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Carbohydrates play vital roles in many biological processes, such as recognition, adhesion, and signalling between cells. The Lewis
X determinant is a trisaccharide fragment implicated as a specific differentiation antigen, tumor antigen, and key component
of the ligand for the endothelial leukocyte adhesion molecule, so it is necessary or essential to determine and to know their
conformational and structural properties. In this work, conformational analysis was performed using molecular dynamics (MD)
simulation with the AMBER10 program package in order to study the dynamic behavior of of the Lewis X trisaccharide (β-D-Gal-
(1,4)-[α-L-Fuc-(1,3)]-β-D-GlcNAc-OMe) and the Lewis X pentasaccharide (β-D-Gal-(1,4)-[α-L-Fuc-(1,3)]-β-D-GlcNAc-(1,3)-
β-D-Gal-(1,4)-β-D-Glu-OMe) in explicit water model at 300 K for 10 ns using the GLYCAM 06 force field.

1. Introduction

In nature, carbohydrates form an important family of
biomolecules, as simple or complex carbohydrates, either
alone or covalently linked to proteins or lipids [1]. They play
vital roles in many biological processes, such as recognition,
adhesion, and communication between cells. Carbohydrates
that are covalently linked to a nonsugar moiety (proteins,
peptides, or lipids) are the most prominent cell-surface-
exposed structures. The highly diverse structural variability
of carbohydrates makes them good candidates for cell recep-
tors and recognition molecules [2].

Determination of the three-dimensional structure of
oligosaccharides and understanding the molecular basis of
their recognition by receptors represent the main chal-
lenges of structural glycobiology. Elucidation of the three-
dimensional structures and the dynamical properties of
oligosaccharides is a prerequisite for a better understanding
of the biochemistry of recognition processes and for the
rational design of carbohydrate-derived drugs [1].

The human histo-blood group ABH (O) systems were
the first major human alloantigens to be identified. The
carbohydrate nature of the A, B, H, and Lewis antigens was

established in 1950s [3, 4]. Figure 1 shows a schematic rep-
resentation of current histo-blood group antigens although
additional rare types also exist [5]. The oligosaccharidic
epitope of ABH (O) and Lewis histo-blood groups have been
the subject of many structural investigations. The energy
maps of all of the disaccharides have been established by
molecular mechanics methods [6, 7].

The determination of conformational preferences of
oligosaccharides is best approached by describing their
preferred conformations on potential energy surfaces as a
function of the glycosidic linkage ϕ, ψ torsional angles. In the
early days of conformational analysis of oligosaccharides, the
calculations of either rigid or, later, relaxed conformational
maps predominated. Today, complex simulation techniques
such as molecular dynamics are increasingly being used.
Several examples can be found in the literature of “state-of-
the-art” conformational search strategies in order to simplify
the complexity of the multiple-minima problem [8].

In this work, we carried out extensive, explicit solvent
MD simulation studies for tri- and pentasaccharide Lewis
X for 10 ns. Each monosaccharide unit in the Lewis X
molecules adopts the typical 4C1 chair conformation, with no
significant deviation from the classical pyranose ring shape.
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Figure 1: Continued.



International Journal of Carbohydrate Chemistry 3

CH3

O

O

HO

HO

Fuc

OH
OH

O

O

HO

OH

OH

OH

OH

O

O

COOH

Gal

CH2OH
O

O
AcHN

AcNH

GlcNAc

NeuAc

NeuAc

CH2OH

NHAc

CH3

O

O

HO

HO

Fuc

OH
OH

O

O

HO

OH

OH

OH

OH

O

O

COOH

Gal

CH2OH

O

O

AcNH

GlcNAcCH2OH

Sialyl Lewis X (SLeX)

Sialyl Lewis a (SLea)

(b)

Figure 1: Schematic representation of histo-blood group oligosaccharides.

The objective of this study was to explore the conformational
behaviour of those oligosaccharides in explicit water model
at 300 K for 10 ns using the GLYCAM 06 force field.

2. Theoretical Approach

The atomic labelling and the torsion angles of interest are
given in Figure 2. The torsion angles ϕ,ψ are defined ϕ = ϑ
(05-Cl-0′2-C′2), ψ = ϑ (Cl-0′2-C′2-C′3), and ω = ϑ (O5-
C5-C6-O6). The conformations with specific torsion angles
ω are referred to as gauche-trans (gt; ω = 60◦), gauche-
gauche (gg; ω = −60◦) and trans-gauche (tg; ω = 180◦).

The MD simulations were carried out using AMBER10
[9] at a temperature of 300 K. This temperature was chosen
because our primary objective was to study the dynamics of
the oligosaccharides at physiologically relevant conditions.
The starting Lewis X pentasaccharide and trisaccharide
monomer coordinates and parameters were constructed with
the “Glycam Biomolecule Builder” available online from the
website of Woods group [10] (see Schemes 1 and 2).

Since these coordinates are not optimized, a first min-
imization by molecular mechanics (1,000 steps of steepest
descent followed by 1,000 steps of conjugate gradient min-
imization with a gradient tolerance of 0.05 kcal mol−1) was
made with AMBER package version 10 [9]. Force field GLY-
CAM 06 was used for oligosaccharides (it used to simulate
the interatomic interactions responsible for oligosaccharide

C3 C2
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C5

C4

O5
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ψ
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ϕ
O′n

C ′n

Figure 2: Atomic labeling and torsion angles of interest.

and glycoprotein dynamics and is currently suitable for
all biologically relevant N- and O-linkages in oligo- and
polysaccharides and glycoproteins [11]). The simulations
were carried out using an explicit solvent environment with
AMBER package version 10. The solvated system for the
oligosaccharides molecules was prepared using an explicit
water box of 8 Å in the xleap module of AMBER10. The
number of water molecules was 569 for the trisaccharide and
1072 for the pentasaccharide. All simulations were run with
the SANDER module of AMBER with SHAKE algorithm
[12] (tolerance = 0.0005 Å) to constrain covalent bonds
involving hydrogens, using periodic boundary conditions,

a 2 fs time step, a temperature coupling [13], a 8 ´̊A cutoff
was applied to the Lennard-Jones interaction, and constant
pressure of 1 atm. The nonbonded list was updated every
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Figure 3: Relaxed conformational energy maps for the trisaccharide Lewis X calculated using the GLYCAM 06 force field.

10 steps. This preliminary study was aimed at finding the
most energetically favorable structure which was found at
4856.9 ps for the trisaccharide and at 2411.8 ps for the
pentasaccharide. Those conformations were found with a
“home-made” Perl script that merely checked all energies
values, finding the lowest one and giving the associated struc-
ture [2].

The PTRAJ module of AMBER10 was used to ana-
lyze and process the trajectory and coordinate files from
SANDER, where the analyses might include carrying out
superimposition, clustering analysis of hydrogen bonds, cal-
culating fluctuations in bonds, angles, or dihedrals, correla-
tion functions, and so forth, and the root mean-square devi-
ations (RMSDs).

Finally, isoenergy contour maps were generated with
ORIGIN and SURFER 9 (Golden Software, Inc., Golden
Co) [14]. The positions of the minima in these maps were
subsequently calculated by minimizing the energy without
restraints of those grid points indicating minima on the
maps.

3. Results

The calculated adiabatic conformational energy surfaces (ϕ,
ψ) for the tri- and pentasaccharide Lewis X are presented
as potential energy contour maps in Figures 3 and 4,
respectively. The contours are separated by 1 kcal/mol and
range from 1 to 10 kcal/mol. The energies are given relative
to the lowest minimum. Geometries and relative potential
energies of the predicted minima are listed in Tables 1 and
2, and the lowest energy conformers for each compound are
shown in Figures 3 and 4.

Table 1: Potential Energy, torsional angles for the conformers with
low energies of the trisaccharide Lewis X.

PE (kcal/mol) ϕ1 (◦) ψ1(◦) ϕ2 (◦) ψ2 (◦)

Conformer 1 −5446.95 −61.84 124.7 −61.54 −104.33

Conformer 2 −5442.50 −84.91 155.63 −69.95 −92.95

Conformer 3 −5440.08 −80.60 139.25 −55.46 −98.51

Conformer 4 −5437.12 −56.58 130.28 −59.61 −80.28

3.1. System Root-Mean-Square Displacement. RMSD is an
important parameter for describing the system stability.
Figures 5 and 6 show the function curves between mass
weighted RMSD fit and the time of the tri- and pentasaccha-
ride Lewis X during dynamics simulation process, respec-
tively.

3.2. Computation of Phi/Psi for Modeled Oligosaccharide. In
the present study, structure prediction of oligosaccharides
has been made through the torsion angles phi (φ)/psi (ψ).
The combination of φ and ψ angles fully determine the
conformation of an oligosaccharide. Figures 3 and 4 show
the distribution of sterically allowed and energy minimized
conformations in φ/ψ glycosidic space obtained from our
explicit solvent MD simulations for 10 ns in the case of
the tri- and pentasaccharide Lewis X, respectively. These
figures also show the best conformers (which have the low
energies). These conformers and their corresponding φ/ψ
angular values are reported in Tables 1 and 2 for the tri- and
pentasaccharide Lewis X, respectively.
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Figure 4: Relaxed conformational energy maps for the pentasaccharide Lewis X calculated using the GLYCAM 06 force field.
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Figure 5: RMSD of the trisaccharide Lewis X as a function of time during MD, compared to the lowest-energy conformation.

Table 2: Potential energy, torsional angles for the conformers with low energies of the pentasaccharide Lewis X.

PE (kcal/mol) ϕ1(◦) ψ1 (◦) ϕ2 (◦) ψ2 (◦) ϕ3 (◦) ψ4 (◦) ϕ4 (◦) ψ4 (◦)

Conformer 1 −10191.15 −78.30 −97.88 −124.4 64.97 −108.27 −173.37 −57.54 15.18

Conformer 2 −10162.71 −65.65 −106.09 −73.57 136.95 −52.97 −155.29 −71.26 22.90

Conformer 3 −10162.25 −56.49 −112.26 −78.58 144.67 −55.95 −157.92 −69.85 23.71

Conformer 4 −10152.28 −71.67 −108.12 −75.73 152.13 −73.72 −163.60 −74.94 18.04
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Figure 6: RMSD of the pentasaccharide Lewis X as a function of time during MD, compared to the lowest-energy conformation.
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4. Discussion

The monitoring of kinetic, global, and potential energies
along the trajectory, as well as the pressure and temperature,
indicate that the global periodic system is stable and does not
present simulation artefacts. Kinetic energy increased slowly,
whereas potential energy decreased gradually during the sim-
ulations. The total energy of a system to be simulated should
be conserved, whereas the fluctuation of a temperature is
caused by the interconvention of the kinetic and potential
energy components [15].

The RMS variations as a function of time are displayed
on Figures 5 and 6 for the tri- and penta-saccharide Lewis X

respectively, and indicate that both systems are equilibrated
after 500 ps. The visual examination of the two 10 ns trajec-
tories shows that both oligosaccharides are stable. An RMSD
analysis was carried out to quantify the structural differences.
The RMSD between the PDB starting structure of the simu-
lations (obtained from Glycam biomolecule builder), and the
low-energy conformers structure considering only the heavy
atoms is 0.03 Å and 0.20 Å for the tri- and penta-saccharide
respectively. This shows that both oligosaccharides are stable.

During the simulation of those oligosaccharides, we
notice that for the pentasaccharide the most stable conformer
is obtained at 2411.8 ps and that for the trisaccharide was
obtained at 4856.9 ps. This means that the pentasaccharide
is less flexible than the trisaccharide due to the steric effect.

5. Conclusion

A complete understanding of the role of carbohydrates
in biological systems is to a large extent dependent on
the information available about the equilibrium mixture
and about the preferred conformation of the carbohydrate
molecules in solution. The conformational analysis offers
a tool which can determine all possible conformations
which influence the solution behavior of carbohydrates. This
work represents a theoretical study of tow oligosaccharides
tri- and pentasaccharide Lewis X using molecular dynamic
simulations in explicit water with the AMBER10 program
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package. RMSD measures of the accuracy of carbohydrates
around their average conformations play an important indi-
cator of many biological processes such as macromolecular
recognition and complex formations [16].
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