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Chronic inflammation induced by biological, chemical, and physical factors has been found to be associated with the increased
risk of cancer in various organs. We revealed that infectious agents including liver fluke, Helicobacter pylori, and human
papilloma virus and noninfectious agents such as asbestos fiber induced iNOS-dependent formation of 8-nitroguanine and 8-
oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG) in cancer tissues and precancerous regions. Our results with the colocalization
of phosphorylated ATM and γ-H2AX with 8-oxodG and 8-nitroguanine in inflammation-related cancer tissues suggest that
DNA base damage leads to double-stranded breaks. It is interesting from the aspect of genetic instability. We also demonstrated
IL-6-modulated iNOS expression via STAT3 and EGFR in Epstein-Barr-virus-associated nasopharyngeal carcinoma and found
promoter hypermethylation in several tumor suppressor genes. Such epigenetic alteration may occur by controlling the DNA
methylation through IL-6-mediated JAK/STAT3 pathways. Collectively, 8-nitroguanine would be a useful biomarker for predicting
the risk of inflammation-related cancers.

1. Introduction

Chronic inflammation induced by biological, chemical,
and physical factors has been found to be associated
with the increased risk of cancer in various organs [1–3]
(Table 1). Inflammation activates a variety of inflammatory
cells, which trigger oxidant-generating enzymes such as
inducible nitric oxide synthase (iNOS), NADPH oxidase,
and myeloperoxidase to produce high concentrations of
free radicals including reactive nitrogen species (RNS) and
reactive oxygen species (ROS) [1]. Overproduction of RNS
and ROS can change the balance of oxidants and antioxidants
and cause nitrative and oxidative stress which contributes
to the damage of biomolecules such as DNA, RNA, lipid
and proteins, leading to an increase in mutations, genomic
instability, epigenetic changes, and protein dysfunction and
play roles in the multistage carcinogenic process.

ROS generate 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-
oxodG, also known as 8-hydroxydG (8-OHdG)), a marker of
oxidative DNA damage [4, 5]. 8-OxodG, a potentially muta-

genic DNA lesion, leading to the transversion of G : C to T : A
(G → T transversion) [6], has been implicated in cancers
triggered by infections [7]. The generation of ROS is not
confined to inflammatory processes. Carcinogenic chemicals
and their metabolites as well as electron transport chains in
mitochondria are able to generate ROS. On the other hand,
nitric oxide (NO), a primary initiator of RNS, is generated
specifically during inflammation via iNOS in inflammatory
and epithelial cells [5, 8]. Overproduction of NO participates
in the generation of peroxynitrite (ONOO−), which can
lead to the formation of 8-nitroguanine, an indicator of
nitrative DNA damage [9, 10]. 8-Nitroguanine undergoes
spontaneous depurination in DNA, resulting in the for-
mation of an apurinic site [11]. Incorporated adenine can
form a pair with apurinic sites during DNA replication,
leading to the G → T transversion [12] (Figure 1). Moreover,
apurinic sites might represent major damage that requires
error-prone DNA polymerase ζ for efficient trans-lesion
DNA synthesis. It was reported that DNA polymerase ζ can
efficiently bypass abasic sites by extending from nucleotides
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Figure 1: Proposed mechanism of point mutation induced by 8-nitroguanine and 8-oxodG through induction of the G : C → T : A
transversion.

Table 1: Nitrative and oxidative DNA damage in inflammation-induced carcinogenesis.

Etiologic agent/pathologic
condition

IARC
classificationa Cancer site Associated neoplasm Detection of DNA

lesionsc [reference no.]

(I) Infection agent

Viruses

HPVb

High-risk types 1 Cervix and other site Cervical carcinoma IHC [38]
Low-risk types 2A

HCV, HBVb 1 Liver Hepatocellular carcinoma IHC [56–59]

EBVb 1 Nasopharynx Nasopharyngeal carcinoma IHC [38, 49, 50],
ELISA [49]

Bacterium

Helicobacter pylori 1 Stomach Gastric cancer IHC [36]

Parasites

Opisthorchis viverrini 1 Intra- and extrahepatic bile duct Cholangiocarcinoma IHC [17, 22–26],
HPLC-ECD [23, 27]

Schistosoma haematobium 1 Bladder Bladder cancer IHC [60]

(II) Inflammatory disease

Asbestos fiber 1 Lung Mesothelioma, lung carcinoma IHC [61]

Reflux oesophagitis Barrett’s
oesophagitis

Oesophagus Oesophageal carcinoma IHC (In prep.)

Lichen planus Oral Oral squamous cell carcinoma IHC [62]

Inflammatory bowel disease Colon Colorectal carcinoma IHC [63]

Crohn’s disease

Chronic ulcerative colitis IHC (this paper)

Unknown Soft tissue Malignant fibrous histiocytoma IHC [64, 65]

This table was adapted and modified from the IARC [2] and Coussens and Werb [1].
IARC: International Agency for Research on Cancer. aIARC classification: Group 1: carcinogenic to humans; Group 2A: probably carcinogenic to humans.
bHPV: human papilloma virus; HBV: hepatitis B virus; HCV: hepatitis C virus; EBV: Epstein-Barr virus.
cDNA lesions: IHC, 8-nitroguanine and 8-oxodG detected by immunohistochemistry; HPLC-ECD: 8-oxodG detected by HPLC-ECD; ELISA: serum 8-oxodG
detected by ELISA.
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inserted opposite the lesion by other DNA polymerases [13].
Wu et al. suggested that cells deficient in subunits of DNA
polymerase ζ were hypersensitive to nitrative stress, and
trans-lesion DNA synthesis mediated by this polymerase
contributes to extensive point mutations [14]. Additionally,
DNA polymerases η and κ were also found to be involved in
the incorporation of adenine opposite 8-nitroguanine during
DNA synthesis in a cell-free system associated with trans-
lesion DNA synthesis leading to the G → T transversion
[15]. Therefore, 8-nitroguanine is a potential mutagenic
DNA lesion involved in inflammation-mediated carcino-
genesis. Relevantly, systematic and comprehensive genome-
scale approaches by using the immunoprecipitation-based
technique combined with high-density microarrays may be
useful to investigate roles of DNA lesions in carcinogenesis
[16].

We focus on the roles of nitrative and oxidative DNA
damage in infection- and inflammation-related carcinogen-
esis. We produced a specific anti-8-nitroguanine antibody
[17] and examined the localization of DNA lesions by
immunohistochemical analysis in animal models and clinical
samples (Table 1). Here, we review the effects of RNS-
/ROS-mediated DNA damage on genomic instability and
epigenetic change in relation to carcinogenesis.

2. DNA Damage in Infection-Related
Carcinogenesis

2.1. Liver Fluke Infection and Cholangiocarcinoma. Liver
fluke infections of Opisthorchis viverrini (O. viverrini) are a
risk factor for cholangiocarcinoma in Southeast Asia [18].
O. viverrini infestations are endemic in Khon Kaen province,
northeastern Thailand, and Khon Kaen has the highest
incidence of cholangiocarcinoma in the world [19]. O. viver-
rini infections induce inflammation in both animal models
[20] and humans [21]. Our previous studies showed that
8-oxodG and 8-nitroguanine levels were increased in O.
viverrini-infected hamsters compared with uninfected con-
trol groups [17, 22–24]. In addition, DNA damage was
significantly increased in reinfected hamsters compared with
animals infected just once [23]. Notably, repeated infection
increased iNOS expression and 8-nitroguanine production
in the epithelium of bile ducts even after a decrease in
inflammatory cells. To elucidate the mechanism involved, we
examined the expression of iNOS, NF-κB, and Toll-like
receptor (TLR) 2 in mouse macrophage cell lines treated with
O. viverrini crude antigens [25], suggesting that O. viverrini
infection induced TLR2 activation with NF-κB-dependent
transcription and iNOS expression. Treatment with an
antiparasitic drug (praziquantel) significantly improved the
DNA lesions [22]. These findings in hamsters were con-
firmed by the observation that 8-oxodG and 8-nitroguanine
accumulated more in cancerous areas than in intrahepatic
areas adjacent to tumors in surgical specimens [26]. Fur-
thermore, an epidemiological study of O. viverrini-infected
subjects and cholangiocarcinoma patients demonstrated that
urinary 8-oxodG levels were significantly higher in cholan-
giocarcinoma patients than in O. viverrini-infected patients
and healthy subjects and higher in O. viverrini-infected

subjects than in healthy subjects [27]. The urinary 8-oxodG
levels in O. viverrini-infected patients significantly decreased
two months after praziquantel treatment and were compa-
rable to levels in healthy subjects one year after treatment
[27]. These results indicate that O. viverrini causes chronic
and recurrent inflammation followed by the accumulation of
oxidative and nitrative DNA lesions, which may participate
in the development of cholangiocarcinomas.

2.2. H. pylori and Gastric Cancer. Helicobacter pylori is the
main cause of chronic gastritis and a potential risk factor for
gastric carcinoma [28]. The molecular mechanisms behind
H. pylori-induced production of ROS/RNS were wide rang-
ing from activated neutrophils to H. pylori itself, as nicely
reviewed by Handa et al. [29]. H. pylori infections promote
the secretion of various inflammatory cytokines, contribut-
ing directly to the pronounced inflammatory response.
Lipopolysaccharide, a component of Gram-negative bacteria
such as H. pylori, is a TLR4 ligand that induces inflammatory
responses via NF-κB expression [30]. NF-κB, which is
involved in the regulation of iNOS, had been reported to
function as a tumor promoter in inflammation-associated
cancer [31, 32]. In patients with H. pylori-induced gastritis
or gastric ulcers, iNOS is expressed in the infiltrating
inflammatory cells [33]. The expression of iNOS mRNA and
protein was significantly increased in the epithelial cells of
H. pylori-positive gastritis patients compared to H. pylori-
negative patients [34]. Recently, it was also found that H.
pylori in a Korean isolate induced the expression of iNOS via
AP-1 activation [35]. Our previous study [36] demonstrated
that levels of 8-nitroguanine and 8-oxodG in gastric gland
epithelium were significantly higher in gastritis patients with
H. pylori infections than in those without infections. A
significant accumulation of proliferating cell nuclear antigen
(PCNA) was observed in gastric gland epithelial cells in
patients infected with H. pylori in comparison to those
not infected. Interestingly, the accumulation of PCNA was
closely correlated with the formation of 8-nitroguanine
and 8-oxodG. Collectively, the host response to H. pylori
mediated NF-κB expression, resulting in iNOS expression
accompanied by 8-nitroguanine and 8-oxodG production in
the gastric epithelium. 8-Nitroguanine could be not only
a promising biomarker for inflammation but also a useful
indicator of the risk of developing gastric cancer in response
to chronic H. pylori infection.

2.3. HPV and Cervical Carcinoma. Cervical cancer is the
second most common cancer among women worldwide and
the most common cancer among women in many developing
countries [37]. Inflammation is proposed to play an integral
role in the development of human papilloma virus (HPV)-
induced cervical cancer [1]. Our previous study [38] exam-
ined the formation of 8-nitroguanine and 8-oxodG in cells
of cervical intraepithelial neoplasia (CIN, grades 1–3) and
condyloma acuminatum samples and compared it with the
expression of the cyclin-dependent kinase inhibitor p16, con-
sidered a biomarker for cervical neoplasia [39–42]. Double
immunofluorescence labeling revealed that 8-nitroguanine
and 8-oxodG immunoreactivities correlated significantly
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with CIN grade. There were no statistically significant
differences in p16 expression between CIN and condyloma
acuminatum samples. These results suggest that high-risk
HPV types promote iNOS-dependent DNA damage, which
leads to dysplastic changes and carcinogenesis. Therefore, 8-
nitroguanine is a more suitable and promising biomarker
for evaluating the risk of inflammation-mediated cervical
carcinogenesis than p16.

2.4. EBV and Nasopharyngeal Carcinoma. Nasopharyngeal
carcinoma (NPC) is strongly associated with Epstein-Barr
virus (EBV) infections [43]. Various transcription factors
are known to participate in iNOS expression including
signal transducers and activators of transcription (STATs),
such as STAT1α and STAT3 [44, 45]. Epidermal growth
factor receptor (EGFR) physically interacts with STAT3 in
the nucleus, leading to transcriptional activation of iNOS
[44]. STAT3 is repeatedly activated through phosphorylation
via the expression of latent membrane protein 1 (LMP1)
as well as EGFR [46, 47], and interleukin-6 (IL-6) is
required for LMP1-mediated STAT3 activation [46]. In
addition, LMP1-mediated iNOS expression was reported
in EBV-infected epithelium cell lines, which play a role in
colonization independent of anchorage and tumorigenicity
in nude mice [48]. Using biopsy and surgical specimens
of nasopharyngeal tissues from NPC patients in southern
China, we performed double immunofluorescent staining
to examine the formation of 8-nitroguanine and 8-oxodG
[49, 50]. Intensive immunoreactivity to iNOS was detected in
the cytoplasm of 8-nitroguanine-positive cancer cells. DNA
lesions and iNOS expression were also observed in epithelial
cells of EBV-positive patients with chronic nasopharyngitis
but weaker than those in NPC patients. No or few DNA
lesions were observed in EBV-negative subjects. EGFR and
phosphorylated STAT3 were strongly expressed in cancer
cells of NPC patients, suggesting that the STAT3-dependent
mechanism is important to the carcinogenesis [50]. IL-6 was
expressed mainly in inflammatory cells of nasopharyngeal
tissues of EBV-infected patients. We also found that serum
levels of 8-oxodG were significantly higher in NPC patients
than control subjects [49]. Collectively, these findings indi-
cate that the nuclear accumulation of EGFR and activation
of STAT3 by IL-6 play a key role in iNOS expression and
resultant DNA damage, leading to EBV-related NPC.

2.5. HCV and Hepatocellular Carcinoma. Hepatitis C virus
(HCV) is a major cause of chronic hepatitis, liver cirrhosis,
and hepatocellular carcinoma throughout the world [51].
Hepatocellular carcinoma arises through genetic alterations
in hepatocytes during a chronic HCV infection [52–55].
We investigated the extent of nucleic acid damage in HCV-
infected individuals and its change after interferon treatment
[56]. Immunoreactivities of 8-nitroguanine and 8-oxodG
were strongly detected in the liver of patients with chronic
hepatitis C, but not control subjects. 8-Nitroguanine was
found to be accumulated in hepatocytes particularly in
the periportal area. In the sustained virological responder
group after interferon therapy, the accumulation of 8-
nitroguanine and 8-oxodG was markedly decreased in the

liver. We observed a strong correlation between hepatic 8-
oxodG staining and serum ferritin levels, suggesting the iron
content to be a strong mediator of oxidative stress and iron
reduction to reduce the incidence of hepatocellular carci-
noma in patients with chronic hepatitis C [57, 58]. We also
demonstrated that oxidative DNA damage widely occurred
in the livers of patients with chronic viral hepatitis especially
chronic hepatitis C, and the iron load and 8-oxodG-positive
hepatocytic count was significantly higher in HCV-infected
than in HBV-infected livers [59]. It is plausible that ROS pro-
duction during chronic HCV infection is the result of high
iron levels in hepatic tissues, which lead to progressive liver
inflammation and an increased risk of developing liver
cancer. These findings indicate that 8-nitroguanine and 8-
oxodG are useful as biomarkers for evaluating the severity
of HCV-induced chronic inflammation leading to hepato-
cellular carcinoma and the efficacy of chronic hepatitis C
treatment.

3. DNA Damage in Inflammation-Related
Carcinogenesis

3.1. Asbestos and Lung Carcinoma. Excessive and persistent
production of ROS/RNS by inflammatory cells is considered
as a hallmark of the secondary genotoxicity of nonfibrous
and fibrous particles including asbestos [66]. Asbestos is
a carcinogen (IARC Group1) causing lung cancer and
malignant mesothelioma of the pleura and peritoneum [67].
Among the different types of asbestos, crocidolite (blue
asbestos) and amosite (brown asbestos) are more potent car-
cinogens than chrysotile (white asbestos) [67]. Inflammation
is a hallmark of the response to exposure to asbestos in
both animal and human models [68, 69]. NO and nitrative
stress were reported to be involved in the asbestos-derived
inflammatory response via myeloperoxidase, a major con-
stituent of neutrophils which generates hypochlorous acid
and RNS [70–73]. Myeloperoxidase plays a significant role in
asbestos-induced carcinogenesis [74]. However, the precise
mechanisms of nitrative DNA damage remain to be clarified.
We performed an immunohistochemical analysis to examine
the formation of 8-nitroguanine and the expression of iNOS
and its transcription factor (NF-κB) in the lungs of mice
intratracheally administered asbestos fibers, including croci-
dolite and chrysolite [61]. 8-Nitroguanine was significantly
detected in bronchial epithelial cells of asbestos-exposed
groups compared with the untreated group. Interestingly,
the immunoreactivities of 8-nitroguanine, iNOS, and NF-
κB were significantly higher in the crocidolite-exposed
group than in the chrysotile-exposed group. Therefore, the
formation of nitrative DNA damage could be one of the
mechanisms responsible for the difference in carcinogenic
potential between crocidolite and chrysotile.

3.2. Inflammatory Bowel Disease and Colon Cancer. Ulcer-
ative colitis and Crohn’s disease, which are referred to as
inflammatory bowel diseases (IBDs), are well known as
chronic inflammatory diseases in the lower bowel. Epidemi-
ological studies have shown that the incidence of colorectal
cancer in IBD patients is greater than the expected incidence
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Figure 2: 8-Nitroguanine in colon epithelium of a patient with active ulcerative colitis.

in the general population [75]. We hypothesized that an
imbalance of helper and regulatory T-cell functions plays a
key role in the pathogenesis of IBD. Therefore, we prepared
a mouse model of IBD with an imbalance of Th1 and Th2
and, using double immunofluorescence labeling, revealed
that both 8-nitroguanine and 8-oxodG were mainly formed
in epithelial cells [63]. iNOS, PCNA, and p53 proteins
were also expressed in colon epithelium. We observed by
using clinical samples that 8-nitroguanine and 8-oxodG were
formed in colon epithelium of patients with ulcerative colitis
in the active stage (Figure 2). Of relevance, several studies
have shown that iNOS is expressed in epithelial cells in
colitis patients [76–78]. In noncancerous colon tissues from
patients with ulcerative colitis, iNOS protein levels were
positively correlated with p53 serine 15 phosphorylation
levels [76]. These results suggest that nitrative DNA damage,
as well as oxidative DNA damage, participates in colon
carcinogenesis in patients with IBD.

3.3. Oral Lichen Planus and Oral Cancer. Oral lichen planus
(OLP) is a chronic inflammatory mucosal disease [79] and a
risk factor for oral squamous cell carcinoma (OSCC) [80].
Oral leukoplakia is a precancerous lesion characterized by
white plaques and hyperkeratosis [81, 82]. We demonstrated
that 8-nitroguanine and 8-oxodG accumulated in oral
epithelium of biopsy specimens from patients with OLP,
leukoplakia, and OSCC, whereas no immunoreactivity was
observed in normal oral mucosa [62, 83]. Colocalization of
8-nitroguanine and iNOS was found in oral epithelium of
patients with OLP, leukoplakia, and OSCC. Accumulation
of p53 was observed in oral epithelium in OLP and
leukoplakia patients, and more prominent expression of
this protein was observed in OSCC patients. In addition,
the immunoreactivity to PCNA was significantly higher in
leukoplakia patients than that in normal mucosa, suggesting
an increase in cell proliferation [83]. Lee et al. also reported
that PCNA and p53 were highly expressed in oral tissues in
OLP patients [84]. We conclude that inflammation-mediated
DNA damage and additional epithelial cell proliferation
promote oral carcinogenesis.

3.4. DNA Damage in Malignant Fibrous Histiocytoma. Malig-
nant fibrous histiocytoma (MFH) is one of the most
common soft tissue sarcomas [85, 86] and has a poor
prognosis [87, 88]. MFH has been proposed to be accom-
panied by inflammatory responses [89, 90]. However, the
mechanism of its inflammation-induced carcinogenesis is
still unclear. We investigated DNA lesions and inflammatory-
related molecules including iNOS, NF-κB, and COX-2 [64].
Immunohistochemical staining revealed that the formation
of 8-nitroguanine and 8-oxodG occurred to a much greater
extent in MFH tissue specimens from deceased patients than
in live patients. iNOS, NF-κB, and COX-2 were colocalized
with 8-nitroguanine in MFH tissues. It is worth noting that
a statistical analysis using the Kaplan-Meier method demon-
strated strong 8-nitroguanine staining to be associated with
a poor prognosis. Furthermore, our study demonstrated
significantly higher levels of both 8-nitroguanine and HIF-
1α in the tissue specimens of deceased patients than in those
of living subjects. Survival curves analyzed by the Kaplan-
Meier method differed significantly between the groups with
high and low staining of 8-nitroguanine as well as HIF-1α
[65]. These results suggest a significant role for the iNOS-
dependent formation of 8-nitroguanine via HIF-1α and NF-
κB in the progression of inflammation-related cancer. These
results indicate that 8-nitroguanine is involved in not only
the initiation of carcinogenesis but also its progression and
prognosis in cases of MFH.

4. DNA Damage in relation to
Genomic Instability

Genomic instability is a defining characteristic of most
carcinogenesis through the accumulation of mutations in
several tumor suppressor genes, oncogenes, and genes that
are involved in maintaining genomic stability [91]. Events
resulting in chromosomal instability, such as amplification
and deletions of large segments of DNA, reciprocal and non-
reciprocal translocations, aneuploidy, and polyploidy, consti-
tute the large-scale genomic aberrations that characterize the
majority of human cancer cells and are thought to accelerate
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carcinogenesis [91, 92]. Degtyareva et al. demonstrated
that chronic oxidative DNA damage due to DNA repair
defects induced chromosome instability in a Saccharomyces
cerevisiae model [92]. Trouiller et al. showed that titanium
dioxide, a risk factor for lung cancer, induced oxidative DNA
damage, γ-H2AX foci, micronuclei, and DNA deletions,
suggesting a link between inflammation-associated DNA
damage and genomic instability [93]. The DNA damage
response (DDR) is essential for maintaining the integrity
of the genome, and a failure of this response results in
genomic instability and predisposition to malignancy [94].
Phosphorylated ATM (ataxia telangiectasia mutated) plays
a role in DDR to DNA double-stranded breaks. Impaired
function of ATM was reported to be involved in DNA
damage-induced genomic instability [94, 95]. TNF-α is a
proinflammatory cytokine and also acts as an iNOS regulator
protein [96, 97]. Natarajan et al. reported that TNF-α
induced the formation of 8-oxodG and genomic instability in
primary vascular endothelial cells [98]. Yan et al. showed that
antioxidants significantly reduced TNF-α-induced genetic
damage [99]. Therefore, TNF-α and a dysfunction of ATM
could play key roles in the integration between iNOS-
mediated DNA damage and genomic instability. Recently,
we observed that phosphorylated ATM and γ-H2AX were
colocalized with 8-oxodG and 8-nitroguanine in clini-
cal samples of cholangiocarcinoma patients as shown in
Figure 3, suggesting that DNA base damage caused double-
stranded breaks. DNA lesions were found in infiltrating
inflammatory cells, hepatocyte cells of nontumor areas, and
cancer cells, whereas γ-H2AX and phosphorylated ATM were
expressed in only cancer cells. Moreover, DDR proteins and

DNA lesions were detected only very weakly in normal liver
tissues, suggesting that the DNA double-stranded breaks
were specific to cancer cells. Our observations also support
the idea that highly iNOS-dependent DNA damage causes
DNA double-stranded breaks and genomic instability, which
play important roles in inflammation-induced carcinogene-
sis via TNF-α signaling and DDR protein dysfunction.

5. DNA Damage in relation to
Epigenetic Change

Diverse cellular functions including the regulation of inflam-
matory gene expression, DNA repair, and cell proliferation
are regulated by epigenetic changes [100]. DNA methylation
and histone modifications are the major events involved in
epigenetic changes. An important proinflammatory cytokine
IL-6 has been reported to control DNA methylation through
IL-6-mediated Janus kinase (JAK)/STAT3 pathways [101–
105]. We demonstrated that IL-6 modulated iNOS expres-
sion via STAT3 and EGFR in EBV-associated nasopharyngeal
carcinoma [50]. Accumulating evidence makes it increas-
ingly clear that epigenetic silencing plays an important role
in EBV-associated neoplasia [106]. We and our colleagues
have found promoter hypermethylation in several candidate
genes for tumor suppressor genes [107–110]. Histone modi-
fications play a role in the response to DNA double-stranded
breaks through ATM signaling to activate γ-H2AX, resulting
in histone ubiquitination and acetylation, and destabilization
and conformational changes to nucleosomes lead to DNA
repair [111]. RNS cause base lesions, abasic sites, and single-
stranded breaks, which may be converted into double-strand
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Figure 4: Proposed roles of nitrative and oxidative DNA damage in inflammation-related carcinogenesis.

breaks in cells by enzymatic processing, when the damage
is in close proximity to or encountered by the replication
fork [112]. Collectively, nitrative and oxidative DNA damage
may activate epigenetic change via IL-6 signaling and the
expression of DDR proteins.

6. Conclusion

We investigated the formation of 8-nitroguanine and 8-
oxodG at sites of carcinogenesis in various clinical specimens
and animal models in relation to inflammation-related
carcinogenesis. We also observed that DNA lesions were
formed and significantly increased in S. haematobium-
induced urinary bladder cancer compared with cancer with-
out such an infection [60]. In addition, Barrett’s esophagus,
an inflammation-related disease caused by the reflux of
gastric acid, also showed greater DNA damage than normal
esophageal tissues (unpublished data). Proposed roles of
inflammation-related DNA damage in carcinogenesis on the
basis of our findings and studies in the literature [94, 113]
are summarized in Figure 4. 8-Nitroguanine and 8-oxodG
are formed in various inflammation-related cancers and
precancerous regions in an iNOS-dependent manner. TNF-α
and IL-6 are proinflammatory cytokines which play roles in
the control of iNOS expression via the regulation of NF-κB
and STAT3 signaling pathways. 8-Nitroguanine and 8-oxodG
are mutagenic lesions resulting in the G → T transversion.
This type of mutation has been found to occur in vivo
in the ras gene and the p53 tumor suppressor gene in
various cancers [114]. Nitrative and oxidative DNA damage
induce not only mutations but also genomic instability
and epigenetic change via TNF-α and IL-6 activities and
DNA double-stranded breaks resulting in the activation
of oncogenes and inactivation of tumor suppressor genes,
which may lead to inflammation-related carcinogenesis.
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