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Metabolomics involves the identification and quantification of metabolites present in a biological system. Three different
approaches can be used: metabolomic fingerprinting, metabolic profiling, and metabolic footprinting, in order to evaluate the
clinical course of a disease, patient recovery, changes in response to surgical intervention or pharmacological treatment, as well
as other associated features. Characteristic patterns of metabolites can be revealed that broaden our understanding of a particular
disorder. In the present paper, common strategies and analytical techniques used in metabolomic studies are reviewed, particularly

with reference to the cardiovascular field.

1. Introduction

Cardiovascular disease (CVD) is the most prevalent cause of
death in developed nations and it is increasing in prevalence
in developing countries. While many factors contribute to
the development of this disease in adults, such as, smoking,
male gender, blood pressure, elevated cholesterol, diabetes,
and renal failure, the mechanisms underlying CVD are still
not fully understood [1-4]. One of the main problems
in clinical practice is that the symptoms become evident
late in the course of the disease. In fact, asymptomatic
processes, that are associated with plaque formation, develop
causing silent yet progressive tissue damage. If atheroma
plaques finally rupture, highly thrombogenic material is
released and an atherothrombotic event occurs. In this
context, there is an urgent need to find out novel biomarkers
of practical value for clinical intervention which, alone
or combined with existing ones, allow cardiovascular risk
prediction at individual level. Currently, controversy exists
regarding contribution of biomarkers to the information
derived from conventional risk factors. When novel markers
utility for predicting CVD was investigated in a wide cohort

of more than 5000 individuals without CVD, the gains over
conventional factors resulted to be minimal [5]. However,
positive outcomes are expected when high-risk populations
are investigated; thus, the risk level of selected patients, the
chosen biomarkers to be investigated and other factors, such
as, statistics, highly influence expected results. Combination
of multiple biomarkers in assessment of individual responses
adds only moderately to standard risk factors [6]. Therefore,
there is a substantial interest in the discovery and use of
newer biomarkers, to complement the best existing ones
and to identify persons who are at risk for the development
of cardiovascular disease and who could be targeted for
preventive measures. In particular, finding biomarkers that
predict the risk of rupture will provide the opportunity to
institute a preventive life style and permit timely pharmaco-
logical treatment. Currently, the improvements in outpatient
and inpatient care, diagnosis and biomarker discovery have
reshaped the landscape of CVD. It is important to note that
the new diagnostic methods currently available are based
on noninvasive techniques that, although they present a
number of benefits, may be limited in terms of specificity,
sensitivity, availability and cost. The progress in “-omics”



technologies has provided sensitive, fast and robust tools to
analyze biomarkers in CVD.

Metabolites are small molecules that participate in
general metabolic reactions and that are required for the
maintenance, growth and normal function of a cell. The term
metabolome, derived from the word genome, refers to the
complete set of metabolites in an organism and its organelles
[7, 8] or the total complement of metabolites in a cell [9]. In
this way, metabolomics and metabonomics refer to the use
of analytical methods to identify and quantify all metabolites
in a biological system, as well as the monitoring of changes
in the metabolome of a biofluid, cell culture or tissue sample
following perturbation [8, 10].

In parallel with genomics, transcriptomics and pro-
teomics, application of metabolomic technologies to the
study of CVD will increase our understanding of the
pathophysiological processes involved and this should help
us to identify potential biomarkers to develop new ther-
apeutic strategies [11, 12]. Indeed, the identification and
quantification of these low molecular weight molecules (e.g.,
lipids, amino acids, and sugars) will define the phenotype
of these diseases [13]. From a clinical perspective, the study
of metabolic changes that occur in response to different
physiological processes will help establish the mechanisms
underlying the disease. In terms of personalized medicine,
pharmacometabonomic approaches can serve to predict the
action of specific drugs in a particular individual based on
the predose urinary metabolite profile. Furthermore, the
gut bacterial fauna influences drug efficacy, which could be
deliberately modified to optimize the benefits and minimize
adverse effects of a given treatment [14]. In addition, this
approach will help understanding how drugs act during
patients’ recovery or how they influence outcome.

2. Metabolomic Strategies, Analytical
Approaches and Variability

There are several analytical strategies that can be used to
analyse the metabolome [15], such as nuclear magnetic
resonance (NMR) [16], Fourier transformation infrared
spectroscopy (FT-IR) [17, 18], and mass spectrometry (MS)
coupled to separation techniques such as high performance
liquid chromatography (HPLC), gas chromatography (GC),
or capillary electrophoresis (CE). The combination of these
different analytical techniques offers important advantages
when analyzing the complete metabolome. High field 'H
NMR is one of the preferred platforms for urine and plasma
analysis [19, 20], as it is a nondestructive technique that does
not require prior separation of the analytes and it provides
detailed information on molecular structure. For example,
the capacity to predict the occurrence of exercise-induced
ischemia in patients with suspected CAD was investigated
by NMR blood analysis, demonstrating lactate, glucose,
lipids, and long-chain fatty acids to be the main metabolites
involved [21]. Xanthine and ascorbate were proposed as
possible markers of plaque formation in an atherosclerotic
mouse model [22] and lipoprotein subclasses can now be
analyzed by a commercial NMR-based protocol called NMR
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LipoProfile [23, 24]. However, one of the main limitations of
NMR is the poor sensitivity, although this can be improved
enormously when it is combined with mass spectrometry.

Coupled to a separation technique, MS has recently been
introduced into the metabolomics field and its use in such
studies will constitute the main focus of this paper. Indeed,
gas chromatography/mass spectrometry (GC-MS), liquid
chromatography/mass spectrometry (LC-MS) and capillary
electrophoresis/mass spectrometry (CE-MS) are the most
powerful techniques for metabolite separation and analysis.
GC-MS provides an extraordinary resolution, permitting the
separation of structurally similar compounds that would
otherwise be very difficult to separate by HPLC. However,
this technique requires the analyte to be volatile and
thermally stable. In some cases, a chemical derivatization step
is required prior to the chromatographic separation in order
to render polar metabolites volatile. Some of the metabolites
best suited for GC-MS include fatty acids, organic acids,
steroids, di-glycerides, sugars and sugar alcohols.

For those metabolites that are not volatile and which
cannot be derivatized, LC is the separation technique of
choice. Thus, LC-MS can analyze a much wider range
of chemical species (polar and nonpolar metabolites)
with ample selectivity and sensitivity. Apart from reversed
phase chromatography (RP-LC), which is widely used in
metabolomics applications, hydrophilic interaction chro-
matography (HILIC) is a complementary approach suitable
for very polar metabolites (nonvolatile). Indeed, the metabo-
lites suited to analysis by GC or HPLC can be represented
according to their polarity (see scheme in Figure 1). Sim-
ilarly, capillary electrophoresis (CE) can be coupled to a
mass spectrometer (MS), with the particular advantage of
improving the resolution of separation as narrower peaks
than with LC are obtained. Accordingly, different approaches
have been described in combination with ion trap (IT),
triple quadrupole (QQQ), time of flight (TOF), and Q-
TOF instruments. The main advantage of QQQ and Q-
TOF instruments is that they provide the possibility of
identifying the compounds by tandem MS/MS analyses. In
order to obtain a full overview of the detectable molecules,
electrospray ionization (ESI) should be performed in both
positive and negative modes on the same sample.

Irrespective of the analytical approach wused in
metabolomics, particular care has to be taken in preparing
the sample. Bearing in mind that the typical half-lives of
metabolic reactions in an organism are less than 1s, it
is important not to monitor metabolic changes extrinsic
to the pathology or drug effect under study, producing
misleading interpretations of the situation. Evidence-
based epidemiological studies have led to the discovery of
well-established biomarkers. These studies now tend to be
complemented by control-case investigation using a different
methodology, based on two main stages: the discovery phase,
resulting in a set of novel biomarkers candidates and the
validation phase, where discovered potential biomarkers
are further validated in a different cohort of samples. In
this context, biological variation would be expected to be
higher than the analytical variability and thus, it is essential
to pay particular attention to: (a) the precise definition of
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FIGurg 1: Suitability of gas and liquid chromatography for metabolomic analysis based on metabolite polarity. Courtesy of Agilent

Technologies [53].

a clinical phenotype (in this sense, network-based analysis
on associations among genes, proteins, metabolites, and
environmental factors would be encouraged to increase
sensitivity and selectivity of the diagnosis) [25] and (b)
group matching in terms of sex, age, lifestyle, diet, or
pharmacological treatment, otherwise attempts may fail in
terms of disease prediction [26]. For instance, gender and
statins treatment strongly influence the findings in studies
of CVD and when individuals with normal coronary arteries
were compared with CVD patients, a >99% confidence limit
was only obtained for 6% of the predictions in the treated
groups [27]. Technical reproducibility and sampling time are
also critical to minimize external factors that will influence
the results and their clinical relevance. Ideally, snapshots
of different conditions should be taken so that they can
be quantitatively compared. If all these considerations are
kept in mind, metabolomic research can set out to identify
characteristic patterns that can be used for diagnostic
purposes and risk prediction, substituting traditional, more
expensive clinical approaches (e.g., angiography).

In principle, metabolites can be measured in several
body fluids or tissues, although plasma and urine are the
most commonly used biological matrices in cardiovascular
research due to their availability and clinical relevance as a
source of potential biomarkers. Almost all cells in the body
communicate with the plasma, either directly or through
different tissues and biological fluids, releasing at least part
of their intracellular content [28]. By contrast, urine is

produced by renal filtration of the plasma and it is widely
considered as one of the most important samples for diag-
nosis as it contains not only many plasma components but
also the catabolic products of different metabolic pathways.
Sample pretreatment varies depending on the analytical
platform chosen (see the common strategies employed in
Figure 2). Metabolites from frozen tissue samples can be
extracted and simultaneously fractionated by treating the
ground tissue with mixtures of organic solvents, such that
molecules are extracted in different fractions according to
their polarity. If a biological fluid is the starting material
(urine, serum, plasma), metabolite fractions are usually
obtained after proteins are removed by precipitation. The
crude or diluted sample can then be injected directly,
although matrix effects causing ion suppression should be
expected. If analyzed by LC-MS(/MS), it may be desirable
to preconcentrate (e.g., by lyophilisation) or fractionate the
sample prior to chromatographic separation. In case of GC-
MS(/MS), preconcentration can be performed by solid phase
microextraction (SPME) with or without head space (HS)
procedures, which are particularly useful when analysing
volatile organic compounds (VOCs). For CE analysis, the salt
content should be minimized in the sample.

In general, three complementary approaches are used for
metabolic research (see Figure 3): metabolic fingerprinting,
metabolic profiling, and metabolic footprinting [29]. In
the first case, and like proteomics strategies, an unbiased
analysis is performed that is oriented towards defining
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clinically relevant differences rather than identifying all the
molecules present in a sample [30]. Alternatively, metabolic
profiling involves a preselection of a set of metabolites, or
a specific class of compounds, that might participate in a
targeted pathway. Metabolic footprinting does not rely on
the measurement of intracellular metabolites but rather, on
monitoring those that are secreted or fail to be taken up by a
cell or tissue [31, 32]. Below, we will discuss relevant findings
from these approaches in CVD (a compilation of the main
studies is shown in Table 1).

3. Metabolic Fingerprinting in CVD

Metabolic fingerprinting does not aim to identify the
entire set of metabolites but rather to compare patterns
or fingerprints of metabolites that change in response to a
disease state, pharmacological therapies or environmental
alterations, for example. A wide variety of biological matrices
can be used for metabolic fingerprinting, such as urine,
plasma/serum, tissues/cells and saliva. This approach can be
used as a diagnostic tool to evaluate the disease state by
comparing healthy controls and disease subjects, or to assay
the success of a particular treatment (prognosis/recovery)
[33]. However, if we want to understand the mechanisms
underlying a disease, qualitative and quantitative analyses
are required. Once a differential pattern is discovered,
which provides information that can be considered as the
pathological phenotype [34], further steps to identify the
participating compounds (qualitative) and to determine the

absolute amounts of metabolites that participate in the
processes studied (quantitative) must be followed. This is
not a trivial issue and prior to embarking on the task
of discovering metabolic biomarkers, sufficiently sensitive
and selective instruments and extensive compound libraries
for metabolite identification should be available [35], while
certain expertise in data analysis and interpretation will be
necessary.

One of the few metabolomic studies in the field of
CVD involved a comparison of the metabolomic fingerprint
obtained by GC-MS of plasma samples from non-ST-
segment elevation acute coronary syndrome (NSTEACS)
patients, stable atherosclerosis patients and healthy patients
[36]. Citric acid, 4-hydroxyproline (4OH-Pro), aspartic acid
and fructose were found to decrease in NSTEACS patients,
whereas lactate, urea, glucose, and valine increased. Both
lactate and glucose are also involved in prediction of exercise-
induced ischemia in patients with suspected CAD [21]. The
decreased in 4OH-Pro was especially interesting because
circulating 4OH-Pro is thought to prevent the binding of
LDL to lipoprotein previously deposited in the vascular
wall, as well as releasing already deposited LDL from the
atherosclerotic lesions. It is also a component of collagen,
which confers stability to the atherosclerotic plaque.

The high resolution of CE-MS makes it a powerful
technique to separate and analyse charged metabolites,
although only a few metabolomic applications have been
published to date. The isolation of polypeptide fraction
from urine or plasma was analyzed by CE-MS and used
to discriminate between coronary artery disease (CAD)
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and non-CAD patients with clinical symptoms and who
had been subjected to coronary angiography [37]. The
stability of urine samples and their resistance to oxidation
or precipitation reflect the advantages of this biological
fluid for proteomic analysis. Polypeptide profiling in urine
is more reproducible than in plasma, with no significant
loss of polypeptides over time when performing consecutive
analyses over a 24-hour period, which also demonstrates
the reproducibility of the CE-MS. In total, 200 of the most
abundant polypeptides were detected and a set of 17 urinary
polypeptides permitted CAD and non-CAD patients to be
distinguished. Among them, collagen «-1 (I and III) was
augmented in CAD samples, which was corroborated by
their increased expression found in atherosclerotic plaques.
This increase points to an important role for collagen in the
development of atherosclerosis.

4. Metabolic Profiling in CVD

Metabolite profiling focuses on the analysis of a group of
metabolites related to a specific metabolic pathway [38, 39].
In this approach, target metabolites are selected beforehand
and they are assessed using specific analytical methods. Tech-
nological advances have increased the number of metabolites
that can be quantified simultaneously. Moreover, the results
of metabolic profiling are quantitatively independent of the
technology used for data acquisition [40].

Metabolite profiling has been applied to CVD in order
to identify and quantify metabolites that might serve as

new biomarkers. A metabolite profile of peripheral blood
from individuals undergoing planned myocardial infarction
(PMI) has been established [41]. Serial blood from 36
patients were obtained before and at various intervals after
PMI, and the changes in circulating levels of metabolites were
identified by mass spectrometry-based metabolite profiling.
Most alterations produced by PMI were observed in the tri-
carboxylic acid cycle, in purine and pyrimidine catabolism,
and in the pentose phosphate pathway. Indeed, 7 metabolites
were significantly affected immediately 10 minutes after the
onset of myocardial injury (P < .005): alanine, aminoisobu-
tyric acid, hypoxanthine, isoleucine/leucine, malonic acid,
threonine, and trimethylamine N-oxide (TMNO). All these
alterations were especially interesting as they were observed
before any significant rise in the clinically available biomark-
ers in plasma (CKMB and troponin T). After 60 minutes,
six new metabolites had also changed significantly (P <
.005): 1-methylhistamine, choline, inosine, serine, proline,
and xanthine, with the later being a candidate of a marker
for plaque formation in an atherosclerotic mouse model
[22]. The anatomic origin of the early metabolic changes
observed was further explored in a subgroup of 13 patients
by simultaneously comparing the metabolite levels obtained
in samples from peripheral blood and from a catheter
placed in the coronary sinus. A further 8 metabolites were
transmyocardially enriched at least 1.3-fold 10 minutes after
PMI (taurine, ribose-5-phosphate, DCMP, lactic acid, AMP,
malic acid, glutamine and glutamic acid) and once 60
minutes had passed, six additional metabolites augmented
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TasLE 1: Compilation of the metabolomic studies in cardiovascular field, including candidate biomarkers.

. . Body Analytical S
Pathology (Patients no.) Metabolite fluid/tissue  technique Replication  Reference
NSTACS (9), stable atherosclerosis (10), .
) ] _ 36
healthy (10) 4-hydroxyproline Plasma GC-MS [36]
. . Test set: CAD
CAD (15), no CAD (14) 17 polypeptides (CAD pattern) Urine, CE-MS  (26), no CAD (37]
Collagen a1 (LIII) Plasma (12)
PMI (20), control (16) Aconitic acid, hypoxanthine, Validation:
- 41
SMI (12), control (9) trimethylamine N-oxide, threonine Plasma LC-MS PMI (16) [41]
. . . 12 altered in plasma, 8 altered in Urine
- - ) i - — 42
High-fat diet (9), common-diet (9) rats urine (atherosclerotic rats) Plasma LC-MS [42]
. 24 altered metabolites (insulin NMR,
Atherosclerosis (9), healthy (10) resistance) Plasma GC-MS — [45]
Acetylcarnitine,
- — 46
CAD (12), LVD (10), control (17) 3-hydroxybutyrylcarnitine Plasma FI-MS [46]
Event
Initial: CAD (174), control (174) . .. replication:
Replication: CAD (140), control (140) Dicarboxyl acylcarnitines Plasma GC-MS CAD (63), [49]
control (66)
Inducible ischemia (18), control (18) Citric acid pathway Plasma LC-MS — [52]
Persistent AF: AF (8), SR (8) B-hydroxybutyrate, ketogenic S
Post-operative AF: SR-AF (18), SR (19) amino acids, glycine Atrial tissue NMR _ [50]
P . Allantoin (drug treatment)
/
Apo B~ mice captroil treated (8), Xanthine, ascorbate Urine NMR — [22]

untreated (8) (plaque formation)

CAD: coronary artery disease, PMI: planned myocardial infarction, SMI: spontaneous myocardial infarction, LVD: left ventricular dysfunction, FI: flow
injection, AF: atrial fibrillation, SR: sinus rhythm. Numbers in brackets correspond to number of assayed individuals (or animals if so specified).

(glycerol-3-phosphate, orotic acid, succinic acid, glycerate-
2-phosphate, taurine and malic acid).

Plasma and urine samples from atherosclerotic and
control rats have been compared by ultra fast liquid chro-
matography coupled to ion trap-time of flight (IT-TOF)
mass spectrometry (UFLC/MS-IT-TOF) [42]. Accordingly,
12 metabolites were identified as potential biomarkers in
rat plasma and 8 metabolites in rat urine. The concen-
tration of leucine, phenylalanine, tryptophan, acetylcar-
nitine, butyrylcarnitine, propionylcarnitine and spermine
decreased in plasma, and 3-O-methyl-dopa, ethyl N2-
acetyl-L-argininate, leucylproline, glucuronate, N(6)-(N-
threonylcarbonyl)-adenosine and methyl-hippuric acid were
diminished in the urine of atherosclerosis rats. Conversely,
ursodeoxycholic acid, chenodeoxycholic acid, LPC (C16:0),
LPC (C18:0) and LPC (C18:1) increased in plasma and
hippuric acid augmented in the urine from atherosclerosis
rats. The alterations to these metabolites reflected the
abnormal metabolism of phenylalanine, tryptophan, bile
acids and amino acids. Lysophosphatidylcholine (LPC) plays
an important role in inflammation and cell proliferation,
highlighting the relationship between LPC with the progress
of atherosclerosis and other inflammatory diseases.

The lipidomic profile of mice liver homogenates from
cholesterol-free, low cholesterol and high cholesterol diets
demonstrated the influence of dietary cholesterol intake
and atherosclerosis [43]. To obtain individual metabolite
fingerprints, nearly 300 metabolites were measured in plasma

samples by LC-MS/MS, including di- and tri-glycerides,
phosphatidylcholines, lysophosphatidylcholines and choles-
terol esters. When dietary cholesterol intake increased, the
liver compensated for the elevation in plasma cholesterol
by adjusting metabolic and transport processes related to
lipid metabolism, which leads to an inflammatory, pro-
atherosclerotic state. A cholesterol-free diet did not induce
early atherosclerosis, while the low cholesterol diet only
mildly induced early atherosclerosis. By contrast, intense
early atherosclerosis was induced by the high cholesterol
diet, in association with proinflammatory gene expression.
Indeed, a relationship appears to exist between choles-
terol intake (measured as cholesterol plasma levels) and
atherosclerotic lesion size.

The lipidome of cell membranes and tissues has been
studied by measuring the plasmalogens contained in rabbit
and rat myocardial nuclei by ESI-MS [44]. Plasmalogen is
an ether lipid where the first position of glycerol binds
a vinyl residue with the double bond next to the ether
bond. The second carbon has a typical ester-linked fatty
acid and the third carbon usually has a phospholipid head
group, which can protect cells against the damaging effect of
singlet oxygen. This seems to be the reason for the strong
enrichment of plasmalogens found in the membrane of
myocardial cells.

Metabolic changes associated to atherosclerosis have also
been investigated through NMR and GC-MS metabolite
profiling [45]. There are clear biochemical explanations to
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these findings, and the alterations to these metabolites,
which cause the final atherosclerotic lesion, can be related to
different disorders. For instance, insulin resistance in diabetic
patients increases the activity of transaminases, which are
critical enzymes in amino acid metabolic pathways. Hence, if
the insulin response is deficient, these amino acid pathways
will be altered, and many others metabolites will be affected
such as glutamate, ketoglutarate, succynyl-CoA, 4-OH-L-
proline (4OHPro), 2-hydroxybutyrate, creatinine, pyruvate,
oxaloacetate, malate, glycolate and 2,3,4-trihidroxybutirate.
These effects could indicate damage to tissue at the intima
artery walls.

The myocardial metabolic response has been investigated
in CAD and left ventricular dysfunction (LVD) patients, both
at baseline and following ischemia-reperfusion (I/R) [46].
Accordingly, glucose, lactate, free fatty acids, total ketones, 3-
hydroxybutyrate, pyruvate, leucine/isoleucine and glutamate
are present at lower concentrations in a preischemia state in
the coronary sinus (CS) than in arterial samples (reflecting
myocardial uptake). By contrast, the alanine concentration is
higher (reflecting release). A principal components analysis
(PCA) shows several potentially important postoperative
metabolic changes during the clinical course of the disease.
Ventricle dysfunction are associated with the global sup-
pression of metabolic fuel uptake, and limited myocardial
metabolic reserves and flexibility following global I/R stress
is associated with cardiac surgery.

Some citric acid metabolites are depressed in acute
ischemia and acute myocardial disease [47]. The citric acid
cycle plays an important role in oxidative phosphorylation
and ATP production in cardiomyocytes, and citric acid cycle
intermediates are supplied by glycolysis and S-oxidation
of fatty acids. Metabolomic profiling based on quantitative
mass spectrometry was also used to study the heritability of
premature coronary disease in 117 individuals unaffected by
CAD but with a family member affected [48]. There was
a string heritability of amino acid levels such as arginine,
ornithine, alanine, proline, leucine/isoleucine, valine, gluta-
mate/glutamine, phenylalanine and glycine, free fatty acids
such as arachidonic, palmitic, linoleic and acylcarnitines.
Hence, it was concluded that metabolic changes associated
with CAD can be inherited and they are strongly related to
age. This would indicate that metabolic processes could be
controlled genetically, implying a correlation between geno-
type and phenotype in families with CAD. More recently,
a subset of 69 metabolites was shown to have diagnostic
value, such that some derived factors showed discriminative
capability for CAD after PCA. Moreover, a signature com-
posed of dicarboxyacylcarnitines was predictive of further
cardiovascular events in those patients and most significant
differences persisted after adjustment for CAD risk factors
[49].

Metabolic changes in human atrial fibrillation (AF)
have been investigated by NMR, performing a quantitative
analysis of 24 previously selected metabolites. Significant
differences were found for beta-hydroxybutyrate, ketogenic
amino acids and glycine, all of which augmented in AF
patients when compared to control subjects, suggesting a
pathological role for ketone bodies. Metabolic profiles enable

more than 80% of patients at risk of AF at the time of
coronary artery bypass grafting to be classified, as a discor-
dant regulation of energy metabolites was found to precede
post-operative AF [50]. The effect of drug treatment on
apoE~/~ mice was investigated by NMR analysis of metabo-
lites in urine, showing allantoin to act as a marker for drug
treatment, and xanthine and ascorbate as possible markers
of plaque formation (both were elevated in untreated mice)
[22].

5. Conclusion

The application of metabolic analysis to cardiovascular
diseases is an emerging field [51], and at this incipient stage
it is not possible to clearly define a metabolic picture which
is responsible for CVD prediction and progression. Further
metabolomic investigation promises to improve researchers
and clinicians knowledge of these diseases in three critical
ways. Firstly, a complete description of the metabolites
altered in a disease will better define the pathophysiology of
the disease. Secondly, metabolic profiling will enhance the
feasibility of high-throughput patient screening to diagnose
the disease state or risk evaluation [52]. Indeed, the identifi-
cation of clinically relevant changes in circulating metabo-
lites that may be considered as potential new biomarkers
will also help with the evaluation of prognosis and will
contribute to the development of new therapeutic strategies.
Thirdly, metabolite profiling will enable the effects of
pharmacological treatments to be monitored, in particular,
assessing the individual’s response to a particular drug. In
contrast to genomics, metabolomics defines dynamic states
that reflect the actual status of an organism, which requires
the control of many variables (from an individual’s status
to metabolite degradation following sample collection).
Failure to do so may lead to the production of erro-
neous results and misleading conclusions. Minimal protocol-
specific differences can produce inconsistent findings, which
must be clearly overcome prior to proposing the use of a
biomarker to the scientific community. Similarly, the results
must be confirmed in a validation cohort composed by
a different set of samples than that used in the discovery
phase. Adequate follow-up studies must corroborate earlier
predictions, and adjustment for conventional risk factors
to assess significant contribution of a discovered metabolite
to current knowledge should be included. To date, there
have been considerable efforts in improving instrumentation
(e.g., mass spectrometry) and the analytical methods suitable
to complement these approaches (e.g., based on NMR),
resulting in an expansion of the metabolites with potential
roles in the development of atherosclerosis that can be
quantified. However, further research is still needed prior
to proposing an ideal platform for metabolite analysis
that can replace conventional CVD diagnosis in clinical
practice. With the growth of public metabolite databases,
further improvements in the sensitivity and selectivity of
analytical techniques and the development and routine use
of novel platforms of demonstrated potential, novel targets
are expected to be discovered in the near future.
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