾
2
by tuning both within [10−4, 10−1].

To demonstrate the superiority of the proposed method
for mitotic cell detection, we compared its performance
against the spatial feature-based method [1]. Both methods
only use spatial visual features for recognition and can form
a fair comparison.Weutilized the decomposed coefficients by
the proposed method with respect to each visual feature and
the best corresponding configurations of 𝛾

1
and 𝛾

2
to train

SVMmodels separately. Comparatively, we directly used each
kind of visual features extracted from the same training set
to train a corresponding SVM model. We compared the
performances with the same test set. Moreover, we compared
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Input: Training samples𝑋 = {𝑋
𝑖
}
𝑁

𝑖=1
, 𝛾
1
, 𝛾
2
∈ 𝑅, initial dictionaryΦ0 ∈ 𝑅𝑑×𝑀, maximum iteration 𝑇max

(1) initialize
(2) 𝐴

0
∈ 𝑅
𝑀×𝑀

← 0, 𝐵
0
∈ 𝑅
𝑑×𝑀

← 0

(3) end
(4) // main loop
(5) for 𝑡 ← 1, . . . , 𝑇max do
(6) Select𝑋

𝑡
from𝑋

(7) Sparse Coding: solve the objective function below with the linear time projection method [17]
(8) 𝑤

𝑡
= arg min

𝑤∈R𝑀×1
(
󵄩󵄩󵄩󵄩𝑋𝑡 − Φ

𝑡−1
⋅ 𝑤
󵄩󵄩󵄩󵄩

2

2
+ 𝛾
1‖𝑤‖1 + 𝛾2‖𝑤‖

2

2
) , subject to𝑤 ≥ 0 (9)

𝐴
𝑡
← 𝐴
𝑡−1
+ (𝑤
𝑡
)(𝑤
𝑡
)
𝑇.

(9) 𝐵
𝑡
← 𝐵
𝑡−1
+ (𝑋
𝑡
)(𝑤
𝑡
)
𝑇.

(10) Dictionary Updating: solve the objective function below with Algorithm 2

(11) Φ
𝑡
= argmin

Φ∈C

1

𝑡

𝑡

∑
𝑖=1

(
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑖
− Φ ⋅ 𝑤

𝑖󵄩󵄩󵄩󵄩󵄩

2

2
) = argmin

Φ∈C

1

𝑡
(
1

2
Tr (ΦT

ΦAt) − Tr (Φ
TBt)). (10)

(12) Return Φ𝑇max .

Algorithm 1: Iterative updating method.

Input:Φ = {𝜙
𝑖
}
𝑀

𝑖=1
∈ 𝑅
𝑑×𝑀
, 𝐴 = {𝑎

𝑖
}
𝑀

𝑖=1
∈ 𝑅
𝑀×𝑀

, 𝐵 = {𝑏
𝑖
}
𝑀

𝑖=1
∈ 𝑅
𝑑×𝑀, maximum iteration 𝑇max

(1) // main loop
(2) Repeat
(3) for 𝑡 ← 1, . . . , 𝑇max do
(4) Update the 𝑗th column for Φ:
(5) 𝑢

𝑗
←󳨀

1

𝐴 [𝑗, 𝑗]
(𝑏
𝑗
− Φ𝑎
𝑗
) + 𝜙
𝑗
,

(6) 𝜙
𝑗
←󳨀

1

max (󵄩󵄩󵄩󵄩󵄩𝑢𝑗
󵄩󵄩󵄩󵄩󵄩2
, 1)

𝑢
𝑗

(7) Until convergence
(8) Return Φ𝑇max .

Algorithm 2: Dictionary updating algorithm.

the proposed method to the recently popular sequential
feature-based methods, including Hidden Markov Model-
basedmethod (HMM) [4], Conditional Random Field-based
method (CRF) [6], Hidden-state Conditional Random Field-
based method (HCRF) [5], and the most recently proposed
EDCRF-based method (EDCRF) [13].

To evaluate the performance of mitotic cell detection,
we examined four different outcomes by the proposed
method, true positive (TP), false negative (FN), false positive
(FP), and true negative (TN). Precision (TP/(TP + FP)),
Recall (TP/(TP + FN)), and the 𝐹

1
score ((2 × Precision ×

Recall)/(Precision + Recall), representing the overall perfor-
mance of both)) are used as quantitative metrics to evaluate
the performance of mitotic cell recognition. Accuracy ((TP+
TN)/(TP + FN + FP + TN)) is utilized to evaluate the overall
performance of bothmitotic and nonmitotic cell recognition.

5. Experimental Results and Discussion

5.1. Mitotic Candidate Extraction. The proposed mitotic can-
didate extraction method achieved 100% recall and 40%
precision on the test sequence as compared to the ground

Table 1: Performance comparison for mitotic cell detection with
respect to four kinds of visual features (𝛾

1
= 0.1 and 𝛾

2
= 0.1).

Criteria Proposed (%) SSM [1] (%)
Raw SIFT GIST HoG Raw SIFT GIST HoG

Precision 88.0 76.9 87.7 65.7 70.1 64.3 65.0 55.5
Recall 83.6 86.1 83.6 86.1 77.2 88.9 92.2 75.5
𝐹
1
score 85.7 81.2 85.6 74.6 73.5 74.6 76.3 64.0

Accuracy 93.9 91.2 93.8 87.0 87.7 86.7 87.3 81.2

truth. Some examples of the extracted candidates are shown
on the right of Figure 3. It is intuitive that our method
eliminates most of the surrounding background of mitotic
cells, keeping only the essential visual patterns for feature
extraction.This helps improve the performance ofmitotic cell
detection as presented next.

5.2. Mitotic Cell Detection. The performances of different
dictionary learning strategies with respect to four visual
features and different configurations of 𝛾

1
and 𝛾
2
are shown

in Figure 2.With the comparison in each row, we can achieve
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Figure 2: Performance comparison for dictionary learning with respect to four kinds of visual features and different configurations
of 𝛾
1
and 𝛾

2
.
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Figure 3: Sample images of mitotic cell detection on C3H10 image sequence (the number on the left top corner means the frame number
in the image sequence). Left: original images with the ground truth (yellow rectangle) and detected regions (green circle). Right: mitotic
candidate detection results by the imaging model-based microscopy image segmentation method. The white regions denote the detected
mitotic candidates for further identification.
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Figure 4: Sample images of mitotic cell detection on C3H10 image sequence with high confluency (the number on the left top corner means
the frame number in the image sequence). The red regions overlaying the original images denote the detected mitotic candidates by the
imaging model-based microscopy segmentation method. Green, blue, and red circles, respectively, denote true positive, false negative, and
false positive.

Table 2: Comparison of mitosis detection.

Model Precision (%) Recall (%) 𝐹
1
(%)

EDCRF [13] 89.2 85.7 87.4
HCRF [5] 83.0 90.0 87.0
CRF [6] 90.3 73.1 80.8
HMM [4] 82.0 77.2 79.5
Proposed 88.0 83.6 85.7

the best 𝐹
1
score and accuracy when both 𝛾

1
and 𝛾
2
were 0.1

and the visual feature was fixed. It is implied that the stronger

sparsity and consistence effects can benefit the decomposed
coefficients for model learning. In our experiment, the
maximum standard deviation (MSD) of 𝐹

1
score by fixing

𝛾
1
/𝛾
2
and tuning 𝛾

2
/𝛾
1
is 0.044 (except the special case of

0.086 when using GIST and 𝛾
1
= 0.1 shown in Figure 2(c))

and the MSD of accuracy is 0.019. These results show that
the proposed method has strong robustness with respect to
different visual features and a broad range of parameters.

The best performances with respect to different visual fea-
tures when 𝛾

1
and 𝛾

2
are both fixed with 0.1 were compared

to decide which feature is the best for representation. From
the left side of Table 1, it is obvious that the dictionary learned
with Raw consistently outperforms others. It implies that it
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is not necessary to develop special visual feature to overcome
the variance of rotation, scale, shape, and so on formitotic cell
detection although its appearance may changes irregularly.
Comparatively, the decomposed coefficients of one sample
can explicitly reflect its correlation with bases and this rela-
tionship can be achieved stably by the optimization method
regularized by L1/L2 mix-norm with nonnegative constraint
even though we did not explicitly align mitotic samples as
we usually do for face recognition. Therefore, the proposed
method can avoid the nontrivial task of feature extraction for
deformable object recognition. The left column of Figure 3
shows the samples of the final mitotic cell detection on
the frames with increasing confluency in one C3H10 image
sequence. Especially, when cell density got much higher as
shown in Figure 4, the proposed method can still effectively
identify mitotic cell with the discriminative and robust high
level feature stably produced by the convex optimization
regularized by L1/L2 mix-norm with nonnegative constraint
although one false positive and one false negative cases occur.

5.3. Comparison. The performance comparison between the
proposed method and the spatial saliency-based method
(SSM) [1] is shown in Table 1. It is obvious that the pro-
posed method can consistently outperform the other in
terms of 𝐹

1
score and accuracy with respect to any visual

feature. Especially, we can achieve the best performance
(𝐹
1
= 85.7% and accuracy = 93.9%) when Raw was

selected and both 𝛾
1
and 𝛾

2
were 0.1, which is competitive

to the performance of GIST by both methods. However, the
formulation of GIST would cost much higher computation
[20] compared to the formulation of Raw. To our surprise,
SIFT feature works worse than both Raw and GIST. It is
explainable that the substantial and irregular appearance
changes can not be preserved simply by SIFT formulation.
It is expected that HoG works worst because it mainly
represents the shape feature and is not suitable for deformable
object representation.

The advanced comparison to the temporal context-based
methods with Raw as low level feature is summarized in
Table 2. The proposed method achieved the precision of
88.0% and the recall of 83.6%, with the best 𝐹

1
score of

85.7% and the best accuracy of 93.9%. In contrast, CRF-
based method [6] and HMM-based method [4] achieved
significantly lower precision, recall and 𝐹

1
scores. These

results revealed that the high level feature stably achieved
by the convex optimization regularized by mix-norm with
nonnegative constraint has high discriminative ability and is
essential for mitotic cell modeling. Consequently, the pro-
posedmethod can outperform bothmethods even though no
temporal context is incorporated. BecauseHCRFandEDCRF
can capture the intermediate structures using hidden-state
variables and is more flexible to model the temporal state
transition, the HCRF-based method [5] and the EDCRF-
based method [13] obtained better result in terms of 𝐹

1
score

(87.0% and 87.4%, resp.). However, both sacrificed high com-
putation complexity only with 1.3% and 1.7% improvement of
𝐹
1
score.

6. Conclusion

In this paper, we propose a nonnegative mix-norm con-
vex optimization method for mitotic cell detection. This
method can overcome the difficulty in feature formulation for
deformable objects. Moreover, it is independent of tracking
or temporal inference model. Large scale comparison exper-
iments demonstrate that the proposed method can produce
competing results with the state-of-the-art methods by the
highest 𝐹

1
score (85.7%) and accuracy (93.9%). We plan

to discover more characteristics of mitosis event with the
biology knowledge for objective function design to improve
the performance of mitotic cell detection.
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