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Electromyography (EMG) signals can be used for clinical/biomedical application and modern human computer interaction. EMG
signals acquire noise while traveling through tissue, inherent noise in electronics equipment, ambient noise, and so forth. ANN
approach is studied for reduction of noise in EMG signal. In this paper, it is shown that Focused Time-Lagged Recurrent Neural
Network (FTLRNN) can elegantly solve to reduce the noise from EMG signal. After rigorous computer simulations, authors
developed an optimal FTLRNN model, which removes the noise from the EMG signal. Results show that the proposed optimal
FTLRNN model has an MSE (Mean Square Error) as low as 0.000067 and 0.000048, correlation coefficient as high as 0.99950 and
0.99939 for noise signal and EMG signal, respectively, when validated on the test dataset. It is also noticed that the output of the
estimated FTLRNN model closely follows the real one. This network is indeed robust as EMG signal tolerates the noise variance
from 0.1 to 0.4 for uniform noise and 0.30 for Gaussian noise. It is clear that the training of the network is independent of specific
partitioning of dataset. It is seen that the performance of the proposed FTLRNN model clearly outperforms the best Multilayer
perceptron (MLP) and Radial Basis Function NN (RBF) models. The simple NN model such as the FTLRNN with single-hidden
layer can be employed to remove noise from EMG signal.

Copyright © 2009 S. N. Kale and S. V. Dudul. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Biomedical signal means a collective electrical signal
acquired from any organ that represents a physical variable
of interest. This signal is normally a function of time and is
describable in terms of its amplitude, frequency, and phase.
The EMG signal is a biomedical signal that measures elec-
trical currents generated in muscles during its contraction
representing neuromuscular activities. The nervous system
always controls the muscle activity (contraction/relaxation).
Hence, the EMG signal is a complicated signal, which is
controlled by the nervous system and is dependent on the
anatomical and physiological properties of muscles. EMG
signal acquires noise while traveling through different tissues.
Moreover, the EMG detector, particularly if it is at the
surface of the skin, collects signals from different motor
units at a time which may generate interaction of different
signals. Detection of EMG signals with powerful and advance
methodologies is becoming a very important requirement in

biomedical engineering. The main reason for the interest in
EMG signal analysis is in clinical diagnosis and biomedical
applications. So far, research and extensive efforts have been
made in the area, developing better algorithms, upgrading
existing methodologies, and improving detection techniques
to reduce noise and to acquire accurate EMG signals [1].
Noise removal from noisy EMG signal is a filtering problem.
Here the Neural Network model is trained to separate known
noise from EMG signal.

Literature survey [2–5] shows that Neural Networks
(NNs) have been efficiently used for nonlinear multivariable
function approximation. However, there is still enough scope
to choose an appropriate NN model so that the performance
measures are optimized to approach zero and unity for
mean square error (MSE) and correlation coefficient (r),
respectively. In function approximation, the goal is to find
the parameters of the best linear approximation to the
input and the desired response pairs. In nonlinear system
identification, conventional techniques such as least square
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approach, partial least square regression, principal compo-
nents regression, ordinary least square regression, regres-
sion tree, Levenberg Marquardt algorithm, and multivariate
adaptive regression splines algorithm generally do not work
reasonably if the underlying problem is overly complex [6–
8]. Therefore NN approach is worth considering for solving
system identification problem [9]. A typical problem of noise
removal in EMG signal is considered in this paper. This
benchmark data for noise removal in EMG signal is taken
from the companion CD of a book on neural network [10].
Data contains an electromyographic (EMG) signal and the
interference (60 Hz) noise picked from the power supply.
The two files are, respectively, “EMG with noise” and “noise”
only. The goal is to obtain back the EMG using adaptive
filtering techniques. The training file is used to train a neural
network for noise removal from EMG signal.

Optimal Focused Time Lag Recurrent Neural Network
(FTLRNN) is developed to remove noise effectively from
EMG signal. Other classes of NN configuration such as
Multilayer Perceptron Neural Network (MLP NN) and
Radial Basis Function (RBF) have also been compared for
such noise removal problem.

This paper deals with intelligent removal of noise from
the EMG signal using FTLRNN-based model.

2. EMG and Sources of Noise

EMG stands for electromyography. It is the study of signals.
EMG is sometimes referred to as myoelectric activity. Muscle
tissue conducts electrical potentials similar to the way nerves
do, and the name given to these electrical signals is the muscle
action potential. Surface EMG is a method of recording the
information present in these muscle action potentials. When
detecting and recording the EMG signal, there are two main
issues of concern that influence the fidelity of the signal.
The first is the signal-to-noise ratio. That is, the ratio of the
energy in the EMG signals to the energy in the noise signal. In
general, noise is defined as electrical signals that are not part
of the desired EMG signal. The other issue is the distortion
of the signal, meaning that the relative contribution of any
frequency component in the EMG signal should not be
altered. There are many applications for the use of EMG.
EMG is used clinically for the diagnosis of neurological
and neuromuscular problems. It is used diagnostically by
gait laboratories and by clinicians trained in the use of
biofeedback or ergonomic assessment. EMG is also used in
many types of research laboratories, including those involved
in biomechanics, motor control, neuromuscular physiology,
movement disorders, postural control, and physical therapy.

Electrical Noise and Factors Affecting EMG Signal. The
amplitude range of EMG signal is 0–10 mV (+5 to −5) prior
to amplification. EMG signals acquire noise while traveling
through different tissues. It is important to understand the
characteristics of the electrical noise. Electrical noise, which
will affect EMG signals, can be categorized into the following
types.

(1) Inherent Noise in Electronics Equipment. All electronics
equipments generate noise. This noise cannot be eliminated;
using high-quality electronic components can only reduce it.

(2) Ambient Noise. Electromagnetic radiation is the source
of this kind of noise. The surfaces of our bodies are constantly
inundated with electric-magnetic radiation, and it is virtually
impossible to avoid exposure to it on the surface of earth. The
ambient noise may have amplitude that is one to three orders
of magnitude greater than the EMG signal.

(3) Motion Artifact. Motion artifact causes irregularities in
the data. There are two main sources for motion artifact: (1)
electrode interface and (2) electrode cable. Motion artifact
can be reduced by proper design of the electronics circuitry
and set-up.

(4) Inherent Instability of Signal. The amplitude of EMG
is random in nature. EMG signal is affected by the firing
rate of the motor units, which, in most conditions, fire in
the frequency region of 0 to 20 Hz. This kind of noise is
considered as unwanted, and the removal of the noise is
important.

3. Performance Measures

Assessment of the performance of various neural networks
is done by visual inspection of EMG and noise signals from
the graph as well as from the optimal values of Mean Square
Error (MSE), and r (Correlation coefficient).

Mean Square Error (MSE). The formula for the mean square
error is

MSE =
∑P

j=0

∑N
i=0(di j − yi j)

2

NP
, (1)

where P = number of output processing elements, N =
number of exemplars in the dataset, yi j = network output for
exemplar i at processing element j, and di j = desired output
for exemplar i at processing element j.

Correlation Coefficient (r). By definition, the correlation
coefficient between a network output x and a desired output
d is

r =
∑

i(xi − x)(di − d)/N
√∑

i(di − d)2/N
√∑

i(xi − x)2/N
, (2)

where x = (1/N)
∑N

i=1xi and d = (1/N)
∑N

i=1di.
The correlation coefficient is confined to the range

[−1, 1]. When r = 1, there is a perfect positive linear
correlation between x and d, that is, they covary, which
means that they vary by the same amount.

4. Computer Simulation

Here a dataset is chosen that can be used in removal of noise
from EMG signal. There are 2000 training patterns. Training
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Table 1: EMG signal datasets used for NN-based models. Total number of samples = 2000.

(a) Datasets based on forward and reverse tagging and % variation

S.N. Dataset Tagging
% variation

(Train-CV-test)

1 Dataset1

Forward (training, cross validation, and testing)

10-15-75%

2 Dataset2 20-15-65%

3 Dataset3 30-15-55%

4 Dataset4 40-15-45%

5 Dataset5 50-15-35%

6 Dataset6 60-15-25%

7 Dataset7 70-15-15%

8 Dataset8 80-15-05%

9 Dataset9

Reverse (testing, cross validation, and training)

10-15-75%

10 Dataset10 20-15-65%

11 Dataset11 30-15-55%

12 Dataset12 40-15-45%

13 Dataset13 50-15-35%

14 Dataset14 60-15-25%

15 Dataset15 70-15-15%

16 Dataset16 80-15-05%

(b) Datasets based on multifold differential learning. Group I: (1–500 samples), Group II: (501–1000 samples), Group III: (1001–1500 samples), Group IV:
(1501–2000 samples)

Dataset Train on group Test on group Dataset Train on group Test on group

Dataset1 I II Dataset18 I + III II + IV

Dataset2 I III Dataset19 I + IV II

Dataset3 I IV Dataset20 I + IV III

Dataset4 II III Dataset21 I + IV II + III

Dataset5 II IV Dataset22 II + III I

Dataset6 II I Dataset23 II + III IV

Dataset7 III IV Dataset24 II + III I + IV

Dataset8 III I Dataset25 II + IV I

Dataset9 III II Dataset26 II + IV III

Dataset10 IV I Dataset27 II + IV I + III

Dataset11 IV II Dataset28 III + IV I

Dataset12 IV III Dataset29 III + IV II

Dataset13 I + II III Dataset30 III + IV I + II

Dataset14 I + II IV Dataset31 I + II + III IV

Dataset15 I + II III + IV Dataset32 II + III + IV I

Dataset16 I + III II Dataset33 III + IV + I II

Dataset17 I + III IV Dataset34 IV + I + II III

of the neural network should be independent of dataset.
Therefore different permutations and combinations of the
dataset producing many independent datasets are used for
training and testing of neural networks.

Table 1 depicts the various datasets on which the neural
networks are trained. Once the data is randomized, the
total samples are divided into three parts, namely, training,
cross validation, and testing samples. If the samples are
divided in the sequence of training, cross validation, and
testing, it is a forward tagging. On the other hand the

sequence of testing, cross validation, and then training
is termed as reverse tagging. Percentage of training and
testing samples are varied, and cross validation samples are
kept constant as shown in Table 1(a). Forward tagging and
reverse tagging of dataset give total 16 different datasets
to assess the performance of an estimated network model.
This dataset is also tested for multifold differential learning.
Multifold differential learning of neural network is carried
out on the dataset, that is, the total samples are divided
into four groups each containing 500 samples as given in
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Figure 1: A simple multilayer perceptron.
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Figure 2: Variation of average of minimum MSE for 5 runs versus
number of PEs in the first hidden layer.

Table 1(b). Sample numbers of each group is mentioned
in Table 1(b). All possible combinations are used to train
the neural network and assess the performance by testing.
There are total 34 datasets formed for differential learning as
described in Table 1(b). To assess the performance of neural
network skeptically, total 50 different datasets are used.
This is necessary because the estimated NN model should
consistently work on the different datasets. This also ensures
that the proposed NN model has truly learned meaningful
information from the dataset and is free from biases.

Evaluation of NN is done by a standard method in statis-
tics called independent validation where the available data are
divided into a training set, a cross validation (CV) set, and
a test set. The entire dataset is usually randomized first. The
training data is used to update the weights in the network.
The test data is then used to assess how well the network
has generalized. The learning and generalization ability of the
estimated NN model is assessed on the basis of performance
measures such as MSE, correlation coefficient r, and visual
inspection of desired and actual graphs of EMG signal.

The network has been trained at least 5 times starting
from different random initial weights so as to avoid local

Table 2: Variable parameters of MLP NN model.

S.N. Parameter Typical range
Optimal
parameter

1 Hidden layer 1 to 4 2

2 PE

H I-1 to 20
H II-1 to 10
H III-10
H IV-10

Hidden layer
I-15
Hidden layer
II-10

3 Learning rule

Momentum (Mom),
Conjugate gradient
(CG), Levenberg
Marquardt (LM), Quick
propagation (QP), Step,
Delta bar delta

Momentum

4
Transfer function
in output layer

Linear, Lineartanh, Tanh Tanh

Table 3: Number of hidden layer and r.

S.N. No. of hidden layer
Correlation coefficient

Noise EMG

1 1 0.76966 0.56711

2 2 0.77212 0.57113

3 3 0.77107 0.56936

4 4 0.76574 0.56861

minima. Neurodimension NeuroSolutions (version 5) is
specifically used for obtaining results. System with 512 MB
RAM, 40 GB hard disk, 2 MB cache, and 1.6 GHz clock is
used to carry out this simulation.

Various neural networks are used to compare the perfor-
mance, and FTLRNN is the best in removal of noise from
EMG signal.

4.1. MLP NN. MLP-based NN model is used in this study
because it has solid theoretical foundation [11]. MLPs are
feedforward neural networks trained with the standard back-
propagation algorithm [12]. They are supervised networks,
so they require a desired response to be trained. Figure 1
shows the architecture of MLP NN.

An exhaustive and careful experimental study has been
carried out to determine the optimal configuration of MLP
NN model. All possible variations such as number of
hidden layers, number of PEs (processing elements) in each
hidden layer, different transfer functions in the output layer,
and different supervised learning rules are investigated in
simulation.

Table 2 shows various parameters of the MLP NN model
which are varied for obtaining optimal parameters.

Supervised learning epochs = 1000, error threshold =
0.01, transfer function in hidden layer = tanh, number of PEs
in input layer = 1, and number of PEs in output layer = 2.

The number of hidden layers is varied from 1 to 4, and
performance measures of the MLP NN model are found
better for two hidden layers as shown in Table 3. With
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Figure 3: Variation of average of minimum MSE for 5 runs versus
number of PEs in the second hidden layer.
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Figure 4: Modeling capability of MLP NN on testing dataset for
EMG signal.

increase in number of hidden layers, the performance of the
network has not improved significantly.

It is found from Figures 2 and 3 that the optimal
performance of the model is obtained for 15 neurons in
the first hidden layer and 10 neurons in the second hidden
layer with regard to MSE minimum, r-correlation coefficient.
Figures 2 and 3 portray average MSE with respect to the
number of PEs in the first and second hidden layers,
respectively.

Figures 4 and 5 depict modeling capability of MLP NN
on test dataset which portrays desired output and actual
output of the MLP NN on test dataset. It is seen that actual
outputs of EMG signal and noise signal do not follow the
desired output closely. There has been a lot of deviations
between the output of the NN and the desired output.

For the datasets MLP NN model is trained for five
times. The performance measures such as MSE and r on
training dataset and testing dataset are obtained. Optimal
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Figure 5: Modeling capability of MLP NN on testing dataset for
EMG noise signal.
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Figure 6: MLP with an input layer of context PEs (focused
architecture).

Table 4: Number of hidden layers and r.

S.N. No. of hidden layer
Correlation coefficient

Noise EMG

1 1 0.99533 0.99471

2 2 0.98993 0.99302

performance is obtained when 80% of the entire dataset
is used for training, 15% for cross validation, and 5% for
testing. The correlation coefficient on test dataset is found as
high as 0.78113 and MSE = 0.02501 for EMG signal and for
noise signal r = 0.5843 and MSE = 0.02485.

4.2. Focused Time Lag Recurrent Neural Network (FTL-
RNN). Time-lagged recurrent networks (TLRNs) are MLPs
extended with short-term memory structures. Most real-
world data contains information in its time structure, that is,
how the data changes with time. TLRNs are the state of the
art in nonlinear time series prediction, system identification,
and temporal pattern classification.

Recurrent networks are neural networks with one or
more feedback loops. The TDNN memory structure is
simply a cascade of ideal delays (a delay of one sample).
The gamma memory is a cascade of leaky integrators. The
Laguaerre memory is slightly more sophisticated than the
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Table 5: Variable parameters of FTLRNN model.

S.N. Parameter Typical range Optimal value

1 Learning rule

Momentum, Conjugate
Gradient, Levenberg
Marquardt (LM), Quick
propagation (qp), step,
delta bar delta (dbd)

Momentum

2
Transfer function
in output layer

Linear, lineartanh, Tanh Linear

3
Memory
structure

TDNNAxon, Gamma,
Laguarre

Laguarre

4 Depth in samples 2 to 12 4

5
Length of
trajectory

10 to 60 50
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Figure 7: Variation of average of minimum MSE for 5 runs versus
number of PEs in the first hidden layer.

gamma memory in that it orthogonalizes the memory space.
This is useful when working with large memory kernels [10].

The input PEs of an MLP are replaced with a tap delay
line. It is called the focused time delay neural network
(TDNN). The topology is called focused because the mem-
ory is only at the input layer [13].

The delay line of the focused TDNN stores the past
samples of the input. The combination of the tap delay line
and the weights that connect the taps to the PEs of the first
hidden layer is simply linear combiners followed by a static
nonlinearity. The first layer of the focused TDNN is therefore
a filtering layer, with as many adaptive filters as PEs in the first
hidden layer.

The focused TDNN topology has been successfully used
in nonlinear system identification, time series prediction,
and temporal pattern recognition. Figure 6 shows archi-
tecture of FTLRNN. The focused topology of Figure 6 is
a recurrent neural network and the recurrency is local to
the PE. One of the advantages of locally recurrent neural
networks is that the stability of the system can be judged by
constraining the value of the local feedback parameters so
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Figure 8: Modeling capability of FTLRNN on testing dataset for
EMG signal.
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Figure 9: Modeling capability of FTLRNN on testing dataset for
EMG noise signal.

that the local PE is stable. If local stability is enforced, the
global system will be stable.

A thorough experimental study has been carried out
to determine optimal parameters of FTLRNN model. Here
the number of hidden layers is varied from 1 to 2, and
performance measures of the FTLRNN model are found
better for single hidden layer as shown in Table 4. With
increase in the number of hidden layers, the performance of
the network has not improved significantly.

Figure 7 portrays average MSE with respect to the
number of PEs in the first hidden layer. 27 neurons are
selected for optimal performance.

Table 5 shows various parameters of the FTLRNN model
which are varied for obtaining optimal parameters. For
momentum learning rule, the results are optimum. The
Momentum provides the gradient descent with some inertia,
so that it tends to move along a direction, that is, the average
estimate for down. The amount of inertia (i.e., how much
of the past to average over) is dictated by the momentum
parameter, ρ. The higher the momentum is, the more it
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Table 6: Selection of memory structure for optimal performance of FTLRNN model.

S.N. Memory structure
Mean square error Correlation coefficient

Noise EMG Noise EMG

1 TDNNAxon 0.000455 0.000308 0.99719 0.996754

2 Gamma 0.000301 0.000281 0.99827 0.997204

3 Laguarre 0.0002624 0.000280 0.998427 0.997305

Table 7: Selection of depth of samples for optimal performance of
FTLRNN model.

S.N.
Depth in Mean square error Correlation coefficient
samples Noise EMG Noise EMG

1 2 0.02982 0.02982 0.7709 0.5628

2 4 0.00024 0.00024 0.9985 0.9975

3 6 0.00037 0.00031 0.9977 0.9969

4 8 0.00031 0.00036 0.99806 0.9962

5 12 0.00047 0.00028 0.9972 0.9971
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Figure 10: Modeling capability of FTLRNN on training dataset.

Table 8: Selection of length of trajectory for optimal performance
of FTLRNN model.

S.N.
Length of Mean square error Correlation coefficient
trajectory Noise EMG Noise EMG

1 05 0.00023 0.000228 0.9986 0.9974

2 10 0.00024 0.000236 0.9985 0.9976

3 20 0.00024 0.00025 0.9985 0.9974

4 30 0.00024 0.00025 0.9985 0.9975

5 40 0.00023 0.00022 0.9985 0.9975

6 50 0.00023 0.00024 0.9985 0.9976

7 60 0.00024 0.00025 0.9984 0.9974

smoothes the gradient estimate and the less effect a single
change in the gradient has on the weight change. Linear
transfer function has optimal results.

Supervised learning epochs = 1000, error threshold =
0.01, transfer function in hidden layer = tanh, number of PEs
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Figure 11: Modeling capability of FTLRNN on training dataset.

Table 9: Variable parameters of RBF NN model.

S.N. Parameter Typical range
Optimal
parameter

1 Cluster centers 5 to 100 5

2
Unsupervised
learning rule

Conscience-full,
standard full

Conscience-full

3
Supervised
learning rule

Momentum, Conjugate
gradient, Levenberg
Marquardt, Quick
Propagation, Step, delta
bar delta

Levenberg
Marquardt

4 Metric
Euclidean, Dot Product,
Box car

Euclidean

5
Transfer
function in
output layer

Linear, lineartanh, Tanh Linear

in input layer = 1, number of PEs in hidden layer 1 = 27, and
number of PEs in output layer = 2.

For the various datasets, FTLRNN model is trained for
five times with different random initializations of connection
weights. The performance measures like MSE and r on
training dataset, cross validation dataset, and testing dataset
are obtained. Optimal performance is obtained for training
80%, cross validation 15%, and 5% testing. The correlation
coefficient on test dataset is found as 0.9984 and 0.9973 for
noise signal and EMG, respectively. MSE for EMG signal and
noise is obtained as 0.0002.

Table 6 depicts that the Laguarre memory structure leads
to the optimal performance. Laguarre is a local recurrent
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Table 10: Selection of unsupervised learning rule for RBF NN model.

S.N. Unsupervised learning rule
Mean square error Correlation coefficient

Noise EMG Noise EMG

1 Conscience full 0.02484 0.024993 0.7827 0.5825

2 Standard full 0.02954 0.02950 0.77338 0.5698

Table 11: Selection of competitive learning metric for RBF NN
model.

S.N. Metric
Mean square error Correlation coefficient

Noise EMG Noise EMG

1 Euclidean 0.02484 0.024993 0.7827 0.5825

2 Dot product 0.02985 0.02967 0.7713 0.5664

3 Box car 0.02955 0.029496 0.77329 0.56994

Input layer Hidden layer

Output layerX1

Xp

G

G

G

G

W1

WL

Σ
F(X)

Figure 12: Radial basis function (RBF) network.

memory structure. It has internal feedback loops with an
adaptable weight. The Laguerre memory is slightly more
sophisticated than the gamma memory in that it orthog-
onalizes the memory space. This is useful when working
with large memory kernels. The Laguarre memory is based
on the Laguarre functions. The Laguarre functions are an
orthogonal set of functions that are built from a low-pass
filter followed by a cascade of all pass functions.

Depth of samples parameter (D) is used to compute the
number of taps (T) contained within memory structure of
the network. Optimal value of D is 4 as shown in Table 7.

The trajectory length corresponds to the samples setting
within the dynamic controller. It specifies how many samples
to read before backpropagation occurs. Table 8 shows the
length of trajectory selected as 50 for optimal performance.

Figures 8 and 9 display modeling capability of FTLRNN,
which shows desired output and actual output of the
FTLRNN on test dataset for EMG and noise, respectively. It
is seen that the output of the NN follows the desired output
very closely.

Figures 10 and 11 display modeling capability of FTL-
RNN, which shows desired output and actual output of
the FTLRNN on training dataset for signal and noise,
respectively. It is seen that actual output follows the desired
output closely.

4.3. Radial Basis Function (RBF). RBF was first introduced
in the solution of the real multivariate interpolation problem
[14, 15]. The construction of an RBF network, in its most
basic form, involves three layers. The input layer is made up
of source nodes (sensory units) that connect the network to
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Figure 13: Variation of correlation coefficient for optimal number
of cluster centers for RBF NN model.
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Figure 14: Modeling capability of RBF on test dataset of EMG
signal.

its environment. The second layer, the only hidden layer in
the network, applies a nonlinear transformation from the
input space to the hidden space. The output layer is linear,
supplying the response of the network to the activation
pattern (signal) applied to the input layer [16]. Architecture
of RBF NN model is shown in Figure 12.

A rigorous experimental study has been undertaken to
determine optimal performance of RBF NN model. The
variable parameters of RBF NN are listed in Table 9.

From Figure 13, it is seen that the optimal performance
is obtained with 5 cluster centers.
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Table 12: Selection of transfer function for various NN models on test dataset.

S.N. NN Signal
Transfer function

Tanh Linear tanh Linear

MSE r MSE r MSE r

1 MLP
N 0.02501 0.78114 0.02557 0.77557 0.02521 0.7792

EMG 0.02485 0.58433 0.0251 0.5779 0.02513 0.5781

2 FTLRNN
N 0.00027 0.99797 0.00015 0.99882 0.000067 0.99843

EMG 0.00023 0.99695 0.00013 0.9981 0.000048 0.99731

3 RBF
N 0.2473 0.78385 0.02482 0.78297 0.02477 0.7839

EMG 0.02481 0.5852 0.02481 0.5851 0.02480 0.5854

Table 13: Selection of optimal learning rule for various NN models on test dataset.

S.N. NN Signal
Learning rule

Momentum Conjugate gradient Levenberg Marquardt Quick propagation Step Delta- bar- delta

1 MLP
Noise 0.7786 0.76672 0.77414 0.77388 0.77365 0.76857

EMG 0.5840 0.57205 0.57182 0.56866 0.57026 0.57125

2 FTLRNN
Noise 0.99843 0.99617 0.99781 0.99806 0.99842 0.99792

EMG 0.99731 0.99572 0.99684 0.99756 0.99695 0.99787

3 RBF
Noise 0.77314 0.7737 0.77382 0.77335 0.77335 0.7724

EMG 0.57059 0.5712 0.57186 0.5718 0.57184 0.5711

Table 14: Regression performance of NN models on EMG noise signal.

S.N. NN model

Performance measures

Training dataset CV dataset Test dataset

MSE r MSE r MSE r

1 MLP 0.02688 0.77322 0.03070 0.77021 0.02501 0.78114

2 FTLRNN 0.000254 0.99809 0.00201 0.98701 0.000067 0.99950

3 RBF 0.02664 0.77544 0.03036 0.77309 0.024704 0.784138

Table 15: Regression performance of NN models on EMG signal.

S.N. NN model

Performance measures

Training dataset CV dataset Test dataset

MSE r MSE r MSE r

1 MLP 0.026537 0.57309 0.03041 0.56829 0.02485 0.58433

2 FTLRNN 0.00024 0.99692 0.00216 0.97584 0.000048 0.99939

3 RBF 0.02654 0.57122 0.03037 0.56915 0.024817 0.585088

Table 16: Comparison of all the NN architectures on test dataset.

NN model Transfer function Learning rule Mean square error
MSE

Correlation
coefficient r

Epochs
Time elapsed/
epoch/exemplar
in microseconds

% error

MLP
(1-15-10-2)

Tanh Momentum 0.02501 (noise)
0.02482(EMG)

0.78114 (noise)
0.58433 (EMG)

1000 19.16 253

FTLRNN
(1-27-2)

Linear Momentum 0.000067 (noise)
0.000048 (EMG)

0.99950 (noise)
0.99939 (EMG)

1000 14 10

RBF
(CC-05)

Linear LM 0.02470 (noise)
0.02482 (EMG)

0.78414 (noise)
0.58509 (EMG)

1000 8.3 293
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Figure 15: Modeling capability of RBF on test dataset of EMG noise
signal.
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Figure 16: Effect of noise on EMG signal.

Tables 10 and 11 depicts the optimal performance of RBF
NN. Conscience full-unsupervised learning rule and
Euclidean competitive learning metric are selected for
optimal performance.

Figures 14 and 15 give modeling capability of RBFNN,
which show desired output and actual output of the RBF NN
on test dataset for EMG signal. It is seen that actual output
follows the desired output distantly.

5. Results and Comparison

Table 12 depicts the performance parameters for variation
in learning rules for MLP NN, FTLRNN, and RBFNN on
test dataset. From Table 12, it is observed that focused time-
lagged recurrent neural network gives optimal performance
for linear transfer function.

Table 13 depicts the selection of learning rule for optimal
performance of each NN. In FTLRNN momentum learning
rule is selected for the best performance.

Tables 14 and 15 display the regression performance of
NN models. It shows performance parameters, MSE and r
on training, cross validation, and test dataset for MLP NN,
FTLRNN, and RBF NN for noise and EMG signal. From
the observation, it clear that for FTLRNN model the lowest
MSE and the highest correlation coefficient are obtained.
FTLRNN is the best neural network to remove noise from
EMG signal.

Table 16 displays the comparison of the MLP NN,
FTLRNN, and RBF NN. For all the three NNs, the number
of epochs is kept 1000. MSE for FTLRNN model is 0.0027
times less than that of MLP and RBF NN models. Correlation
coefficient for FTLRNN is 1.71 times higher than that of
MLP and RBF NN models. Percentage error for FTLRNN
is minimum. It is 0.04 times and 0.034 times smaller than
MLP and RBF NN, respectively. Time elapsed per epoch
per exemplar for FTLRNN is 0.73 times and 1.67 times to
that of MLP and RBF NN, respectively. As compared to
RBF NN, FTLRNN model requires more time for training
but from MSE and r, and by visual inspection of modeling
characteristics, the FTLRNN model is definitely superior to
other two NNs.

Effect of Noise on EMG Signal. The estimated MLP NN,
FTLRNN, and RBF NN are checked for their robustness by
adding uniform and Gaussian noise in input as well as in
output of NNs. Figure 16 portrays the performance of NNs
with uniform and Gaussian noise. Noise variance is varied
from 0.01 to 0.4. In FTLRNN uniform noise tolerance for
EMG signal 0.4-noise variance is obtained whereas when
Gaussian noise is introduced, the noise variance 0.3 is
detected. In MLP NN and RBF NN as noise variance is
increased, the performance parameters are reduced to very
low values.

Learning Ability of FTLRNN on Different Data Partitions.
The learning of NN models for independent of datasets is
tested. MLP, FTLRNN, and RBF NN models are trained on
various datasets as shown in Table 1(a) (forward tagging
and reverse tagging). Figure 17 displays the performance of
these NN models for filtered EMG signal. Performance of
FTLRNN-based model is found to be almost the same for
all the datasets as compared to MLP and RBF NN models.

Multifold Differential Learning. The total samples are
divided into four groups each containing 500 samples as
described in Table 1(b). Performance of FTLRNN, MLP NN,
and RBF NN models is displayed in Figure 18. It is observed
that the performance FTLRNN-based model is consistent. It
is also observed that correlation coefficient is the highest for
FTLRNN for all datasets.

6. Conclusion

EMG signal carries valuable information regarding the nerve
system. Noise removal in EMG signal using ANN is studied
in this paper. Authors demonstrate that FTLRNN-based filter
elegantly removes noise from the EMG signal. Compact
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Performance of NN models on EMG signal
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FTLRNN with only one hidden layer having architecture
(1-27-2) is able to remove noise with reasonable accuracy.
When the performance of MLP and RBF neural network-
based models is carefully examined for dataset, FTLRNN
based model has clearly outperformed its MLP NN and
RBF NN counterparts with respect to the performance
measures such as MSE and r as well as the visual inspection
of graphs of actual and desired output of filtered EMG
signal. For FTLRNN-based filter correlation coefficient is
obtained as high as 0.99939, and MSE is found to be as
low as 0.000048 for filtered EMG signal. Also for noise
signal the correlation coefficient and MSE are optimally
found as 0.99950 and 0.000067, respectively. Moreover, the
actual output of the estimated FTLRNN model follows the
desired output more closely than that of other NN models.
In case of learning ability of FTLRNN-based model, the
performance parameters are found consistent, and hence
learning is almost independent of specific partitioning of
the dataset. It is also seen that the time elapsed per epoch
per exemplar required to train the network is considerably
low for FTLRNN-based model. The least percentage error

equal to 10% for FTLRNN on test dataset is obtained. It
is also observed that when uniform and Gaussian noise is
introduced in EMG signal, the network sustains reasonable
level of noise. For uniform noise, 100% tolerance is observed,
and for Gaussian noise, it is 75%. This confirms the noise
immunity of the proposed FTLRNN-based model. The
estimated FTLRNN is a robust network developed to detect
EMG signal from noisy EMG signal.

Proposed FTLRNN-based model with Laguarre memory
is able to filter noise from a typical EMG signal contaminated
by noise.
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