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Abstract
Current evidence indicates that the ability of physical activity to sustain a normal phenotype of
arterial endothelial cells (ECs) plays a central role in the beneficial effects of exercise (Ex) on
atherosclerotic disease. Here we evaluate the strength of evidence that shear stress (SS) and/or
circumferential wall stress (stretch) are the primary signals, produced by bouts of Ex, that signal
altered gene expression in arterial ECs, thereby resulting in a less atherogenic EC phenotype.
Current literature indicates that SS is a signal for expression of antiatherogenic genes in cultured
ECs, in ECs of isolated arteries, and in ECs of arteries in intact animals. Furthermore, SS levels in
the arteries of humans during Ex are in the range that produces beneficial changes. In contrast,
complex flow profiles within recirculation zones and/or oscillatory flow patterns can cause
proatherogenic gene expression in ECs. In vivo evidence indicates that Ex decreases oscillatory
flow/SS in some portions of the arterial tree but may increase oscillatory flow in other areas of the
arterial tree. Circumferential wall stress can increase expression of some beneficial EC genes as
well, but circumferential wall stress also increases production of reactive oxygen species and
increases the expression of adhesion factors and other proatherogenic genes. Interactions of
arterial pressure and fluid SS play an important role in arterial vascular health and likely
contribute to how Ex bouts signal changes in EC gene expression. It is also clear that other local
and circulating factors interact with these hemodynamic signals during Ex to produce the healthy
arterial EC phenotype. We conclude that available evidence suggests that exercise signals
formation of beneficial endothelial cell phenotype at least in part through changes in SS and wall
stretch in the arteries.
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Atherosclerotic Cardiovascular disease is responsible for over 19 million deaths annually
worldwide and coronary artery disease (CAD) remains the leading cause of death among
cardiovascular diseases (93). Physical inactivity is recognized as a risk factor for the
development of atherosclerotic CAD, and exercise training programs have been shown to be
effective in prevention and treatment of CAD (7, 26, 29, 34, 88, 89, 94, 95, 102, 105, 129).
Given these facts, there is growing interest in determining the mechanisms whereby physical
activity and exercise produce beneficial effects in prevention and treatment of
atherosclerosis. The primary mechanisms that underlie the effectiveness of physical activity
in prevention and/or treatment of CAD are now being examined on several fronts but have
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not been fully established. Current evidence indicates that the ability of physical activity to
sustain a normal phenotype of arterial endothelial cells plays a central role in the beneficial
effects of physical activity (47). The purpose of this paper is to evaluate the strength of
evidence that shear stress on the artery wall and/or circumferential wall stress (stretch on the
artery wall) (Fig. 1) are the primary signals, produced by bouts of exercise, that signal
altered gene expression in arterial endothelial cells, thereby resulting in a less atherogenic
endothelial cell phenotype. There are several excellent, recent reviews outlining the general
and specific effects of shear stress and stretch on endothelial cells (16, 51, 115, 136). Here
we focus on the importance of these two hemodynamic signals in exercise training effects
on endothelial cell phenotype. Available literature indicates that endothelial cell phenotype
in vivo is determined via an intricate orchestration of many signals that interact with shear
stress and cyclic strain in determining endothelial cell gene expression. The central
hypothesis of our discussion is that shear stress and stretch, produced by exercise, modulate
endothelial cell phenotype in a net antiatherogenic manner.

Before discussing the effects of these hemodynamic forces on endothelial cell phenotype,
we first summarize evidence demonstrating the importance of normal endothelial phenotype
in artery health and of changes in endothelial cell phenotype associated with development
and progression of atherosclerosis. Next, we review evidence that the beneficial effects of
physical activity on atherosclerosis and CAD are the result of exercise training-induced
antiatherogenic endothelial cell phenotype. With this background we then discuss evidence
in the literature that supports the hypothesis that shear stress and/or circumferential wall
stress (stretch) are important signals responsible for exercise-induced expression of
antiatherogenic genes in endothelial cells. First we discuss evidence that shear stress can
signal antiatherogenic gene expression in cultured endothelial cells. We then summarize
evidence indicating that in vivo shear stresses produced in the human arterial tree during
exercise are in the range known to cause these beneficial effects on gene expression in
endothelial cells. We also discuss how recirculating flow patterns and oscillatory flow can
have deleterious effects on endothelial cell phenotype. After the discussion of shear stress
we consider evidence that circumferential stress on the walls of arteries can signal
antiatherogenic gene expression in arterial endothelial cells. Finally, we evaluate evidence
that the interaction of these hemodynamic signals, as occurs in vivo, is critical in producing
the antiatherogenic phenotype in endothelium of arteries of physically active subjects.

Importance of Endothelial Cell Phenotype in Artery Health
It is generally accepted that an early event in the pathogenesis of atherosclerosis is
endothelial cell dysfunction. Endothelial cell dysfunction can be characterized by one or
more of the following features: 1) reduced endothelium-mediated vasodilation, 2) enhanced
endothelial cell turnover, 3) increased expression of adhesion molecules and other
inflammatory genes of endothelial cells, 4) increased oxidant stress, and 5) increased
permeability characteristics of the endothelial barrier. These changes in endothelial function
represent the change in endothelial cell phenotype that, in this paper, we will refer to as
proatherogenic phenotype.

Current evidence indicates that endothelial dysfunction is present prior to and throughout all
stages of atherosclerosis, suggesting that the change of endothelial cell phenotype from
normal to proatherogenic plays a key role in initiating atherosclerosis and in the
development of atherosclerosis (20, 27, 32, 77, 130–132). Indeed, it has been proposed that
decreased endothelium-dependent dilation and/or nitric oxide (NO) bioavailability are key
components of the proatherogenic endothelial cell phenotype as one develops this disease.
The progressive atherosclerotic process involving endothelial cell-leukocyte adhesion and
transmigration, vessel wall inflammation, lipid accumulation/foam cell formation, and
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conversion to the synthetic smooth muscle cell phenotype has been reviewed in detail
previously (26, 35, 74, 93, 117, 118). Accumulating evidence demonstrates, however, that
the progression of atherosclerosis and CAD can be slowed, stopped, or even reversed by
various interventions, including regular physical activity, and that these effects are
accompanied by improved endothelium-dependent vasodilation and/or NO bioavailability
(48, 117, 118).

Several studies have examined the effects of exercise training in patients with advanced
atherosclerotic CAD (37, 38, 47, 49, 101). For example, Hambrecht and colleagues (49)
reported that 4 wk of exercise training resulted in improved endothelium-dependent dilation
in conduit arteries (Fig. 2A) and resistance arteries/arterioles (Fig. 2B) in CAD patients. In
conduit arteries intracoronary infusion of acetylcholine (ACh) produced less constriction
after 4 wk of exercise training and exercise training increased ACh-induced dilation in the
coronary microcirculation as shown by measures of total coronary blood flow obtained with
a Doppler wire in the coronary artery (Fig. 2B) (49). Lifestyle changes, including increased
physical activity, have also been reported to decrease the rate of progression of CAD and/or
reverse CAD in patients (38, 48, 101). In summary, research over the past few years
provides substantial and increasing evidence that these beneficial effects of exercise are the
result of effects of exercise on endothelial cells (75, 80, 90).

Exercise Training Produces Antiatherogenic Endothelial Cell Phenotype in
Atherosclerotic Arteries

The balance of proatherogenic and antiatherogenic factors in artery tissue determine whether
or not areas of lipid-laden foam cells in the intima of the artery develop into atherosclerotic
lesions (35, 75, 117, 118). As outlined above, the proatherogenic phenotype in arterial
endothelial cells is characterized by reduced endothelium-dependent dilation (i.e.,
endothelial dysfunction), decreased expression of enzymes involved in endothelial cell
signaling pathways (i.e., pathways for producing NO, endothelium-derived hyperpolarizing
factor (EDHF), and prostacyclin), increased expression of adhesion factors, inflammatory
mediators, increased oxidative stress, and increased expression of other atherogenic genes
(51, 75, 131, 132). Hypercholesterolemia has been reported to cause signs of proatherogenic
endothelial cell phenotype (decreased endothelium-dependent relaxation) in conduit arteries
of humans (8, 9), monkeys (52, 76), and pigs (6, 17, 63, 113, 114, 124, 139, 140). In
addition, the established risk factors (i.e., hypertension, diabetes, smoking, obesity, etc.) also
cause signs of proatherogenic endothelial cell phenotype and decreased endothelium
dependent relaxation (51, 75, 131, 132). A growing body of evidence indicates that
disruption of the NO synthase (NOS) pathway (26, 86, 95) and/or reduced bioavailability of
NO are important components of the proatherogenic endothelial cell phenotype (75, 131,
132).

Sustained physical activity has been shown to improve or maintain normal endothelial
function in peripheral arteries (57, 68, 80, 84, 90, 119, 140) and coronary arteries (91, 104,
134) and to have similar effects in the presence of vascular disease (47, 124, 139). This
improved endothelial function produced by exercise appears to be partially the result of
changes in regulation of the endothelial NOS (eNOS) pathway (68, 71, 73, 91, 139) that
involve increased expression of eNOS protein (47, 72) and activation by phosphorylation of
eNOS serine 1177 by Akt (47). It is important to emphasize that in the key studies of
Hambrecht and colleagues (47, 49) as well as studies in experimental animals (68, 71, 73,
91, 139) outlined above, the increased expression and activity of eNOS was associated with
improved endothelial function. Other signs of an antiatherogenic endothelial cell phenotype
induced by increased physical activity include increased expression and activity of
superoxide dismutases (SOD) (31, 110, 111) and of catalase (40) and decreased oxidative
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stress (75). These changes would serve to increase NO bioavailability by reducing reactive
oxygen species (ROS) that catabolize NO to peroxynitrite leading to the formation of
nitrotyrosine (51, 75, 110). Work examining the effects of exercise training on the
development of atherosclerosis in rabbit aortas demonstrated that exercise training reduces
atherosclerosis and improves endothelial function and phenotype as shown by decreased
expression of adhesion molecules (e.g., P-selectin, VCAM-1) as well as inflammatory
markers such as MCP-1 (16) and inducible NOS (iNOS) (143, 144). The opposing effects of
exercise and hypercholesterolemia on eNOS expression, NO bioavailability, and endothelial
function in arteries are consistent with the hypothesis that exercise has its beneficial effects
through modulation of endothelial gene expression.

Thus there is substantial epidemiological and clinical evidence indicating that exercise
training has beneficial effects in prevention and treatment of CAD (75) and, as discussed
above, that these effects are associated with changes in endothelial cell phenotype. As
shown in Fig. 3, we interpret currently available data as support for the hypothesis that the
effects of exercise on expression of endothelial genes making the cells antiatherogenic
(reflected as improvement of endothelial phenotype) represents a major mechanism whereby
exercise limits or reverses atherosclerosis. The preponderance of evidence in this regard
supports the widely held contention that the exercise related signal for antiatherogenic
endothelial gene expression is increased shear stress produced by the increased cardiac
output and regional blood flows required to provide oxygen to active cardiac and skeletal
muscle during exercise (75). Locomotory exercise at intensities that produce maximal levels
of oxygen consumption is associated with dramatic stress on the cardiovascular system. The
demands for muscle blood flow cause dramatic increases in cardiac output (5–6 l/min to 25
l/min) and increases in shear stress, produced by movement of blood along the walls of the
arteries. Also, high-intensity exercise increases stretch on the artery walls associated with
increases in systolic arterial pressures and increases in heart rate that alter the magnitude and
frequency of systolic stretch. Because of the magnitude of these hemodynamic effects of
exercise on the conduit arteries, many have proposed that the beneficial effects of exercise
on endothelial phenotype are the result of these hemodynamic, mechanical signals (36, 75).

Shear Stress as a Signal for Altered Endothelial Cell Phenotype
Regular exposure to increased “shear stress” on endothelial cells that results from increases
in blood flow during bouts of exercise is considered by many investigators in this field to be
the primary signal for exercise training-induced adaptations of endothelial function and
phenotype (50, 87, 92, 112). Acute changes in shear stress on the wall of arteries are a well-
known signal for flow-induced vasodilation (62, 65, 66, 109). Wall shear stress is increased
by an increase in blood flow (Q̇) as described by the following equation: 
(where SS is shear stress, η is viscosity, and Ri is internal radius of the artery).

Accordingly, at a given vessel radius, when flow increases, shear stress at the vessel wall
also increases (Fig. 1). Acutely, flow-induced dilation of the artery increases radius and
thereby returns shear stress toward normal levels. It appears that substances that signal
remodeling and altered phenotype of endothelial and coronary smooth muscle cells are also
released in response to increased shear stress (50, 75, 77).

There is a growing body of evidence that increased shear stress is a signal for increased
eNOS, decreased endothelin-1 (ET-1) and decreased VCAM-1 gene expression in
endothelial cells. Early studies involving cultured endothelial cells suggested that this may
underlie training-induced increases in endothelium-dependent vasodilation. In 1992,
Harrison and colleagues (96) reported that increases in eNOS mRNA and eNOS protein
were observed when cultured endothelial cells were exposed to 24 h of a sustained increase
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in shear stress. These investigators subsequently demonstrated that as little as 3 h of
increased shear stress promoted increased eNOS gene transcription (125, 127, 128) and that
eNOS mRNA expression exhibited a dose-response relationship with shear. These findings
were later confirmed by other investigators (97, 107). Several intracellular signaling
mechanisms have been identified that mediate increased transcription of the eNOS gene in
endothelial cells when exposed to shear stress (51). These mechanisms include G proteins
(82), Ca2+ (82), and c-Src (21, 22, 51). c-Src is a proto-oncogene product that acts as an
intracellular signaling molecule via its tyrosine kinase activity. In addition to an increase in
transcription of the eNOS gene, exercise training may lead to elevated eNOS mRNA levels
via posttranscriptional mechanisms. One such mechanism is increased mRNA stability as
shown in Fig. 4. Recent work by Harrison and colleagues (51) has shown that cultured
endothelial cells exhibit increased poly(A) tail length in response to shear stress, inferring a
prolonged half-life on eNOS mRNA.

Recent evidence obtained with chip array analysis indicates that “… mean shear stress
significantly affects the expression of about 3,000 endothelial cell genes” (53). Space does
not allow us to discuss all the endothelial cell genes for which shear stress has been shown
to influence expression. For the remainder of this discussion we focus on expression of
eNOS and SODs as markers of an antiatherogenic endothelial phenotype and on expression
of ET-1, adhesion molecules (VCAM-1, ICAM-1, selectins), and ROS as markers of a
proatherogenic endothelial cell phenotype. Shear stress has been demonstrated to signal
increased expression of antioxidant genes (96, 97, 107), increased production of prostacyclin
(30, 39, 147), and increased expression of COX-1 and PGI2 synthase (98) in cultured
endothelial cells, in addition to increased expression of eNOS. Also, increased shear stress
in isolated perfused coronary arterioles produced increased eNOS and SOD-1 expression,
demonstrating that it is not just cultured endothelial cells that exhibit these effects of
increased shear stress (138). There is limited evidence from in vivo experiments evaluating
the effects of shear stress on endothelial phenotype. There is evidence that chronic increases
in blood flow produced by arteriovenous fistulas in dogs result in increased endothelium
dependent relaxation, decreased production of endothelin and altered vasomotor responses
to endothelin (87). Also, in rats arteriovenous fistulas have been reported to cause increased
eNOS activity, mRNA levels, and protein content (92). Although the results of these
experiments support the hypothesis that shear stress may signal antiatherogenic endothelial
cell phenotype in vivo, they did not evaluate the effect of shear stress on other anti- or
proatherogenic genes.

As summarized above, shear stress has been shown to produce increases in eNOS
expression in cultured endothelial cells, in a dose-related manner, across the range of shear
stress from 4 to 15 dyn/cm2 (128). Although it is clear that mean wall shear stress levels are
not uniform in the arterial tree of mammals (11), recent results indicate that shear stress
levels are generally in the range of 1 to 15 dyn/cm2 in human arteries. Areas prone to
atherosclerosis in the arterial circulation generally exhibit low shear stress that can be caused
by low velocity of laminar flow due to low blood flow levels and/or secondary recirculating
flow patterns (separation, reattachment, and recirculation) around branch points and distal to
stenoses (136). During exercise both causes of low shear in arteries appear to be decreased.
For example, MR imaging allows measurement of shear stress in human arteries at rest and
during exercise (12, 25, 122) and indicate that at rest, shear stress is in the range of 1 to 2
dyn/cm2 in the human abdominal aorta and increases to an average of 7 to 20 dyn/cm2

during moderate exercise (122). Also, Cheng et al. (11) report that review of the literature
indicates that in nonatherosclerotic human arteries mean wall shear stress levels are in the
range of 2 to 15 dyn/cm2 and that wall shear stress is inversely related to the diameter of the
artery. Thus the magnitude of shear stress in humans during exercise spans the range of
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values that produce antiatherogenic endothelial gene expression in cultured cells, suggesting
that shear stress could be an exercise-induced signal in humans and large mammals.

The effects of body size on cardiovascular hemodynamics should be considered as one
evaluates available literature relative to the magnitude of shear stress produced in the
arteries of the mammal. For example, in contrast to the values of shear stress in the aorta of
humans outlined above, values of shear stress are much greater in the aortas of rats and
mice. Greve et al. (45) report that shear stress values range between 60 and 120 dyn/cm2 in
rodent aortas. Also, Cheng et al. (11) report that average mean wall shear stress levels in the
common carotid artery of small rodents (rat and mouse) are in the range of 50 to 70 dyn/cm2

whereas larger mammals (human and dog) are in the range of 10 to 20 dyn/cm2. Given these
observations, exercise-induced changes in shear stress may have a relatively different effect
on endothelium in rodents than in arteries of large mammals.

Considering effects of exercise on shear stress, it is important to remember that increases in
blood flow do not necessarily produce increased shear stress if radius of the artery also
increases. This may explain some reports in the literature of no increase in eNOS expression
in some arteries after exercise training (58, 83, 99, 100, 103).

Another important effect of exercise on shear stress may be that exercise can influence the
frequency and magnitude of pulsations in flow (unidirectional) and/or oscillatory flow
(antegrade and retrograde flow) and resulting shear stresses. It is well known that under
some circumstances coronary blood flow can be retrograde and that retrograde flow also
occurs in other areas of the cardiovascular system (12, 13, 43, 122). Oscillatory shear stress,
as occurs with retrograde and ante-grade flow, has been reported to produce the opposite
effects on expression of many endothelial genes as does unidirectional shear stress (46). For
example, unidirectional shear stress decreases expression of ET-1 (64, 81) and VCAM-1
(53) whereas oscillatory shear stress produces increased expression of ET-1 (147), increases
expression of adhesion molecules (i.e., VCAM-1) (10, 53), decreases eNOS expression
(even below zero shear stress levels) (55), increases expression of enzymes that produce
ROS (i.e., NADPH oxidase) (23, 55), and increases the release of superoxide (85). As
summarized in Table 1, current literature clearly demonstrates that oscillatory shear stress
produces an increased expression of proatherogenic genes in cultured endothelial cells and a
decrease in antiatherogenic genes (51).

The effects of exercise on oscillatory flow and shear stress appear to be heterogeneous in
different segments of the arterial tree. For example, in the human aorta, available
information indicates that exercise decreases oscillatory flow and shear stress as total shear
increases (122). Indeed, in human subjects, mild exercise was reported to abolish retrograde
flow and shear in the supraceliac and infrarenal segments of the abdominal aorta (12). This
is important because, whereas both oscillatory and steady shear stress stimulate increased
NO production and eNOS expression in cultured cells, oscillatory shear stress produces
substantial increases in the production of ROS whereas steady shear stress does not (51, 85).
The effects of exercise on oscillatory flow in conduit arteries that perfuse active skeletal
muscle are very complicated because exercise effects are dependent on interactions between
the cardiac cycle and skeletal muscle contractions. For instance, Lutjemeier et al. (78)
demonstrated that the amount of antegrade and retrograde blood flow during single-leg knee
extension exercise was dependent on the point in the cardiac cycle where muscle contraction
was initiated. Blood flow became oscillatory during contractions as the contraction would
impede flow followed by augmented flow during skeletal muscle relaxation. As a result of
these interactions of different combinations of timing of cardiac cycle and muscle
contraction, blood flow patterns vary substantially during rhythmic exercise (78). Available
evidence indicates that when going from rest to exercise antegrade flow increases to a
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greater extent than retrograde flow in arteries perfusing exercising skeletal muscle. The
effects of exercise on oscillatory flow in conduit arteries that are not providing blood flow to
exercising muscle tissue are also complex. For example, exercise has been reported to
increase retrograde flow in the brachial arteries of humans performing leg exercise (42), in
contrast to the decrease in oscillatory shear rate produced by exercise in the abdominal aorta.

Currently literature also suggests that oscillatory flow and shear stress may have different
effects on endothelium in vivo than those observed in cell culture experiments (Table 1). For
example, it has been reported that leg exercise produces increased blood flow and increased
contribution of NOS generated NO release in brachial arteries of humans (42–44). Green et
al. (44) demonstrated that leg cycling exercise produced oscillatory, antegrade/retrograde,
blood flow patterns in the brachial artery and, importantly, that these conditions were
associated with a larger contribution of NOS generated NO release from the brachial
circulation. Green et al. concluded that these results may suggest an important role of
oscillatory shear stress-mediated release of NO from the endothelium of the brachial
circulation during leg exercise. On the basis of the literature summarized above, it is
reasonable to propose that repetitive enhancement of NO production by brachial artery
endothelial cells produced by leg exercise training would lead to an upregulation of eNOS
expression, i.e., an antiatherogenic endothelial cell phenotype. However, at this time it is not
possible to establish for sure that the increased NO production seen under these conditions
in the arm vasculature is the result of the oscillatory shear, as proposed, or due to other
stimuli in the arms during leg exercise, i.e., systemic effects of exercise on endothelial cell
phenotype. Therefore, it is important that future work determine whether the increase in NO
production in the arm, reported to occur during leg exercise, is evidence that oscillatory
shear stress in the arm vasculature is a signaling mechanism underlying production of an
antiatherogenic endothelial cell phenotype. More work is needed to understand these
hemodynamic interactions and to pinpoint the impact of oscillatory flow and shear on
endothelial cell phenotype in different arteries in vivo.

In summary, review of the current literature indicates that shear stress produces increased
expression of antiatherogenic genes and decreased expression of proatherogenic genes in
cultured endothelial cells and in endothelial cells of arteries in vivo. Also, the magnitudes of
shear stress required for these alterations in gene expression are in the range of shear stress
values reported in arteries during moderate levels of exercise in conscious humans. These
observations indicate that shear stress during exercise is sufficient to induce antiatherogenic
gene expression and are consistent with the hypothesis that shear stress is an important
signal for exercise induced changes in endothelial cell gene expression. In cultured
endothelial cells, oscillatory shear stress produces proatherogenic gene expression.
Conversely, exercise appears to reduce retrograde flow in some arteries, thus decreasing
oscillatory shear stress signals, whereas exercise increases retrograde flow in other arteries.
More focused research in humans is needed to establish the importance of oscillatory flow in
the effects of exercise on endothelial cell phenotype. Despite this current limitation in our
knowledge, we conclude that available evidence strongly supports the hypothesis that shear
stress is one signal for exercise-induced expression of antiatherogenic endothelial cell
phenotype in arteries.

Pressure and Circumferential Stress (Stretch) as a Signal for Altered
Endothelial Cell Phenotype

It is well known that arterial pressure fluctuates with systolic pressures of 120 mmHg and
diastolic pressures of 80 mmHg at rest. During exercise peak systolic pressures can
approach 200 mmHg and diastolic pressures remain normal or decrease (108). Arterial
pressure waves pass through the arterial tree, and the magnitude of pulse pressure is
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determined by interactions between the compliance of the segments of the arterial tree and
harmonics of the pressure waves. Thus arterial systolic and diastolic pressures in the femoral
arteries can be significantly different from those measured in the aorta (108). Blood pressure
can influence endothelial cells in at least two manners. First, cell culture experiments have
demonstrated that exposure of endothelial cells to pressure affects growth rate of endothelial
cells. Pressures in the range of 20 to 100 mmHg cause increased growth rates and higher
pressures (> 130 mmHg) cause inhibition of endothelial cell growth (115, 133). In addition
to these effects on growth rates, pressure can signal altered endothelial cell gene expression.
For example, exposure of endothelial cells in culture to pressures of 135 mmHg results in
increased eNOS and iNOS protein content (133).

A second manner whereby changes in pressure can alter gene expression of endothelial cells
results from stretch of the arteries. Because arteries are compliant, changes in pressure can
stretch endothelial cells producing circumferential stress (strain) and the pulsatile nature of
arterial blood pressure results in cyclic strain on the arteries. It appears that cyclic strain
applied to endothelial cells produces even more dramatic effects on endothelial cell
phenotype than does just compression (direct effects of pressure on the cells), as discussed
in detail below.

Endothelial cells are exposed to cyclic circumferential stress (strain) from distention of
arteries caused by increased blood pressure (which increases transmural pressure across the
arterial wall) (25) and/or by relaxation of smooth muscle in the wall, which allows the blood
vessel to increase in diameter, producing stretch of the endothelial cells lining the vessel. In
vivo, arterial endothelial cells are exposed to cyclic distention during the cardiac cycle.
Cyclic strain and wall movement have been measured in human thoracic aorta with MRI,
and results demonstrate that peak strain usually occurs after peak flow in the aorta (25). The
frequency and magnitude of this distention increases during exercise because of increased
systolic pressure and heart rate (108). As summarized in Table 2, there is a growing body of
evidence that cyclic strain alters endothelial cell gene expression patterns. Awolesi et al.
demonstrated that cyclic strain increased transcription of eNOS in cultured endothelial cells
(3) and increased eNOS enzyme activity of cultured endothelial cells (2). Since these
observations, it has been proposed that distention (increased intraluminal pressure) of
arteries is a signal for increased expression of the eNOS gene (148). There is also evidence
that stretch increases expression of EDHF synthase (CYP450) (106), suggesting that cyclic
strain may increase endothelium-dependent dilator pathways in general. Considering factors
that may be proatherogenic, however, as summarized in Table 2, cyclic strain has also been
reported to increase release of ROS (15) and to increase expression of adhesion molecules
including ICAM (14, 145), selectin (145), and MCP-1 (141, 142, 145). These observations
are consistent with many reports in the literature that indicate that chronic increases in blood
pressure are associated with impaired endothelial function and increased progression of
atherosclerosis (28). Also, Dancu et al. (19) reported that cyclic strain applied to cultured
endothelial cells grown in silicon tubes caused a decrease in eNOS expression, in contrast to
reports of studies using other methods of inducing stretch on cultured cells (3).

It is clear that the effects of cyclic strain on endothelial cells are complex and can be
modified by a number of important variables. One important consideration in interpreting
cyclic strain literature is evaluation of direct and indirect effects. For example, when
endothelial cells in an intact artery are “stretched” because of increased pressure, there is an
increase in superoxide and other forms of ROS in the artery (5) and an increase in adhesion
molecules, such as VCAM-1 (126). The ROS produced by cyclic strain may indirectly cause
increased expression of eNOS (4, 15). The major effect of rhythmic circumferential strain on
endothelial cells appears to be proatherogenic, even though the changes in eNOS expression
alone would be antiatherogenic because the increased ROS production and expression of
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adhesion molecules override the effects of increased eNOS expression (51). The increased
eNOS expression, although insufficient to correct function, may be a compensation for the
loss of bioactive NO through the actions of superoxide and other ROS species. Consistent
with the proposal that increased eNOS expression may be secondary to ROS effects are the
reports that increased blood pressure increases eNOS expression in rat aorta (4) in
association with increased oxidant stress in the aorta as well (5). Exercise bouts are usually
of 1- 2-h duration. Conversely, many studies of the effects of cyclic strain on endothelial cell
phenotype have been designed so that the cells are exposed to cyclic strain 24 h/day. These
different exposure times should be considered when interpreting results. For example, brief
increases in blood pressure and ROS associated with bouts of exercise may signal increased
eNOS expression and other beneficial effects of exercise, whereas chronic increases in blood
pressure may elevate ROS chronically. Hence chronic elevations in blood pressure may
trigger different changes in endothelial phenotype than do episodic increases in pressure and
wall stretch. This hypothetically may explain the paradoxical enhancement in endothelial
function associated with exercise, relative to the impaired endothelial function associated
with primary hypertension.

In summary, cyclic strain on endothelial cells causes increased expression of eNOS.
However, cyclic strain also signals upregulation of proatherogenic genes including adhesion
molecules, MCP-1 expression, and markers of oxidant stress as summarized in Table 2.
Also, chronic increases in blood pressure have been shown to result in proatherogenic
endothelial cell phenotypes, and increased blood pressure is recognized as a risk factor for
development of atherosclerosis (28). Therefore, we conclude that at this time it is unclear
whether increased wall strain participates in signaling an antiatherogenic endothelial cell
phenotype in physically active subjects. Given the duration of exposure to cyclic strain
produced by exercise for 1 or 2 h/day, future research is required to determine whether
increases in systolic blood pressures and heart rate produce important signals for the
beneficial changes in endothelial cell phenotype associated with exercise training.

Interactions of Shear Stress and Circumferential Stress (Stretch) in Altered
Endothelial Cell Phenotype

As outlined above, exercise produces complex hemodynamics that 1) increase the
magnitude of blood flow and shear stress, 2) the frequency of pulsatile changes in pressures
and flows, and 3) increased arterial systolic pressures. Available evidence indicates that the
complexity of hemodynamics can contribute to expression of a proatherogenic endothelial
cell phenotype especially when these hemodynamic parameters are asynchronous. Dancu et
al. demonstrated that when pulsatile changes in diameter, flow and blood pressure occur
synchronously these hemodynamic forces have different effects on endothelium lining
silicon tubes than when the pulsatile changes are asynchronous (19). Figure 5 illustrates
synchronous hemodynamics (on the left) and asynchronous hemodynamics on the right from
data obtained in chronically instrumented, conscious pigs. Note on the left that aortic blood
pressure, aortic blood flow, and aortic diameter have peak values during systole. This
example is not truly synchronous because the time courses of the changes are similar though
not identical. Truly synchronous hemodynamics would exist if these parameters in the aorta
had the same time courses, i.e., minimal and maximal values at the same time points, so that
peak pressure, flow, and diameter occurred at nearly the same time. In contrast to
synchronous hemodynamics, an example of asynchronous hemodynamics is shown on the
right of Fig. 5 in the coronary artery. Peak coronary flow occurs during early diastole, when
pressure and coronary artery diameter are less than their peak values, i.e., asynchronous
hemodynamics as defined by Dancu et al. (18). Dancu et al. examined the effects of
synchronous and asynchronous changes in pressure, tube diameter, and gene expression on
endothelial cells cultured in silicon tubes (18, 19). As shown in Fig. 6, Dancu et al.’s results
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demonstrate that asynchronous pulsations in shear stress and circumferential strain results in
decreased eNOS expression but increased ET-1 expression in endothelial cells (18, 19). It is
well known that asynchronous hemodynamics is the normal condition in the coronary
circulation as illustrated in Fig. 5. That is, most coronary blood flow occurs during diastole,
when blood pressure and coronary artery diameters are low (Fig. 5). Because of this, peak
values of shear stress and circumferential strain are normally asynchronous in the coronary
circulation. Perhaps of more interest, it is not uncommon to observe retrograde flow in the
coronary arteries during early left ventricular systole at rest (59). These conditions may
explain, in part, the propensity of the conduit coronary arteries to develop atherosclerosis.
During exercise, coronary blood flow is normally no longer oscillatory but becomes
pulsatile with positive flow in both systole and diastole. The pulsations in flow and pressure
remain asynchronous during exercise, and it is not clear that the asynchrony of shear stress
and circumferential strain would be decreased in the coronary arterial tree during exercise. It
seems possible, however, that the relatively greater effect of exercise on shear stress (due to
the four- to sixfold increases in coronary blood flow) and the fact that coronary blood flow
is not oscillatory during exercise predominate during bouts of exercise resulting in a net
antiatherogenic signal (69).

Enhanced external counterpulsation is a noninvasive treatment for CAD patients that has
been shown to increase diastolic coronary blood flow and total coronary blood flow.
Enhanced external counterpulsation increases diastolic pressures above the diaphragm by
compressing the tissues below the diaphragm and driving blood toward the heart. In patients
who received daily 1-h treatments of enhanced external counterpulsation for 6 wk, it was
reported that plasma nitrate and nitrite levels were increased (indicative of increased release
of NO in the blood) and ET-1 levels were decreased, suggesting improved endothelial
function and phenotype in these patients (1). Similar results have been reported for enhanced
external counterpulsation treatment in an animal model of CAD (146). Zhang et al. (146)
proposed that enhanced external counterpulsation in a porcine model of CAD applied to the
hindlimbs and hips of the pigs would increase shear stress and improve endothelial cell
function/phenotype in the coronary and brachial arteries. They found that enhanced external
counterpulsation resulted in a doubling of peak diastolic shear stress in the brachial artery.
Application of enhanced external counterpulsation for 2 h a day for 7 wk also resulted in a
more antiatherogenic endothelial cell phenotype in the left anterior descending coronary
artery (146). On the basis of the analysis of the effects of hemodynamic stress presented
above, it would be expected that the arteries in the hindlimb of these pigs and perhaps in the
abdominal aorta, would have retrograde flow during counterpulsation, which drives blood
back into the thoracic aorta. If this hypothesis is correct, we would further expect
proatherogenic changes in endothelial cell gene expression in these caudal arteries. Zhang et
al. did not report whether proatherogenic changes in endothelial gene expression were seen
in the abdominal aorta and arteries of the hindlimb. Therefore, this hypothesis will have to
be tested in future work.

Systemic Distribution of Exercise-Induced Arterial Vascular Adaptations
There are reports of exercise training-induced adaptations in vascular beds providing blood
flow to tissues/muscle not heavily involved in training bouts (44, 56, 57, 61, 67, 69, 70) and
within skeletal muscle that does not exhibit increased oxidative capacity with exercise
training (62, 67, 137). For example, most (24, 79, 120) but not all (123) studies have
reported that leg exercise training of healthy and diseased human populations produces
improved endothelium-dependent dilation in conduit arteries of their relatively inactive
arms. Such observations may suggest a systemic effect of exercise training on arterial
endothelial cell phenotype. However, modest increases in blood flow (42), oscillatory shear
rate (42), pulse rate (41, 42), and blood pressure have been reported in the arms of humans
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during lower extremity exercise (42, 60, 121). These results make it difficult to appreciate
the importance of primary hemodynamic signals (shear stress and cyclic strain) that may
signal phenotypic changes to endothelial cells in the brachial artery during leg exercise. In
addition, it is unclear at this time whether hemodynamic forces or circulating factors are the
underlying mechanisms involved in vasculature adaptations in conduit arteries that do not
perfuse cardiac or skeletal muscle active during exercise. As a result, it has yet to be
determined whether one or a combination of the four hemodynamic forces mentioned above
are the underlying mechanism involved in the apparent systemic effects of exercise on
endothelial cell function/phenotype.

Conclusions
In conclusion, the available literature reviewed herein shows that shear stress is a signal for
expression of antiatherogenic genes in endothelial cells in culture, in isolated arteries, and in
arteries of intact animals. Furthermore, shear stress levels in the arteries of humans during
exercise are in the range that produces beneficial changes. In contrast, oscillatory flow
patterns can cause proatherogenic gene expression in cultured endothelial cells. In vivo
evidence indicates that exercise decreases oscillatory flow/shear in some portions of the
arterial tree but may increase oscillatory flow in other areas of the arterial tree. We conclude
that current evidence indicates that increased shear stress during exercise may be one signal
produced by exercise that contributes to an antiatherogenic phenotype of arterial endothelial
cells.

Our review of current literature indicates that circumferential wall stress can also increase
expression of some beneficial antiatherogenic endothelial cell genes. However, this
literature equally provides evidence that circumferential wall stress increases production of
ROS and increases the expression of adhesion factors and other proatherogenic genes. These
data suggest that circumferential wall stress produced during exercise may contribute to
exercise-induced modulation of endothelial cell phenotype. It appears that interactions of
arterial pressure and fluid shear stress may play an important role in arterial vascular health
and likely contribute to how exercise bouts signal changes in endothelial cell gene
expression. Given that the timing of these signals during the cardiac cycle (i.e., whether or
not the changes are asynchronous or synchronous) can have major effects on the impact of
these signals on endothelial phenotype, more detailed analysis of these hemodynamic
variables during bouts of exercise training is required. We conclude that available evidence
suggests that exercise signals formation of beneficial endothelial cell phenotype at least in
part through these mechanical signals: shear stress and wall stretch. However, it is also clear
that other local and circulating factors interact with these hemodynamic signals during
exercise to produce the healthy arterial endothelial cell phenotype. Future research promises
to reveal these factors and how they interact with hemodynamic forces.
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Fig. 1.
Mechanical effects of hemodynamic forces on the vascular wall. Figure is adapted from and
used with permission of Dancu et al. (19).
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Fig. 2.
Changes in coronary artery luminal diameter (A) and coronary blood flow (B) in response to
intracoronary administration of acetylcholine in exercise-trained (top) and sedentary control
(bottom) subjects. Lines show changes in individual subjects and black dots show mean ±
SE for the groups. Data are taken with permission from Hambrecht et al. (49) ©[2000]
Massachusetts Medical Society. All rights reserved.
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Fig. 3.
Interactive effects of atherosclerosis and exercise training on markers of endothelial cell
phenotype. eNOS, endothelial nitric oxide synthase; ET-1, endothelin-1; NO, nitric oxide;

, superoxide; PGI2, prostacyclin; ROS, reactive oxygen species; SOD, superoxide
dismutase; VCAM-1, vascular cell adhesion molecule-1. ↑, increase; ↓, decrease.
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Fig. 4.
Unidirectional shear stress increases expression of eNOS mRNA. A: amount of eNOS
mRNA in endothelial cells exposed to no shear stress or to 6 h of shear stress at 15 dyn/cm2.
*P < 0.05 vs. static. B: exposure of endothelial cells to shear stress for 6 h increased the
amount of eNOS protein as reflected in eNOS immunofluorescence intensity in bovine
aortic endothelial cells. Data from Ranjan et al. (107). *P < 0.05 vs. static. C: dose-response
relationship of the effects of shear stress on eNOS mRNA polyadenylation. Increasing
amounts of shear produce progressively longer transcripts. *P < 0.05 vs. dyn/cm2. D:
increasing the duration of exposure of endothelial cells to shear stress also results in
increased eNOS mRNA polyadenylation. Increasing duration of shear stress exposure at 15
dyn/cm2 produce progressively longer transcripts. *P < 0.05 vs. 0 h. **P < 0.05 vs. 0 h.
Data for A, C, and D are taken with permission from Weber et al. (135) and data illustrated
in B are taken from Ranjan et al. (107).
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Fig. 5.
Synchronous and asynchronous hemodynamic environments as observed in a chronically
instrumented pig during moderate treadmill exercise. On the left, synchronous
hemodynamics as defined by Dancu et al. (18) are illustrated with measures of aortic
pressure, left ventricular (LV) pressure, aortic blood flow (ABF), and aortic diameter. In
contrast to this nearly synchronous hemodynamics, asynchronous hemodynamics are
illustrated on the right with measures of aortic pressure, LV pressure, coronary blood flow
(CBF), and coronary artery diameter. Systole and diastole were defined by the LV pressure
trace obtained from a high-fidelity Konigsberg pressure transducer. Aortic and coronary
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flows were determined with Transonic flow probes, and aortic pressure was measured
through a fluid-filled catheter.

Laughlin et al. Page 25

J Appl Physiol. Author manuscript; available in PMC 2012 February 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Effect of 12-h exposure of endothelial cell-coated silicon elastic tubes to synchronous and
asynchronous hemodynamic environments on expression of eNOS and ET-1 mRNA. Values
are mean ± SE, *P < 0.05 vs. synchronous (0°) conditions. Data are used with permission
from Dancu et al. (19).
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Table 1

Oscillatory flow effects on markers of endothelial cell inflammation, adhesion, and phenotype

Stimulus

Study Model Flow Type and Magnitude,
dyn/cm2

Duration, h Oscillatory Shear Effects (Vs.
Unidirectional)

Chappell et al. (10) HUVEC in parallel plate chamber Unidirectional: 5 ± 5 24 ● ↑ VCAM-1, ICAM-1, and E-
selectin mRNA

Oscillatory: 0 ± 5 ● ↑ monocyte adhesion

DeKeulenaer et al. (23) HUVEC in parallel plate chamber Unidirectional: 5 1, 5, and 24
● ↑  production

Oscillatory: 0 ± 5 ● SOD mRNA/protein
expression unchanged

Hsiai et al. (54) BAEC in flow channel Unidirectional: 50 ± 40 4 ● ↑ ICAM-1, P-selectin, and
MCP-1 mRNA

Oscillatory: 0 ± 2.6 ● ↑ monocyte adhesion

Hwang et al. (55) BAEC in flow channel Unidirectional: 25 4 and 8
● ↑  production

Oscillatory: 0 ± 3 ● ↓ eNOS mRNA

● ↑ gp91phox, NOX4, and
MCP-1 mRNA

● ↑ monocyte adhesion

McNally et al. (85) BAEC and MAEC in cone and
plate viscometer

Unidirectional: 15 4
● ↑  production by xanthine
oxidase

Oscillatory: 0 ± 15 ● ↑ H2O2 production

Silacci et al. (116) Perfused BAEC tubes Unidirectional: 0.3 ± 0.1 and
6 ± 3

4 and 24 ● ↓ eNOS mRNA

Oscillatory: 0.3 ± 3 ● ↓ p22phox mRNA

● No change in  production
or overall oxidative state

Ziegler et al. (147) Perfused BAEC tubes Unidirectional: 6 ± 3 1, 4, and 24 ● ↑ ET-1 mRNA

Oscillatory: 0.3 ± 3 ● ↓ eNOS mRNA

Ziegler et al. (148) Perfused BAEC tubes and EA hy.
926 cells

Unidirectional: 6 ± 6 24 ● ↓ eNOS mRNA

Oscillatory: 0.3 ± 6 ● ↓ eNOS promoter activation

Gambillara et al. (33) Perfused swine carotid Unidirectional: 0.3 ± 0.1 and
6 ± 3 72

● ↓ eNOS mRNA/protein

Oscillatory: 0.3 ± 3 ● ↓ Vasodilation to bradykinin

BAEC, bovine aortic endothelial cells; eNOS, endothelial nitric oxide synthase; ET-1, endothelin-1; HUVEC, human umbilical vein endothelial
cells; ICAM-1, intracellular adhesion molecule 1; MAEC, mouse aortic endothelial cells; MCP-1, monocyte chemoattractant protein-1; SOD,
superoxide dismutase; VCAM-1, vascular cell adhesion molecule-1.
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Table 2

Cyclic strain effects on markers of endothelial cell inflammation, adhesion, and phenotype

Stimulus

Study Model Cyclic Strain, % Duration, h Cyclic Strain Effects (vs. static)

Awolesi et al. (2) BAEC on flexible membrane 10 and 24% 24 ● ↑ eNOS activity

● ↑ eNOS protein

Awolesi et al. (3) BAEC on flexible membrane 6 and 10% 0–24 ● ↑ eNOS mRNA

● ↑ eNOS protein

Wung et al. (141) HUVEC on flexible membrane 12% 0.5, 1, and 24
● ↑  production

● ↑ MCP-1

Wung et al. (142) HUVEC on flexible membrane 0.5 and 2 ● ↑ NO production

● ↓  signaling of MCP-1

Cheng et al. (14) HUVEC on flexible membrane 9, 11, and 12% 24–48 ● ↑ soluble ICAM-1 release

● ↑ surface ICAM-1 expression

● ↑ ICAM-1 mRNA

Cheng et al. (15) HUVEC on flexible membrane 12% 0.25–20 ● ↑ ICAM-1 mRNA

● ↑  production

● ↑ antioxidant activity

Yun et al. (145) HUVEC on flexible membrane 15 and 25% 0.5–24 ● ↑ E-selectin expression

● ↑ ICAM-1 expression

● ↑ monocyte adhesion

Ziegler et al. (148) Perfused BAEC silicon tubes 4% 24 ● ↓ eNOS promoter activation

● No change in eNOS mRNA

Ziegler et al. (147) Perfused BAEC silicon tubes 4%
1, 4, and 24

● No change in ET-1 mRNA

● No change in eNOS mRNA
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