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The noninvasive diagnosis of the malignant tumors is an important issue in research nowadays. Our purpose is to elaborate
computerized, texture-based methods for performing computer-aided characterization and automatic diagnosis of these tumors,
using only the information from ultrasound images. In this paper, we considered some of the most frequent abdominal malignant
tumors: the hepatocellular carcinoma and the colonic tumors. We compared these structures with the benign tumors and with
other visually similar diseases. Besides the textural features that proved in our previous research to be useful in the characterization
and recognition of the malignant tumors, we improved our method by using the grey level cooccurrence matrix and the edge
orientation cooccurrence matrix of superior order. As resulted from our experiments, the new textural features increased the
malignant tumor classification performance, also revealing visual and physical properties of these structures that emphasized the
complex, chaotic structure of the corresponding tissue.

1. Introduction

The hepatocellular carcinoma (HCC) is the most frequent
malignant liver tumor, representing 75% of the liver cancer
cases [1]. The colorectal tumors also represent a frequent
disease for the population of the developed countries. The
human observations are not enough in order to perform the
detection of the malignant tumors, the resulted diagnosis
accuracy being below 80%. The golden standard for cancer
diagnosis is the biopsy, but this is an invasive, dangerous
method that can lead to the spread of the tumor inside
the human body. A non-invasive, subtle analysis is due, in
order to detect the cancer in early evolution stages, when
the tumor can be surgically removed. We perform this
study by using computerized methods applied on ultrasound
images. Other types of image acquisition techniques, such
as computer tomography (CT), magnetic resonance imaging
(MRI), and endoscopy are considered invasive or expensive.

The texture is an important feature, as it provides subtle
information concerning the pathological state of the tissue,
overcoming the accuracy of the human perception, through
the statistical and multiresolution approaches. The texture-
based methods in combination with classifiers were widely
used in the domain of malignant tumor characterization and
recognition from medical images. In [2], Raeth used the
textural features in order to distinguish the normal liver from
the diffuse liver diseases and from the malignant liver tumors.
The features derived from the second-order grey levels
cooccurrence matrix, from the edge cooccurrence matrix, as
well as other edge and gradient-based features, speckle noise
distribution parameters, and the Fourier power spectrum,
provided satisfying results concerning the differentiation
between the tumoral and nontumoral tissue. In [3] the
authors computed the first-order statistics (the mean grey
level and the grey level variance), the second-order grey
level cooccurrence matrix parameters and run-length matrix
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parameters which were used in combination with an artificial
neural networks based classifier, as well as with a classifier
based on linear discriminants in order to differentiate the
malignant liver tumors from hemangioma and from the
normal liver. The resulted recognition rate was 79.6%. The
wavelet transform was also implemented [4], in order to
perform a multi-resolution analysis of the textural features.
The method provided satisfying results concerning the
differentiation between malignant and benign liver lesions,
the area under the ROC (receiver operating characteristic)
curve being approximately 90%. In [5] the authors analyzed
the fluorescent images of the colonic tissue based on
textural parameters derived from the second order grey level
cooccurrence matrix (GLCM), in order to distinguish the
colonic healthy mucosa versus adenocarcinoma. However,
a systematic study concerning the most relevant textural
features that best characterize the malignant tumors and
of the most appropriate methods that lead to an increased
diagnosis accuracy is not done. We perform this in our work
by building the imagistic textural model of the malignant
tumors. We previously defined the imagistic textural model
of the malignant tumors [6], consisting in the most relevant
textural features able to separate the HCC tumor from
the visually similar tissues (cirrhotic parenchyma, benign
tumors), together with their specific values (mean, standard
deviation, and probability distribution). In this work, we
analyzed new methods for textural features computation,
based on the superior order grey level cooccurrence matrix
(GLCM) [7], respectively on the superior order edge ori-
entation cooccurrence matrix (EOCM), the purpose being
to improve the characterization of the abdominal malignant
tumors, and to increase the automatic diagnosis accuracy. In
this way, we expect to get a more subtle evaluation procedure
than in the case of using the other textural features.
The superior order GLCM was theoretically described by
Akono in [7]. The third-order GLCM was experimented
for the analysis of the trabecular bones in proximal femur
radiographs [8], as well as for crop classification [9], but
it was never implemented for tumor characterization and
recognition. There are no important realizations in the image
analysis domain involving the fifth-order GLCM matrix.
The second order EOCM was implemented by Raeth in [2]
for malignant tumor contour characterization and provided
satisfying results in this domain. The third order EOCM was
not previously implemented. Thus, we analyzed the role that
the second-, third-, and fifth-order GLCM, respectively, the
second- and third-order EOCM have, concerning both the
subtle characterization of HCC and colonic tumor tissue,
as well as the automatic diagnosis of these types of cancer.
Extended Haralick features were defined for the character-
ization of the tumor texture, and the best orientations of
the corresponding displacement vectors were determined in
both cases of the superior order GLCM and EOCM. The
edge orientation variability feature was also defined in order
to characterize the complex structure of the tumor tissue.
The malignant tumors were compared with visually similar
tissues. The HCC tumor was compared with the cirrhotic
liver parenchyma on which it had evolved and with the
benign liver tumors. The colonic tumors were compared

with the inflammatory bowel diseases (IBD), as they share,
in ultrasound images, many visual characteristics with these
affections. The assessment of the relevant textural features
for the characterization of the malignant tumors was also
performed, through specific methods such as the correlation-
based feature selection (CFS) [10] and through the evalua-
tion of the individual attributes based on their information
gain with respect to the class [10]. Powerful classifiers that
gave the best results in our former experiments [6], such
as the multilayer perceptron [11] and the support vector
machines (SVM) [11], as well as the AdaBoost combination
scheme [11], were adopted for the evaluation of the textural
model and of the recognition accuracy. The correlation of
the textural features with the internal structure and with the
properties of the tumor tissue was also discussed.

2. Materials and Methods

2.1. Materials and Working Methodology. In our study,
mainly the patients suffering from HCC and colonic tumors
were taken into consideration. Patients affected by benign
liver tumors such as hemangioma and focal nodular hyper-
plasia (FNH) were also considered, being known that these
tumors have a similar visual aspect with HCC in many
situations. Subjects suffering from inflammatory bowel
diseases (IBD) were taken into account as well, because
these affections provided a similar visual aspect of the bowel
walls like those provided by the colorectal tumors. All these
patients were previously biopsied. For each patient, multiple
images were acquired, corresponding to various orientations
of the transducer, using the same settings of the ultrasound
machine. The same number of images was considered for
each patient, as described in the experimental section. Thus,
the study was independent from the patient’s characteristics.
B-mode ultrasonography was used, in order to preserve the
textural properties of the tissues. Rectangular regions of
interest were selected inside the tumors, on the liver tissue,
or on the bowel wall, in areas which were not affected by
artifacts. Then, the imagistic textural model of the malignant
tumors was built according to the steps below, and the role of
the new derived textural features in improving the accuracy
of the malignant tumor characterization and recognition
performance was analyzed.

2.2. The Imagistic Textural Model of the Malignant Tumors

2.2.1. The Imagistic Textural Model of the Malignant Tumors
and the Phases Due for Model Building. The imagistic textural
model of HCC consists of the set of relevant, independent
textural features, able to distinguish this tumor from the
cirrhotic liver parenchyma and from the benign tumors.
The specific, statistical values of the textural features—mean,
standard deviation, and probability distribution—are part of
the model. The mathematical description of the imagistic
textural model is given below. Let F be the space of the
potentially relevant textural features, containing a number of
n such features:

F = { fi
}
i=1,...,n. (1)
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The features from F are considered in their initial rep-
resentation, as they appear after applying the image analysis
methods. We define

FR = Dimensionality reduction(F) (2)

as being the transformed feature space, obtained from the
initial feature space, F, after applying dimensionality reduc-
tion methods—mainly feature selection techniques [10]. The
imagistic textural model of the tumor (TM) consists of a
collection of vectors Vfr , associated with each relevant textu-
ral feature fr , containing the specific values that characterize
each analyzed class:

TM =
{
Vfr | Vfr

= [Relevance, Mean, Standard deviation,

Probability distribution
]}
.

(3)

The vectors of the imagistic textural model are composed
by the specific parameters described by (3), where mean
(the arithmetic mean value) and standard deviation are real
numbers; the Relevance, represented by an integer, quantifies
the importance that the considered textural feature has in the
differentiation between HCC and other kinds of tissues.

In order to generate a reliable imagistic textural model,
first, the image selection for the training set building is
due. For each considered type of tissue, a corresponding
class is built. Then, an image analysis phase is necessary:
the textural feature computation using specific methods for
texture analysis is involved in this process. The values of
the textural features are stored in the database and used for
further evaluations. The learning phase is essential in order
to perform the relevant feature selection, to eliminate the
redundant features and to determine the specific, statistical
values, and the corresponding probability distributions.
Dimensionality reduction methods consisting of feature
selection [10] and feature extraction techniques [11] are
implemented in this phase. At the end, a validation phase is
necessary, involving the evaluation of the generated model
by providing the relevant features at the classifiers inputs and
estimating the accuracy of each classifier. A new test set of
images, different from the training set, is used in this phase.
The phases due in order to build the imagistic textural model
are described below.

2.2.2. Training Set Building. For each patient, three to five
images were considered. On each image, rectangular regions
of interest were selected on each type of tissue, inside
HCC and the colonic tumors, respectively, on the cirrhotic
parenchyma on which HCC evolved, as well as inside the
benign liver tumors and on the superior part of the bowel
wall affected by inflammatory bowel diseases. Pairs of classes
were considered, and then the classes were combined in
equal proportions inside the training set. The potentially
relevant textural features were determined on the regions of
interest, using specific methods for texture analysis, and the

corresponding values were stored. An instance of the training
set consisted of the values of the considered textural features,
computed inside a certain region of interest, followed by the
class specification.

2.2.3. Methods Applied during the Image Analysis Phase.
During the image analysis phase, noise reduction was ini-
tially performed, by using an averaging filter [12]. Then,
specific methods for texture analysis were applied, providing
the initial set of potentially relevant textural features. We
previously computed 48 textural features, from the following
categories: the mean value of the grey levels [12], the second
order grey levels cooccurrence matrix (GLCM), and the
associated Haralick parameters [13]—the energy, entropy,
correlation, contrast, variance, and local homogeneity that
emphasized the global properties of the texture. Edge and
gradient-based statistics [12], respectively, the frequency and
density of the textural microstructures, detected by using
the Laws convolution filters were computed as well [12].
The Shannon entropy [14], computed after applying the
wavelet transform [15], was also determined. The Haar
wavelet transform was applied recursively at two levels of
resolution: the low-low, low-high, high-low, and high-high
components were derived at the first level, then, the wavelet
transform was applied again on each of these components.
The Shannon entropy was computed on each resulted
component, at both first and second levels. The determined
textural features were independent on orientation, as they
were computed on multiple directions and the result was
averaged. They were also independent of illumination and
scaled with the size of the region of interest. In this work,
we defined and experimented the third-and fifth order
GLCM, respectively, the second-and third order EOCM, for
obtaining more refined textural features. The effect of the
new textural features on the improvement of the imagistic
textural model of the malignant tumors was carefully
analyzed.

2.2.4. Description of the Learning Phase. During the learning
phase, the selection of the relevant textural features was
performed. We considered a feature as being relevant if it
emphasized the defining characteristics of the tumor tissue
and it substantially contributed to the separation of the
tumor tissue from the visually similar tissues. From a more
technical point of view, a feature was considered relevant
if, by including it in the feature set, it led to an increase
in the classification accuracy. There are specific methods
for feature selection, integrated in two main groups, filters
and wrappers [10], which perform a reliable separation
of the relevant features from the nonrelevant ones. We
compared, in our previous research [6], various methods
from these categories, as well as their combinations. The best
results were obtained when using the methods of correlation-
based feature selection (CFS), combined with genetic search
[10], the information gain attribute evaluation [16], the
consistency-based feature subset evaluation [10], respectively
the wrapper that used the decision trees as classifier, and the
best first search method [16] for subset finding. The specific
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values of the relevant textural features were determined
by using confidence intervals and probability distribution
tables [11]. In this work, we assessed the relevance of the
newly obtained textural features, by using the most powerful
feature selection methods, being interested in the diagnosis
accuracy improvement.

2.2.5. Description of the Validation Phase. The validation
phase consisted of providing the final set of relevant
textural features at the inputs of some powerful classifiers,
and in analyzing their effect on the classification process
improvement. Classifiers from different categories, as well as
classifier combinations, were compared in order to obtain
the best performance during this phase [6]. The best results
were provided by the methods of support vector machines
(SVM) [11] with polynomial kernel of 3rd degree, by the
multilayer perceptron (MLP), decision trees (C4.5 method),
respectively, by the AdaBoost combination scheme. The
following parameters were used in order to assess the
classification performance: the recognition rate (percent
of correctly classified instances), the sensitivity (TP rate),
the specificity (TN rate), the area under the ROC curve
(AUC) [11], and the time due for model building [16]. The
stratified cross-validation strategy [11] was implemented for
classification performance evaluation, in order to preserve
the original class proportions.

2.3. The Newly Defined Textural Features and Their Role in the

Improvement of Imagistic Textural Model

2.3.1. The Description of the New Texture Analysis Methods

(1) The Grey Level Cooccurrence Matrix of Superior Order.
The grey level cooccurrence matrix (GLCM), also called
the Grey Tone Difference Matrix, was previously defined by
Julesz et al. [17] and Haralick [18]. Julesz et al. [17] was the
first who used grey tone spatial dependence cooccurrence
statistics in his texture discrimination experiments. Haralick
[18] defined the two-dimensional cooccurrence matrix of the
grey levels as containing, in its elements, the number of pairs
of pixels having two specific values of the intensity, g1 and
g2, being situated at a distance defined by a displacement
vector:

�d =
(
�dx, �dy

)
. (4)

Haralick also defined and implemented statistical mea-
sures, such as the homogeneity, energy, entropy, correlation,
variance, contrast [18], in order to emphasize the global
properties of the texture. In [7], Akono et al. described
the GLCM of order n and proposed a fast computation
algorithm for this method, but did not state a corresponding
definition. He also extended the mathematical expressions
of several statistical (Haralick) measures from order two to
order n, such as the sum of the GLCM elements, the inverse
difference, the dissimilarity and the contrast.

We defined the GLCM of order n in the following man-
ner:
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In (5), #S is the number of the elements in the set S, while

�d =
((
�dx1, �dy1

)
,
(
�dx2, �dy2

)
, . . . ,

(
�dxn−1, �dyn−1

))
(6)

is the set of the displacement vectors. Thus, the GLCM matrix
of order n contains in its elements the number of n-tuples
of pixels with the spatial coordinates (xi, yi), i ∈ {1, . . . ,n},
having the intensity values gi, i ∈ {1, . . . ,n}, and being in a
spatial relation defined by the displacement vectors described
in (6). In practice, we used the GLCM probability matrix:

p
(
g1, g2, . . . , gn

) = CD
(
g1, g2, . . . , gn

)

∑Ng−1
g1=0

∑Ng−1
g2=0 . . .

∑Ng−1
gn=0 CD

(
g1, g2, . . . , gn

) .

(7)

In (7), Ng is the total number of the gray levels in the
image. Based on the nth order GLCM, we computed the
following parameters: energy, entropy, local homogeneity,
correlation, contrast, variance, as described in Appendix B.
The maximum probability for a certain combination of
grey levels to appear within the texture is also computed,
as indicated in Appendix B, while searching for a specific
pattern of grey levels within each type of analyzed tissue.
The second order GLCM was determined for the following
directions of the displacement vectors: 0◦, 45◦, 90◦, and 135◦.
The corresponding Haralick features were averaged for all the
resulted matrices.

The Implementation of the Third Order GLCM. For the third
order GLCM, we considered specific orientations of the
displacement vectors. The corresponding three pixels were
either collinear, or they formed a right angle triangle (as
shown in Figure 1), the current pixel, of coordinates (x1, y1),
being situated in the central position. Thus, in the case of
the collinearity of the pixels, the direction pairs were (0◦,
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180◦), (90◦, 270◦), (45◦, 225◦), (135◦, 315◦), while in the
second case, the following direction pairs were considered:
(0◦, 90◦), (90◦, 180◦), (180◦, 270◦), (0◦, 270◦), (45◦, 135◦),
(135◦, 225◦), (225◦, 315◦), and (45◦, 315◦). The values of

|�dxi| and |�dyi| were 0 or 2, with i ∈ {1, 2}.

The Implementation of the Fifth Order GLCM. For the fifth
order GLCM, the following groups of directions were taken
into account: (0◦, 180◦, 90◦, 270◦), respectively, (45◦, 225◦,
135◦, 315◦). The current pixel, of coordinates (x1, y1), was

situated in the central position. The values of |�dxi| and |�dyi|
were 0 or 2, with i ∈ {1, 2, 3, 4}.

(2) The Cooccurrence Matrix of Edge Orientations. The gen-
eralized cooccurrence matrix (GCM), defined by Davis and
Jones in [19], represents the natural extension of the gray
level cooccurrence matrix (GLCM), by taking into consider-
ation, instead of the grey levels of the pixels, local features
such as edges (points of increased gradient value) or edge
orientations detected in the image through specific methods
[12].

The edge orientation cooccurrence matrix (EOCM)
of order two was defined by Davis and Jones [19] and
implemented by Raeth [2] in order to analyze the contour
shape of the malignant tumors. We consider the following
definition for the edge orientation cooccurrence matrix of
order n:
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(8)

Thus, each element of this matrix is equal with the num-
ber of n-tuples of pixels with spatial coordinates (xi, yi), i ∈
{1, . . . ,n}, the values of the edge orientations in these points
being oi, i ∈ {1, . . . ,n}. The spatial relation between the
pixels is defined by the set of the displacement vectors, in
a similar way with the case of the superior order GLCM.
In practice, the EOCM probability matrix was used, being
defined in a similar way with the GLCM probability matrix.
The edge orientation parameter was computed in each edge
point (point of nonzero gradient) by applying the arctangent
function on the fraction Gy(x, y)/Gx(x, y),Gy being the

0◦180◦

225◦
315◦

45◦90◦135◦

270◦

Figure 1: The main directions for the displacement vectors and
their combinations in the case of third order GLCM.

vertical image gradient in the point (x, y) while Gx was the
horizontal gradient in the same point. These gradient values
were determined by using the Sobel convolution kernel for
horizontal and vertical directions [12]. The extended Har-
alick features—contrast, variance, correlation, energy, and
entropy—were defined in the same way as those correspond-
ing to the superior order GLCM, detailed in Appendix B.
The second- and third order EOCM were considered in
our analysis. The directions of the displacement vectors and
their combinations were chosen in a similar way with those
corresponding to the case of second- and third order GLCM.
The maximum probability parameters were also determined.

2.3.2. The Role of the New Textural Features in Improving the
Textural Model of the Malignant Tumors. During the Image
Analysis Phase, the old textural features were first computed.
Then, the newly defined texture analysis methods were
applied, and the corresponding textural features were deter-
mined in different conditions, by varying the displacement
vector directions and the combinations of these directions.
The groups of features corresponding to different values of
the intrinsic parameters were assessed separately by powerful
classifiers. The discrimination ability of the newly defined
textural features was assessed as well, by feature selection
methods and appropriate classifiers.

Thus, during the learning phase, feature selection meth-
ods were applied in order to estimate the relevance of the
textural attributes. First, the new textural features were
evaluated individually, by considering only the group of the
new textural attributes, obtained for various instances of the
intrinsic parameters. Then, the new textural features, corre-
sponding to the most successful configuration of the intrinsic
parameters, were considered in combination with the old
textural features, in order to assess the increase in accuracy
and to derive the final set of relevant textural features by
applying the feature selection methods.

In this work, the selection of the relevant textural features
was implemented by using the correlation-based feature
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selection (CFS) method, in combination with genetic search
[10], for retaining those textural features that were mostly
correlated with the class parameter, and less correlated with
the other textural features. For each group of features, a merit
was computed:

Merits = krcf√
k + k(k − 1)rff

. (9)

In (9), Merits is the heuristic merit of the subset S,
containing k features, rcf represents the average correlation
of the features with the class parameter, while rff is the average
correlation between the features. These correlations were
established using the symmetrical uncertainty formula [10].
This method was implemented in combination with genetic
search, in order to obtain a complete set of attributes subsets
to be analyzed [16].

Another feature selection method, the information gain
attribute evaluation, that performed the assessment of the
individual attributes was also used. Each attribute was
assigned a score based on the information gain between itself
and the class:

IGi = H(C)−H(C | Ai), (10)

where H(C) is the entropy of the class before observing
the attribute Ai, respectively, H(C | Ai) is the entropy of
the class after observing the attribute Ai. The amount by
which the entropy of the class decreased after observing the
attribute Ai revealed the additional information about the
class and constituted the information gain which was due to
the attribute Ai.

During the Validation Phase, we adopted the classifiers
of multilayer perceptron (MLP) [11] and support vector
machines (SVM) [11], as they led to the best results in our
former experiments [6]. The AdaBoost combination scheme
[11], having the methods of MLP and SVM as basic classi-
fiers, was also implemented.

3. Results and Discussions

3.1. Description of the Experiments. We considered a number
of 300 patients suffering from HCC, 100 patients with hem-
angioma, 70 patients with colonic tumors, and 70 patients
with inflammatory bowel diseases. Each of the considered
type of disease corresponded to a class in the training,
respectively, test set. These classes were combined in equal
proportions inside the dataset. For each patient, three to five
images were considered, acquired for various orientations of
the transducer. The images were acquired using a Logiq 7
ultrasound machine, at the frequency of 5.5 MHz, the depth
being 16 cm. During the image analysis phase, rectangular
regions of interest, having 50×50 pixels in size, were
selected on each type of analyzed tissue. After performing
noise reduction using an averaging filter, the old textural
features were computed independently of the orientation
and illumination conditions. The new textural features were
computed for various values of the parameters, as described
previously. The values of the textural features, for each region
of interest, were stored in specific files, for further analysis.

During the learning phase, the feature selection and
classification experiments were performed using the meth-
ods of the Weka 3.5 library [16]. For feature selection, the
method of correlation-based feature selection (CFS) was
used, in conjunction with genetic search. For the genetic
search method, the seed had the value 1, the crossover
probability was 0.6, the mutation probability was 0.033,
the population size was 20, and the number of generations
to be evaluated was 20. The feature selection method that
performed feature evaluation based on the information gain
of the attributes with respect to the class, the information
gain attribute evaluation method of the Weka 3.5 library, was
also implemented during the learning phase, in conjunction
with the Ranker search method.

During the validation phase, the Weka 3.5 versions of
the support vector machines (SVM) method, the multilayer
perceptron (MLP) classifier, and the AdaBoost combination
scheme that used the SVM and MLP classifiers as basic
learners were implemented. In the case of the SVM clas-
sifier, John’s Platt sequential minimal optimization (SMO)
algorithm for training a support vector classifier was used
[16]. The polynomial kernel of 3rd degree, which provided
the best result in our former experiments [6], was adopted
for the SVM method. In the case of the MLP method, the
learning rate was 0.2 in order to obtain a refined learning
process and to avoid overtraining. The momentum was 0.8
in order to achieve a fast crossing over the plane areas of
the learning surface. The number of nodes from the hidden
layer was the arithmetic mean between the number of the
input features and the number of classes. The AdaBoost M1
combination procedure of Weka 3.5, with 10 iterations, was
implemented as well. The stratified cross-validation method
strategy with 5 folds was used for classifier evaluation. Thus,
for each iteration of the cross-validation method, the training
set was formed by considering 80% of the data instances,
while the test set consisted of 20% of the data instances.

3.2. Results

3.2.1. Performing the Differentiation between the HCC Tumor
and the Cirrhotic Liver Parenchyma on Which the Tumor
Evolved. Figure 2 illustrates the classification performance
achieved by using the group of third order GLCM textural
features, in comparison with that achieved by using the
group of second order GLCM textural features. In this
situation, the second- and the third order GLCM features
were averaged after considering all the adopted directions.
The following feature sets were taken into account: the
second order GLCM features combined with the other
textural features, represented with red color in Figure 2; the
third order GLCM features combined with the other textural
features, represented with yellow; the entire set of textural
features, consisting of the third order GLCM features, the
second order GLCM features, and the other textural features,
represented with blue. Figure 2 illustrates the recognition
rates obtained for these sets of features using the adopted
classifiers. From Figure 2, it results that the third order
GLCM led to a better classification performance than the
second order GLCM in most of the situations. However, the



Computational and Mathematical Methods in Medicine 7

64

65

66

67

68

69

70

(%
)

SV
M

M
L

P

All features
2nd order GLCM + other features
3rd order GLCM + other features

A
da

B
oo

st
+

M
L

P

A
da

B
oo

st
+

 S
V

M

Figure 2: The evaluation of the 3rd order GLCM performances
compared with those of the 2nd order GLCM, when considering
the averaged values for all the directions, in the case of the differen-
tiation between HCC and cirrhotic parenchyma.

A
da

B
oo

st
+

 S
V

M

62

64

66

68

70

72

74

(%
)

2nd order GLCM features +
textural features

2nd order GLCM features + other textural features
3rd order GLCM features + other textural features

SV
M

M
LP

A
da

B
oo

st
+

M
LP

3rd order GLCM features + other
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order GLCM features combined with the other textural features, the
3rd-order GLCM textural features and the other textural features,
respectively the 2nd-order GLCM, the 3rd-order GLCM, and the
other textural features, in the case of the differentiation between
HCC and cirrhotic parenchyma.

best results were obtained when considering all the textural
features, involving the features derived from both types of
GLCM, combined with the other textural features.

Further experimental steps consisted of the assessment of
the combinations between the directions of the displacement
vectors, in order to detect the combination that leads to the
best classification accuracy. The best classification accuracy
was obtained when considering only the (0◦, 270◦) combina-
tion of directions. When combining the third order GLCM
Haralick features obtained for the (0◦, 270◦) directions
with all the other textural features (including the second
order GLCM features), we obtained the best classification
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Figure 4: The recognition rate obtained when considering the 2nd
order GLCM features combined with the other textural features, the
5th-order GLCM textural features and the other textural features,
respectively, the 2nd order GLCM, the 5th-order GLCM, and the
other textural features, in the case of the differentiation between
HCC and cirrhotic parenchyma.

performance. Figure 3 illustrates the results concerning the
improvement in the recognition rate.

Considering the case of the fifth order GLCM, the best
classification results were obtained for the directions (0◦,
180◦, 90◦, and 270◦). The classification accuracy, resulted
after combining the fifth order GLCM parameters obtained
for the above group of displacement vector directions, com-
bined with the other textural feature, is depicted in Figure 4.

As we can notice, the classification accuracy was more
increased when considering all the textural features, than in
the case when we used only the old textural features, achiev-
ing the maximum value of 73.75% in the case of the mul-
tilayer perceptron (MLP) classifier. We also considered the
features derived from the second- and third order cooc-
currence matrices of edge orientations. The second order
cooccurrence matrix of edge orientations (EOCM) was com-
puted for the directions 0◦, 45◦, 90◦, and 135◦, and the values
of the resulted features were averaged. The second order
EOCM features, combined with the old textural features, led
to a recognition rate of 75%, for the AdaBoost metaclassifier
that used MLP as a basic classifier, and to a value of AUC
above 80%.

The third order EOCM matrix was computed in a similar
way with the third order GLCM matrix. The relevant textural
features, obtained after applying the methods of correlation-
based feature selection (CFS) and information gain attribute
evaluation, indicated the prevalence of the (45◦, 315◦) and
(0◦, 90) pairs of the displacement vector directions. After
providing the extended Haralick features to the inputs of
the SVM and MLP classifiers, the (0◦, 90◦) pair of directions
provided the best results, as illustrated in Table 1.

After combining the second- and third order EOCM
features with the old textural features, we obtained a
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Table 1: The classification performance obtained by using the third order EOCM features for the most important combinations of
displacement vector directions.

Comb. of dir. Classif. meth. Recog. rate TP rate TN rate AuC Time

(45◦, 315◦)
SVM 65.27% 48.9% 84.6% 63.3% 129.25 s

MLP 61.176% 58.2% 64.2% 63.9% 19.08 s

(0◦, 90◦)
SVM 65.81% 46.6% 85% 65.8% 157.95 s

MLP 62.51% 60.9% 64.2% 67.6% 17.74 s
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Figure 5: The recognition rate obtained when considering the 2nd
order EOCM features combined with the old textural features, the
3rd order EOCM textural features and the old textural features,
respectively, the 2nd order EOCM, the 3rd order EOCM, and the
old textural features, in the case of the differentiation between HCC
and cirrhotic parenchyma.

recognition rate situated above 71%. The combinations
between the second order EOCM textural features and the
old textural features, respectively, between the third order
EOCM textural features and the old textural features, always
led to an accuracy improvement compared with the case
when only the old features were used. The combination
between the second order EOCM textural features, the
third order EOCM textural features, and the old textural
features led, in most of the situations, to an accuracy
improvement, compared with the cases when only the old
textural features, or the combination between the second
order EOCM textural features and the old textural features
were used. The combination between the third order EOCM
textural features and the old textural features provided the
best recognition rates, in all the situations. These results can
be visualized in Figure 5.

The final set of the relevant textural features, for the case
of differentiation between HCC and cirrhotic parenchyma,
resulted after performing feature selection on the group
formed by the old textural features, by the third order GLCM
features, by the fifth order GLCM features, by the second
order EOCM features, and by the third order EOCM features.
This set consisted of the union between the features selected
by the CFS method, and those selected by the method of
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Figure 6: The increase of the recognition rate, obtained when using
the new relevant textural features, compared with those obtained
when using the old relevant textural features in the case of the
differentiation between HCC and cirrhotic parenchyma.

information gain attribute evaluation. After we provided the
values of the relevant textural features at the classifier inputs,
we obtained a recognition rate of almost 78% for the MLP
classifier and an AUC of above 82% for the same classifier, as
we can observe in Table 2.

The increase in the recognition rate, obtained by using
the final set of the new and old relevant textural features,
compared with the accuracy due only to the old relevant
textural features is depicted in Figure 6. Thus, an increase in
accuracy from 71% to almost 78% was achieved, due to the
new textural features, in the case of differentiation between
HCC and the cirrhotic parenchyma on which the tumor
evolved.

The Relevant Textural Features for the Differentiation between
HCC and the Cirrhotic Parenchyma on Which HCC Had
Evolved. After performing feature selection using the CFS
and information gain attribute evaluation methods, the
most important textural features contained in the union of
the two feature subsets were the mean of the grey levels,
indicating differences in echogenicity between the HCC
tumor and the cirrhotic liver parenchyma, because, as it is
well known, the HCC tumor, in advanced evolution phases,
is hyperechogenic in most of the cases. The third- and
fifth order GLCM correlation and the autocorrelation index
indicated differences in granularity between the HCC tumor
and the cirrhotic liver parenchyma. The second- and third
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Table 2: The accuracy results obtained by considering the final set of relevant textural features.

Classifier Recognition rate TP rate TN rate AUC Time

SVM 77.94% 78.3% 77.6% 77.9% 78.21 s

MLP 73.75% 70.1% 77.4% 82.3% 54.32 s

AdaBoost + SVM 75% 79% 71% 78.6% 86.25 s

AdaBoost + MLP 75.79% 74.6% 76.7% 82% 87.55 s

order GLCM homogeneity, second- and third order GLCM
contrast, and the fifth order GLCM variance, provided
information about the inhomogeneous aspect of the tumor
tissue. The fifth order GLCM energy and entropy, the third
order EOCM entropy, and the entropy computed after
applying the Wavelet transform at the first level and at the
second level, on the low-low component, were increased in
the case of the tumor tissue, indicating its chaotic structure.
The edge orientation variability and the frequency of the
Laws textural microstructures indicated the complexity of
the malignant tumor, which was constituted by multiple
types of tissues.

The Values of the Maximum Probability Parameters. In the
case of the third order GLCM, the maximum value of the
probability for a given combination of three grey levels to
appear within the considered class of tissue was around 0.01
in both cases of HCC and cirrhotic parenchyma on which
HCC had evolved. This result was derived as an arithmetic
mean of the maximum probability parameters computed on
all the images belonging to the 300 patients included in the
dataset. This probability was decreased in comparison with
the same parameter computed in the case of the second order
GLCM, when the mean value of the maximum probability
was 0.05. The experimental results also revealed that groups
of three hypoechogenic pixels (57, 57, 57) corresponding to
pure tumor regions with active growth, or to regions affected
by necrosis, appeared frequently inside HCC. These values
appeared rarely inside the cirrhotic parenchyma and inside
the benign liver tumors.

In the case of the fifth order GLCM, the probability for
a given combination of five gray level values to occur in
the region of interest was computed separately for HCC and
the cirrhotic parenchyma, for the (0◦, 180◦, 90◦, 270) group
of displacement vector directions, which provided the best
accuracy results. The maximum probability had the value
of 0.0035 in the case of HCC, respectively, 0.0036 in the
case of the cirrhotic parenchyma. Thus, the probability was
higher in the case of the cirrhotic parenchyma and lower in
the case of HCC. This was a normal result, if we take into
consideration the chaotic structure of the HCC tissue. For
the second order EOCM, the maximum probability for a
pair of two edge orientations to appear inside the tissue of
the cirrhotic parenchyma was 0.132 while the value of the
same parameter in the case of HCC was 0.131. This also
emphasized the chaotic character of the HCC tissue, and
the more regular character of the cirrhotic parenchyma. The
most frequently met pair of two edge orientation values was
(0◦, 89◦) inside both HCC and cirrhotic parenchyma regions,

corresponding to the directions of the liver tissue fibers
and of the separating walls. For the third order EOCM, the
maximum probability for a combination of three values of
the edge orientation feature to appear within the HCC tissue
was 0.00115 while in the case of the cirrhotic parenchyma,
the value of this parameter was 0.00129. The most frequently
met combination of three edge orientation values was (90◦,
45◦, 45◦) inside the HCC tissue, respectively, (45◦, 0◦, 45◦)
inside the cirrhotic parenchyma on which HCC had evolved.

3.2.2. Performing the Differentiation between HCC and the
Benign Liver Tumors. The third order GLCM was also exper-
imented in the case of the differentiation between HCC and
the benign liver tumors. After performing relevant feature
selection using the CFS and information gain attribute
evaluation methods, the features corresponding to the (45◦,
225◦), (45◦, 135◦), respectively, (0◦, 90◦) direction pairs
appeared to be relevant. After applying the SVM and MLP
classifiers for the final assessment of the efficiency of the
displacement vector direction pairs, we noticed that the (0◦,
90◦) combination provided the best results.

The comparison between the recognition rates obtained
in the cases of using the second order GLCM textural features
combined with the other textural features, the third order
GLCM textural features combined with the other textural
features, respectively, the second order GLCM, the third
order GLCM and the other textural features, is illustrated
in Figure 7. As we can notice, the combination between the
third order GLCM textural features and the other textural
features outperformed the two other groups of features in
most of the situations. The best recognition rate, of 76.88%,
was obtained in the case of applying the AdaBoost com-
bination scheme that used the MLP classifier as a basic
learner.

Concerning the fifth order GLCM, the assessment of the
two considered directions groups revealed that using all the
textural features, provided by both versions of the fifth order
GLCM, led to the best results. After the combination of the
fifth order GLCM features with the other textural features
(except the second order GLCM features), the recognition
rates were always higher than in the case of using only the
second order GLCM features and the other textural features.
The best recognition rate was achieved when considering
both the second order GLCM and the fifth order GLCM
textural features, together with the old textural features. This
result can be visualized in Figure 8.

The highest values of the accuracy parameters were ob-
tained for the combination between the second order GLCM
textural features, the fifth order GLCM textural features and
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Figure 7: The recognition rates obtained when considering the
group of 2nd order GLCM features combined with the other textu-
ral features, those of the 3rd order GLCM textural features together
with the other textural features, respectively, the groups formed
by 2nd order GLCM, the 3rd order GLCM, and the other textural
features in the case of the differentiation between HCC and the
benign liver tumors.

the old textural features, in the case of the MLP classifier,
respectively, AdaBoost metaclassifier that used the MLP
method as a basic classifier. In the latter case, the best value
of the recognition rate, of 75.90%, was achieved.

The second order EOCM textural features were com-
puted in a similar way as in the case of differentiating between
the HCC tumor and the cirrhotic parenchyma. Concerning
the textural features derived from the third order EOCM
matrix, the CFS and information gain feature evaluation
methods were applied again for relevant feature selection.
The two sets of important textural features emphasized the
frequency of those attributes corresponding to the (0◦, 90◦),
(0◦, 180◦), and (0◦, 270◦) combinations of directions. After
the assessment through the MLP and SVM classifiers, the (0◦,
270◦) direction group was found to be the best. The results
obtained after combining the second- and third order EOCM
textural features, corresponding to the (0◦, 270◦) pair of
displacement vector directions, with the old textural features
are illustrated in Figure 9. It results, from Figure 9, that the
best recognition rates were achieved when combining both
the second- and third order EOCM features with the old
textural features. Also, the combination between the third
order EOCM textural features and the old textural features
led to a better recognition rate that in the cases when
using the combination between the second order EOCM
features and the old textural features, respectively, only the
old textural features.

The best recognition rate, of 72.75%, was achieved in the
case of combining the third order EOCM features with the
old textural features, and using the AdaBoost combination
scheme in conjunction with the MLP method. The old
textural features, the features derived from the third- and
fifth order GLCM matrix, respectively from the second- and
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Figure 8: The recognition rate obtained when considering the 2nd
order GLCM features and the other textural features, the 5th order
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Figure 9: The comparison of the recognition rates obtained by
combining the 2nd and 3rd order EOCM features with the old
textural features in the case of the differentiation between HCC and
the benign liver tumors.

third order EOCM matrix, were finally combined and a
single group of textural features was obtained. After applying
the CFS and information gain attribute evaluation methods,
the final set of relevant textural features for differentiating
HCC from hemangioma resulted as the union between the
two resulted feature subsets. The values of the accuracy
parameters resulted after providing the final set of relevant
textural features at the classifiers inputs is illustrated in
Table 3. As we can notice, a recognition rate of 83.66% was
obtained in the case of AdaBoost combination scheme that
used the MLP as basic classifier, and also an increased AUC,
of 89.9%, was obtained for the MLP classifier. We also remark
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Table 3: The values of the accuracy parameters obtained by using the final set of relevant textural features appropriate for the differentiation
between HCC and the benign liver tumors.

Classifier Recognition rate TP rate TN rate AUC Time

SVM 83.16% 78.9% 87.4% 83.2% 81.32 s

MLP 82.66% 78.4% 86.9% 89.9% 62.27 s

AdaBoost + SVM 83.21% 79% 88.3% 83.9% 89.22 s

AdaBoost + MLP 83.66% 80.4% 86.9% 84.3% 89.16 s
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Figure 10: Comparison between the recognition rates obtained by
using the entire set of relevant textural features, respectively, the
old set of relevant textural features features in the case of the dif-
ferentiation between HCC and the benign liver tumors.

on the increased specificity (TN rate), always situated above
86%.

In Figure 10, we can also visualize the increase in the
recognition rate, due to the new derived textural features,
compared with that obtained by providing the original set
of relevant textural features at the classifier inputs. Thus, an
accuracy increase, from 70%, to 80% can be noticed.

The Relevant Textural Features for the Differentiation between
HCC and the Benign Tumors. In the final set of relevant
textural features, we noticed the presence of the second-
third-, and fifth order GLCM features, which played an
important role in the differentiation between the HCC
tumor and the benign tumors. Features like the third order
GLCM homogeneity, third- and fifth order GLCM contrast,
respectively, the third order GLCM variance, emphasized
the difference in homogeneity and complexity in the grey
level structure between the HCC tumor and the benign
tumors. The fifth order GLCM correlation, together with
the autocorrelation index, revealed differences in granularity
between the malignant tumors and the benign tumors. The
energy and entropy of the third order EOCM matrix were
important as well, putting into evidence the uniformity
of edge orientations present in the case of the benign
tumors, and the lack of it in the case of the malignant
tumors, where the entropy parameter has higher values. The
features computed after applying the Wavelet transform were
also important. The entropy was more emphasized at the

second level of resolution in the case of HCC. The spot
textural microstructures, determined after applying the Laws
convolution filters, were frequently met inside HCC and
sparsely met inside the benign tumor tissue. Thus, the spots
contributed to the differentiation of the HCC tumor from
the cirrhotic liver parenchyma and from the benign tumors
as well.

The Values of the Maximum Probability Parameters. The
value of the maximum probability parameter determined
in the case of the third order GLCM, equivalent with the
probability to encounter a combination of three grey levels
inside the benign liver tumors, was 0.05, which was higher
than the value of the same parameter computed in the
case of HCC (0.01), emphasizing, once more, the chaotic
structure of the malignant tumor tissue. The average value
of the maximum probability parameter computed in the
case of the fifth order GLCM matrix was 0.007 for the
class of benign tumors, being again more increased than
the value of the same parameter computed in the case of
HCC, 0.003. Groups of three hypoechoic pixel values (53, 53,
53) were frequently encountered inside the benign tumors,
corresponding to vascular lakes. In the case of the second
order EOCM, the maximum probability for a pair of two
edge orientation values to occur inside the benign tumor
region was 0.138, this being larger than the value of the
same parameter computed in the case of HCC (0.131). The
pair of edge orientation values that most often appeared
inside the benign tumor regions was (0◦, 89◦), being similar
with the edge orientation pair that was met in the case
of HCC and cirrhotic parenchyma. The average value of
the maximum probability parameter, computed inside the
third order EOCM matrix in the case of the benign liver
tumors, was 0.0021, being more increased than the same
value obtained in the case of the HCC tumor, of 0.0013. The
most frequently met combination of three edge orientation
values inside the benign tissue was (90◦, 90◦, 90◦), denoting
the more regular structure of the tissue.

3.2.3. Performing the Differentiation between the Colorectal
Tumors and the Inflammatory Bowel Diseases (IBD). In the
case of the comparison between the colo-rectal tumors and
the inflammatory bowel diseases, the best improvement
in the classification accuracy was provided by the textural
features derived from the third order GLCM, respectively,
by those resulted from the third order EOCM. The best
combination of displacement vector directions was (0◦, 270◦)
in the case of the third order GLCM, and (0◦, 180◦) in the
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Table 4: The values of the accuracy parameters obtained by using the final set of relevant textural features appropriate for the differentiation
between the colo-rectal tumors and the inflammatory bowel diseases.

Classifier Recognition rate TP rate TN rate AUC Time

SVM 94.93% 94.9% 94.9% 94.9% 77.18 s

MLP 94.3% 93.9% 94.1% 98.3% 64.28 s

AdaBoost + SVM 94.93% 94.9% 94.9% 94.9% 85.34 s

AdaBoost + MLP 92.50% 91.1% 89.9% 97.7% 83.11 s

case of the third order EOCM. The comparison between the
recognition rates obtained in these cases, and in the case
of the original textural features, is illustrated in Figure 11.
The combination between the third order GLCM textural
features, the second order GLCM textural features, and the
other textural features always provided the best recognition
rate, situated above 90%. The combination between the sec-
ond order GLCM features, the third order EOCM features,
and the old textural features also provided an increase in
accuracy, compared with the set of old textural features, in
all the situations.

Finally, the second order GLCM textural features, the
third order GLCM textural features, the third order EOCM
textural features, and the other textural features were com-
bined, and then the relevant textural features were selected.
The final set of relevant textural features resulted after
performing the union operation between the subsets of
important textural features provided by each of the feature
selection methods. The comparison between the recognition
rates obtained by using the final set of relevant textural
features, respectively, the initial set of relevant textural
features, obtained by considering only the old textural
features, is depicted in Figure 12. An increase in accuracy
from 85% to almost 94% can be noticed.

The values of all the considered accuracy parameters,
in the case of the final set of relevant textural features, are
illustrated in Table 4. The best recognition rate, of 94.93%,
was obtained in the case of the SVM classifier, respectively,
in the case of AdaBoost combination scheme that used the
SVM as basic classifier. We also noticed the increased value
of AUC, of 98.3%, obtained in the case of the MLP classifier.

The Relevant Textural Features for the Differentiation between
the Colorectal Tumors and the Inflammatory Bowel Diseases.
The third order GLCM homogeneity, as well as the third
order EOCM homogeneity resulted to be important in order
to distinguish between the colo-rectal tumors and the IBD,
due to the heterogeneous structure of the tumor tissue. The
energy and the entropy features were also relevant when
derived from the second order GLCM, from the third order
GLCM, as well as from the third order EOCM, emphasizing
the chaotic structure and the irregular aspect of the colo-
rectal tumor tissue, respectively, the more regular aspect
of the bowel wall that correspond to the IBD case. The
entropy computed at the first level after applying the wavelet
transform was also important in this context. Concerning
the textural microstructures obtained after applying the Laws
convolution filters, the spots and the waves appeared to
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Figure 11: The recognition rate obtained when considering the
2nd order GLCM features and the other textural features, the 2nd
order GLCM features, the 3rd order GLCM, and the other textural
features, respectively, the 2nd order GLCM features, the 3rd order
EOCM features, and the other textural features in the case of the
differentiation between the colorectal tumors and IBD.
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Figure 12: Comparison between the recognition rates obtained by
using the entire set of relevant textural features, respectively, the
old set of relevant textural features in the case of the differentiation
between the colorectal tumors and IBD.
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be more emphasized in the tumor region, suggesting the
presence of severe fibrosis and also the complex structure of
the tumor.

The Values of the Maximum Probability Parameters. The
maximum probability for a pair of three grey level values to
occur in the region of interest was 0.009 inside the colo-rectal
tumors, respectively, 0.014 on the bowel wall affected by IBD.
Groups of hyperechogenic values, corresponding to tissue
regions strongly affected by fibrosis, were often met inside
the colo-rectal tumors. The maximum probability for a pair
of three edge orientation values to occur was 0.0013 inside
the colo-rectal tumors and 0.0026 on the bowel wall affected
by IBD. The most frequent group of edge orientations that
appeared inside the colo-rectal tumor was (90◦, 45◦, 90◦),
respectively, on the bowel wall, this group was (90◦, 90◦, 90◦).
This fact confirms the more complex aspect of the bowel wall
that exists in the presence of the colo-rectal tumor.

3.3. Discussions. As the experiments revealed, the new imple-
mented methods for texture analysis, based on the superior
order cooccurrence matrices led to a considerable accuracy
increase and to a better emphasis of the malignant tumors
characteristics, in comparison with those of the benign
tumors and the tissue of the visually similar diseases. Con-
cerning the orientations of the displacement vectors, the
combinations between the horizontal and vertical directions
led to the best accuracy results. The best orientations of
the displacement vectors were also parallel or perpendicular
on the direction of the ultrasound signal propagation. The
combination between the old textural features, the third-
and fifth order GLCM features, respectively, the second- and
third order EOCM features, followed by feature selection,
led to an increase of the recognition rate from 70% to 80%
in both cases of differentiation between HCC and cirrhotic
liver parenchyma, and between HCC and the benign tumors,
respectively, to an accuracy improvement from 80% to
90% in the case of the colo-rectal tumor recognition. The
probability of a certain combination of grey levels to appear
inside the tissue, determined by the maximum probability of
the grey level cooccurrence matrix, had higher values in the
case of the benign tumors and of the visually similar tissues,
and lower values in the case of the malignant tumors, putting
into evidence the complex structure of the malignant tissue.
In the case of the cooccurrence matrix of edge orientations,
the same situation appeared. Also, the third order EOCM
energy was higher inside the benign tumors and lower
inside the malignant tumors, which indicated an increased
uniformity of the edge orientations inside the benign tumors
and the irregularity of the values of this feature in the
case of the malignant tumors. The most frequently met
edge orientation values inside the malignant tumors and the
cirrhotic parenchyma are 0◦, 45◦, and 90◦, while in the case
of the benign tumors and of the bowel wall affected by IBD,
only the 0◦, 90◦ values were met more often. This emphasized
the complexity of the malignant tumors, respectively, of
the tissue affected by diseases that precedes cancer, such as
cirrhosis. We also noticed that the value of the maximum

probability parameter decreased while the order of the
cooccurrence matrix increased. However, the cooccurrence
matrices of order n, n > 2 always led to accuracy improve-
ments and to a more refined characterization of the analyzed
tissues, as shown in the experiments section. Concerning the
relevant textural features that differentiated the malignant
tumors from the other kinds of tissues, the homogeneity,
the variance, and the contrast computed from the cooc-
currence matrices indicated the heterogeneous structure
of the malignant tumor tissue. The correlation, together
with the autocorrelation index, emphasized a difference in
granularity between the restructuring areas of the malignant
tumors and the tissue zones corresponding to less aggressive
diseases. The entropy computed after applying the wavelet
transform revealed the presence of the chaotic character at
multiple resolutions, in the case of the malignant tumors.
The textural microstructures, determined after applying the
Laws convolution filters, were also important in order to
distinguish the malignant tumors from the visually similar
tissues, emphasizing the complexity of the tissue affected by
malignancy.

4. Conclusions and Future Work

The superior order grey level cooccurrence matrices, as well
as the edge orientation cooccurrence matrices of superior
order, led to an improvement of the classification perfor-
mance, in comparison with the case when only the old
textural features were used. The probability for a certain
combination of gray levels or edge orientations to occur in
the region of interest was lower in the case of the tumor tissue
and higher in the case of the visually similar tissues. This
fact reflected the irregular structure of the malignant tissues.
The value of the maximum probability parameter decreased
while the order n of the superior matrix increased, as the
number of possible combinations of feature values increased
and the evaluation became more refined. The final set of rel-
evant textural features revealed, in each case, the presence of
the new textural features, derived from superior order matri-
ces, and emphasized the inhomogeneous, complex, chaotic
structure of the malignant tumor tissue. The smaller classifi-
cation accuracy obtained in the case of HCC tumor recogni-
tion is due mainly to the variations in the aspect of the HCC
tumor, and also to the small differences that exist between
the HCC and cirrhotic parenchyma tissues, both diseases
involving a restructuring process. In the case of colorectal
tumor recognition, the classes were more homogeneous, so
the classification accuracy was higher. In our future work, we
aim to divide the HCC tumor into subclasses and to improve
the classification accuracy through multiclass classification.
The specific groups of grey levels or edge orientation values
that appeared inside each subclass of malignant tumors will
be further analyzed and their correspondence with the tissue
microstructures will be established. We will also implement
more complex classifier combination schemes, such as
stacking, in order to improve the automatic diagnosis perfor-
mance. The computation of the extended Haralick features at
multiple resolutions is a future research objective as well.
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Appendices

A. The Hepatocellular Carcinoma and the
Colonic Tumors: Medical Considerations and
Visual Aspect in Ultrasound Images

The hepatocellular carcinoma (HCC) is the most frequent
malignant liver tumor, representing 75% of the liver cancer
cases, besides hepatoblastoma (7%), cholangiocarcinoma,
and cystadenocarcinoma (6%). The most relevant oncogenic
agent for HCC development is the chronic viral infection
with the hepatitis B virus (HBV), or hepatitis C virus (HCV),
the next evolution phase, preceding HCC, being cirrhosis
[1]. HCC evolves from cirrhosis, after a restructuring phase,
at the end of which dysplastic nodules (future malignant
tumors) result. Concerning the visual aspect in ultrasound
images, in incipient phase, HCC appears like a small region
having a different texture than the other parts of the tissue
and a diameter of about 1.5 cm to 2 cm. In the case of an
evolved HCC, the essential textural attribute is that of het-
erogeneity, due to the coexistence of fatty regions, of regions
with necrosis, fibrosis, and, respectively, active growths. HCC
is also characterized through a complex structure of vessels
[1]. Hemangioma is the most frequent form of benign liver
tumors, consisting of a mass of abnormal blood vessels. Up
to 5 percent of adults in the United States have small heman-
giomas in their liver. Concerning the aspect in ultrasound
images, most of the hemangiomas are isoechogenic and
homogeneous [20]. The focal nodular hyperplasia is another
frequent benign liver tumor. The necrosis and hemorrhage
are rarely met inside these structures. The histological studies
detected the existence of some fibrous bands, of multiple
biliary ducts, and of some fibrous scars, of stellar shape. In
ultrasound images, the FNH tumors appear as isoechogenic
or hypoechogenic lesions, having a homogeneous aspect, but
containing a small, stellar scar inside [20]. The colo-rectal
tumors represent a frequent disease for the population of
the developed countries, being the third cause of cancer-
related death in the Western world. They arise from the
adenomatous polyps which are present on the bowel wall.
Like every tumor, they are characterized by the heterogeneity
of the tissue structure and by the complexity and irreg-
ularity of the vessel structure [5]. In ultrasound images,
they have an inhomogeneous, mixed aspect, the parietal
delimitation being linear, but interrupted by the tumor
invasion. The adenopathy could also be present inside the
tumor, having rounded shape. Although distinct from IBD,
they share a lot of characteristics with the latter, like wall
thickening and increased vascularity [21]. Some eloquent
examples of all the described affections can be visualized in
Figure 13.

In Figure 13, the liver tumors are illustrated: an instance
of HCC in focal encephalic form, evolved phase; an instance
of hemangioma benign tumor; an instance of the FNH
benign tumor. In Figure 14, an example of a colo-rectal
tumor is illustrated. The shape modifications of the bowel
wall, due to the colo-rectal tumor, are also visible in
Figure 14(a). The inflammatory bowel diseases-Crohn’s
disease and ulcerohemorrhagic rectocolitis are also depicted.

B. Description of the Superior Order
Haralick Features

The contrast of order n for the generalized cooccurrence
matrices was computed as follows:

Contrast =
M−1∑

f1=0

M−1∑

f2=0

· · ·
M−1∑

fn=0

⎛

⎝
n−1∑

u=1

n∑

v=u+1

dif
(
fu, fv

)2

⎞

⎠

∗ p
(
f1, f2, . . . , fn

)
.

(B.1)

In (B.1), f1, f2, . . . , fn are the values of the descriptors for
the considered features: in the case of the GLCM of order
n, they are the grey levels of the pixels, while in the case of
superior order EOCM, the values of the edge orientations
are taken into account; dif( fu, fv) is the absolute value of
the difference between any two values of the local features
involved in a certain n-tuple that gives the coordinates of
a superior order matrix element. M is the maximum value
that a certain feature (grey value of edge orientation) can
achieve. The contrast, also called dissimilarity, estimates the
difference that exists, in the region of interest, between
the values of the considered local features, corresponding
to pixels that are in a spatial relation defined by the
displacement vectors. It measures the local variations in the
grey level cooccurrence matrix.

Concerning the other measures, we defined the following
mathematical formulas:

Entropy =
∑M−1

f1=0

∑M−1

f2=0
· · ·

∑M−1

fn=0
p
(
f1, f2, . . . , fn

)

× (− ln p
(
f1, f2, . . . fn

))
.

(B.2)

The entropy expresses the disorder of the texture,
with respect to the considered feature (grey level or edge
orientation value), the uncertainty for a certain combination
of n values ( f1, f2, . . . , fn) to appear,

Energy =
∑M−1

f1=0

∑M−1

f2=0
· · ·

∑M−1

fn=0
p
(
f1, f2, . . . , fn

)2
.

(B.3)

The energy, also called angular second moment, is the
opposite of the entropy, measuring the order, the uniformity
within the texture with respect to the considered local
feature.

Local homogeneity

=
∑M−1

f1=0

∑M−1

f2=0
· · ·

∑M−1

fn=0

p
(
f1, f2, . . . , fn

)

1 +
∑n−1

u=1

∑n
v=u+1dif

(
fu, fv

)2 .

(B.4)

The local homogeneity characterizes the texture from the
point of view of the similarity of the pixels with respect
to the considered feature, having increased values when the
difference between the feature values of the corresponding
pixels is decreased. This feature measures the closeness of
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(a) (b) (c)

Figure 13: The malignant and benign liver tumors: (a) hepatocellular carcinoma, encephalic form, (b) hemangioma; (c) focal nodular
hyperplasia.

(a) (b) (c)

Figure 14: The colo-rectal tumors and the inflammatory bowel diseases: (a) colo-rectal tumor; (b) Crohn’s disease; (c) ulcero-hemorrhagic
recto-colitis.

the distribution of the elements in the GLCM to the GLCM
diagonal.

The variance was computed as indicated;

Variance =
√
σ2

1σ
2
2 · · · σ2

n . (B.5)

The generalized variance, defined in (B.5), characterizes
the texture from the point of view of the spreading of the
considered feature values inside the cooccurrence matrix.

Correlation

=
Ng−1∑

f1=0

Ng−1∑

f2=0

· · ·
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f1, f2, . . . fn

)
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(B.6)

The correlation, mathematically defined in (B.6), expresses
the linear dependence, between every two values of the local
features, that are met inside the same n-tuple, respecting
the spatial relation established by the displacement vectors.
The mean and variance of the superior order cooccurrence

matrices, with respect to the reference pixel (μ1, σ1), are
described:

μ1 =
∑M−1

f1=0
f1 ×

∑M−1

f2=0
· · ·

∑M−1

fn=0
p
(
f1, f2, . . . , fn

)
.

(B.7)

The mean of the superior order cooccurrence matrices
with respect to the neighboring pixels (σk, σn,) was computed
according to the definitions described below:

μk =
∑M−1

fk=0
fk

×
∑M−1

f1=0
· · ·

∑M−1

fk−1=0

∑M−1

fk+1=0
· · ·

∑M−1

fn=0
p
(
f1, f2, . . . , fn

)
,

k ≥ 2, k < n,

μn =
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fn=0
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p
(
f1, f2, . . . , fn

)
.

(B.8)

The variance of the superior order cooccurrence matri-
ces, with respect to the reference pixel (σ1), is described:

σ2
1 =

∑M−1

f1=0

(
f1 − μ1

)2 ×
∑M−1

f2=0
· · ·

∑M−1

fn=0
p
(
f1, f2, . . . fn

)
.

(B.9)
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(a) (b) (c)

Figure 15: The properties of the edges inside the tumoral tissue (a) edges inside HCC; (b) edges inside hemangioma; (c) edges inside the
colo-rectal tumor.

(a) (b) (c)

Figure 16: The spot textural microstructures inside the tumoral tissue (a) HCC image after the detection of the spot microstructures; (b)
hemangioma image after the detection of the spot microstructures; (c) colo-rectal tumor after the detection of the spot microstructures.

The variance of the superior order cooccurrence matrices
with respect to the neighboring pixels (σk, σn,) was computed
according to the definitions described below:

σ2
k =

∑M−1

fk=0

(
fk − μk

)2

×
∑M−1

f1=0
· · ·

∑M−1

fk−1=0

∑M−1

fk+1=0
· · ·

∑M−1

fn=0
p
(
f1, f2, . . . , fn

)
,
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×
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f=0
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p
(
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)
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The maximum probability, defined below, represents the
maximum value that appears in the cooccurrence matrix
and also highlights the pair, or n-tuple of feature values,
that appears most frequently in the region of interest, the
corresponding pixels respecting the spatial relation specified
by the displacement vectors,

pmax = Max
(
p
(
f1, f2, . . . , fn

)
, 0 < fk < M, 0 ≤ k ≤ n

)
.

(B.11)

C. The Role of the Texture Analysis Methods in
Emphasizing the Tumor Characteristics

In Figure 15, we can visualize the specific properties of the
edges inside the tumoral tissue. Thus, the edge contrast and
edge orientation variability are higher inside the malignant
tumors while inside the benign tumors the edge contrast and
density are more decreased. In Figure 16, the density of the
spot microstructures inside the tumoral region is put into
evidence. The spot frequency is higher inside the malignant
tumors, emphasizing tissue regions severely affected by fibro-
sis, or containing an increased number of fatty cells. Inside
the benign tumors, the spot microstructures are sparse.
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