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Abstract
Chronic spinal cord injury (SCI) induces detrimental musculoskeletal adaptations that adversely
affect health status, ranging from muscle paralysis and skin ulcerations to osteoporosis. SCI
rehabilitative efforts may increasingly focus on preserving the integrity of paralyzed extremities to
maximize health quality using electrical stimulation for isometric training and/or functional
activities. Subject-specific mathematical muscle models could prove valuable for predicting the
forces necessary to achieve therapeutic loading conditions in individuals with paralyzed limbs.
Although numerous muscle models are available, three modeling approaches were chosen that can
accommodate a variety of stimulation input patterns. To our knowledge, no direct comparisons
between models using paralyzed muscle have been reported. The three models include 1) a simple
second-order linear model with three parameters and 2) two six-parameter nonlinear models (a
second-order nonlinear model and a Hill-derived nonlinear model). Soleus muscle forces from
four individuals with complete, chronic SCI were used to optimize each model’s parameters (using
an increasing and decreasing frequency ramp) and to assess the models’ predictive accuracies for
constant and variable (doublet) stimulation trains at 5, 10, and 20 Hz in each individual. Despite
the large differences in modeling approaches, the mean predicted force errors differed only
moderately (8–15 % error; P = 0.0042), suggesting physiological force can be adequately
represented by multiple mathematical constructs. The two nonlinear models predicted specific
force characteristics better than the linear model in nearly all stimulation conditions, with minimal
differences between the two nonlinear models. Either nonlinear mathematical model can provide
reasonable force estimates; individual application needs may dictate the preferred modeling
strategy.
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It is well recognized that chronic spinal cord injury (SCI) induces a variety of muscle
adaptations including atrophy (8, 10, 39), faster contraction time (28, 45), faster relaxation
time (28, 45), increased fatigability (9, 28, 41, 45), and myosin heavy chain transformation
to faster isoforms (7, 10, 30, 39, 40, 47) relative to normal muscle. Furthermore, the health
status of individuals with SCI may be compromised by the loss of volitional muscle activity,
including skin ulcerations, cardiovascular disease, kidney and urinary tract infections, and
fractures secondary to osteoporosis. Traditional rehabilitation techniques for individuals
with SCI typically focus on optimizing function after injury. However, SCI rehabilitation
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may increasingly include methods to preserve the integrity of the paralyzed limbs as a
means to improve overall health quality. One approach is to induce isometric muscle
contractions using neuromuscular electrical stimulation with the goal of preventing adverse
musculoskeletal adaptations resulting from disuse (26). Moreover, if a cure to SCI is
discovered, it may only be accessible to those whose bodies have not undergone substantial
musculoskeletal deterioration. Even today, secondary complications associated with
musculoskeletal deterioration after SCI can prove to be life threatening (44). The use of
subject-specific mathematical predictions of electrically stimulated muscle force may aid in
the development of individualized rehabilitation methodology to optimally stress the
musculo-skeletal system after SCI.

In the past decade, work has increasingly focused on the use of mathematical muscle models
to predict muscle forces (4, 13, 23) for isometric exercise training regimens and/or mobility
using functional electrical stimulation. Numerous muscle models have been built on the
original phenomenological 1938 Hill model (25, 33) as well as the structural, cross-bridge
approach introduced by Huxley in 1957 (25, 34), ranging from straightforward linear models
(2, 3) to a variety of complex nonlinear models (11, 13, 23, 31, 46, 48, 49). Models of
individual force production have been validated in animal muscle (5, 6, 29, 36), human able-
bodied muscle (13, 16-18, 21), and paralyzed muscle (14). These models use one or two
stimulation trains to fit the underlying subject-specific models’ parameters, thereby
predicting force for a range of potential stimulation trains. The models allow the
determination of an optimal or ideal stimulation pattern for an individual without exposure
to unnecessary stimulation bouts. However, to our knowledge, no between-model
comparisons using paralyzed muscle have been reported. These are important investigations
that are needed to better understand which muscle models may be best suited for an
individual application. Moreover, the complexity required to adequately model human
paralyzed muscle (e.g., nonlinear vs. linear) is not well understood.

Three modeling approaches that are able to accommodate variable frequency stimulation
patterns stand out as promising for the development of therapeutic models to stress the
musculoskeletal system after SCI. Accordingly, the purpose of this novel investigation was
to systematically evaluate the accuracy of three muscle models for predicting human
chronically paralyzed muscle forces. We hypothesized that the more complex nonlinear
models (the Hill-based and second-order nonlinear models) would provide the most accurate
predictions of overall force as well as specific force properties [peak force (PF), work, time
to peak, half-relaxation, fusion level, and “catch-like property” of muscle]. Hill-based
models are frequently believed to have physiologically related model parameters, suggesting
that a Hill-based model could provide the best estimates of specific force properties (PF,
time to peak, etc.).

METHODS
Three currently available muscle models that are capable of accommodating discrete,
variable frequency inputs were chosen. The first and simplest model is based on a traditional
engineering approach to modeling dynamic systems, a second-order linear model (for an
overview of linear systems theory, please see Ref. 12). The second and third models are
contemporary nonlinear mathematical models, each with six constant parameters.

Linear model
A single differential equation (1) is used to represent force as f(t) with a train of input
stimulation pulses [r(t)] represented by a series of pulses, or dirac delta functions [δ(t)],
denoted by r(t) = Σ δ(ti − t0) for i = 1 to n. The δ(t) function equals 1/dt at the time (ti) of
each pulse, for a total area equal to 1.0, and zero otherwise.
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(1)

Essentially, the forces resulting from each consecutive pulse are summed linearly to produce
the overall force train. The three constant parameters involved, β, ζ, and ωn, correspond to
the gain of the system (Ns), the damping ratio (dimensionless), and the undamped natural
frequency (rad/s), respectively (12). The gain provides a means to increase the force time
area for a given input, influencing the maximum force production (27). The damping ratio,
ζ, controls the oscillatory nature and the “responsiveness” (3) of the modeled force output
and has little physiological meaning in isolation. It is mathematically useful for controlling
the stability of a modeled system, i.e., a stable system will have oscillations that will remain
constant or dampen out over time. A combination of ωn and ζ determines the overall system
time constant (22). For modeling human muscle, values for ζ are typically ≤1.0 (critically
damped) (1, 3, 5). The natural frequency, ωn, of the linear system may be more directly
related to the physiological speed properties of a muscle (3, 27). Faster muscle speed
properties in isolated animal preparations (e.g., contraction and relaxation times) have
corresponded to higher values for ωn (6).

Second-order nonlinear model
The second-order nonlinear model proposed by Bobet and Stein (5) is represented by Eqs.
2-5. In addition to two first-order differential equations [solutions g(t) and F(t) shown as
Eqs. 2 and 4], this model includes a saturation nonlinearity that limits force at higher levels
[Eq. 3, where the intermediate output, x(t), is modulated by parameters k and n]. A variable
rate constant parameter, b, defined by Eq. 5, varies with force and is modulated by
parameters b0, b1, and B (5). When b1 is positive, this variable rate constant becomes slower
with increasing force and faster when b1 is negative. Parameter B acts as a simple gain
factor in this model (27).

(2)

(3)

(4)

(5)

The final output from Eq. 4, F(t), is the time history of predicted force. These four equations
use a total of six constant parameters, a, B, b0, b1, n, and k, to modulate the force output.

Hill-Huxley-type nonlinear model
The third and most complex muscle model included in this study has been frequently
described in the literature (13, 15-21, 37). This model was originally based on Hill’s
phenomenological model (48), but its evolution over the past several years has increased its
resemblance to the distribution-moment model (50), a Huxley-based modeling approach.
The original Hill elastic element terms are difficult to recognize in the model’s current state.
Consequently, it will be referred to as the Hill-Huxley-type nonlinear model for this
discussion.
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The most recent model version for nonfatigued muscle is comprised of two differential
equations (Eqs. 6 and 7) and a third equation defining a variable parameter (Eq. 8) (17, 18).
A total of six constant parameters, A, τ1, τc, τ2, R0, and km, modulate this Hill-Huxley
modeling approach. The first differential equation (Eq. 6) has been reported to represent
muscle contraction calcium kinetics (both the release/reuptake of Ca2+ as well as troponin
binding) (16, 18, 21). This equation is modulated by the variable parameter, Ri (Eq. 8),
which decays as a function of each interpulse interval (ti to ti-1) from a maximum value of
R0 for very rapid pulses to a minimum of 1 for widely spaced pulses. An analytical solution
for the first differential equation (CN) is shown in Eq. 9 (16, 18, 21). However, no analytical
solution to the differential force equation (Eq. 7) exists; thus iterative numerical estimation
techniques must be used. This iterative process to estimate an approximate solution adds to
the challenge of solving this model. Furthermore, many optimization techniques involve
gradient-based (derivative) procedures, which is problematic with numerical estimation
techniques. Although this model also has only six parameters, it takes substantially more
time and iterative steps to solve than does the second-order nonlinear model, making it the
most computationally complex of the three.

(6)

(7)

(8)

(9)

Experimental setup
Four individuals with chronic complete SCI were recruited for this study (see Table 1 for
subject characteristics). All subjects were otherwise healthy with no known medical
conditions other than SCI. All experimental procedures were conducted according to
protocols approved by the University of Iowa Institutional Review Board. Written, informed
consent, as approved by the institutional review board, was obtained before inclusion in this
study.

Subjects remained seated in their own wheelchairs with their left foot placed on a custom-
made ankle force plate. This measurement system has been previously described in detail
(41). Briefly, the foot was firmly secured to the force measurement device, with the knee
and ankle joints positioned at ~90°. Force was measured perpendicularly to the metatarsal
heads (15-cm moment arm) using a Genisco AWU-250 force transducer (Genisco),
amplified with a gain of 500 (200 for subject 1). Error range was determined to be 0.01–
1.49% full scale (defined as 0–840 N), with maximum capacity of 1,112 N and overall mean
absolute error of 4.7 N. Muscle electromyographic measurements of the soleus were
obtained using preamplified, 0.8-cm diameter, bipolar silver-silver chloride surface
electrodes with a fixed 2-cm interelectrode distance (Therapeutics Unlimited).
Preamplification gain was 35 times, and further differential amplification was performed
with a gain of 5,000.

A custom dual-pronged nerve electrode was used to stimulate the tibial nerve in the popliteal
fossa, using computer-driven square waves generated by a custom-made constant-current
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stimulator using 250-μs pulsewidths (41). The placement of the electrode was optimized to
produce the largest soleus M-wave peak-to-peak amplitude. Stimulation intensities were
then increased to ~1.5 times greater than required for a maximum M wave to ensure
supramaximal stimulation throughout the protocol.

The force, electromyographic, and stimulation trigger signals were recorded simultaneously
on magnetic (VCR) tape via a pulse code modulator (model 300, Vetter Digital), digitized at
1,000 Hz, and later analyzed using Matlab 6.0 software (Mathworks).

Stimulation protocol
The stimulation protocol began with a series of 1-Hz twitches to determine the optimal
electrode placement and ensure supramaximal levels of activation. Five warm-up
contractions and seven-pulse trains (20-Hz trains, 330 ms on, 670 ms off) applied at 1 train/s
were then given to ensure the soleus muscle was in a more potentiated state without
inducing fatigue. Following the warm-up, a preprogrammed set of 10 stimulation trains was
performed with 2-s rest intervals between each train for a total duration of ~30 s. The set
consisted of a doublet ramp of 15 pulses with interpulse intervals of 200, 6, 127, 100, 67, 67,
50, 50, 67, 67, 6, 94, 133, and 200 ms (1,234-ms duration; Fig. 1); three constant-frequency
trains (CT) at 5, 10, and 20 Hz (8 pulses, 1,400-ms duration; 10 pulses, 900-ms duration;
and 12 pulses, 550-ms duration, respectively); three single doublet trains (DT) at the base
frequencies of 5, 10, and 20 Hz, with an additional doublet pulse 6 ms immediately after the
first pulse; and three dual doublet trains (DDT) at the base frequencies of 5, 10, and 20 Hz,
with two added pulses (doublets) to the CTs, one 6 ms after the first pulse and a second 6 ms
after the middle pulse of each train (the 5th, 6th, and 7th pulse for 5-, 10-, and 20-Hz DDTs,
respectively). See Fig. 1 for a schematic representation of the different force train patterns
used.

These diverse input patterns represent a relatively wide range of possible stimulation
approaches across the force-frequency curve of paralyzed soleus muscle (41-43, 45) by
using a small number of trains. To minimize the effects of fatigue, a short overall duration of
stimulation is necessary (~30 s) in untrained paralyzed muscle. The mean on-off time ratio
for the 10 stimulation trains was ~1:2. A maximum stimulation frequency of 20 Hz, in
concert with 167-Hz doublets, minimized the risk of injury to each subject, which has
occurred with higher frequency stimulation (32).

Model parameterization
All three models were parameterized using a single predetermined stimulation pattern, the
doublet ramp (Fig. 1), modified from Bobet and Stein (5). Previously, the models have been
parameterized using different types of muscle trains (5, 13, 16, 48) and a priori (5) vs. trial-
and-error (13, 16, 17) methodologies. To appropriately compare results between models, one
approach was necessary. The doublet ramp incorporates a range of frequencies (5, 7.5, 10,
15, and 20 Hz, with 6-ms doublets = 167 Hz) over a relatively short duration (1,234 ms) and
provides approximately equal time at the low and high frequencies to minimize bias from
any one frequency.

The model parameters were mathematically optimized using the Matlab optimization
toolbox function, lsqnonlin, a least-squares approach using the Levenberg-Marquardt
method, i.e., the lsqnonlin function minimizes the sum of the squares of the differences
between model and experimental forces at each point in time. The Hill-Huxley-type
nonlinear model required a fixed-step (vs. the more common variable step) Runge-Kutta
algorithm for the optimization routine to be able to make estimates of the gradient and
converge to an optimal solution. The variable-step numerical techniques frequently
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converged to local minima that varied with parameter starting values (e.g., not true optimal
solutions). Although a global minimum cannot be mathematically guaranteed using most
optimization techniques, further investigation of the possible solution space for each model
supported that the minima found in this manner were good estimates of the global minima.

Model error estimates
Using the optimal parameter values determined for each subject and model, force-train
predictions for nine stimulation pattern/frequency combinations (CT, DT, and DDT trains at
5, 10, and 20 Hz) were produced. An overall error estimate, mean percent error (% error),
was calculated as the mean absolute difference between the predicted and experimental
force time profiles for each stimulation pattern/frequency (sampled at 1,000 Hz) normalized
by the experimental PF.

The specific force characteristic errors determined for each model included percent PF
(%PF); percent force-time integral (FTI); time to peak tension (TPT; defined as the time to
reach 90% of PF from force initiation); half relaxation time (RT1/2; defined as the time for
force to decay from 90 to 50% of the final force peak); relative fusion index [RFI; a measure
of tetany (fusion) defined as the mean difference between the last four force peaks (maxima)
and their preceding force minima, normalized by the force maxima (100% indicates full
fusion, 0% constitutes a series of twitches)]; and the “catch-like” property of muscle [%
doublet difference (%DDiff); defined as the additional normalized force due to an extra
doublet pulse]. The mean absolute force difference between the DDT minus DT trains and
the DT minus CT trains, normalized by the maximum experimental doublet difference, was
used to calculate the %DDiff. The %PF and %FTI were calculated for the CT and DDT
trains; the TPT, RT1/2, and RFI were determined using the CT trains (5 Hz only for TPT);
and the %DDiff used the CT, DT, and DDT trains. Both absolute and directional errors were
calculated for each of the specific force property error measures, with the exception of only
absolute error for %DDiff. Absolute error provides a measure of the error magnitude only,
whereas directional errors can indicate mean over- vs. under-predictions.

Repeatability
Between-day testing resulted in good repeatability of the experimental force time profiles (n
= 3). Mean errors in the doublet ramp (the parameterization train and most complex pattern)
included 4.4% overall error, 7.6% PF, 2.0% force time integral, 3.3-ms time-to-peak tension,
and 1.0-ms RT1/2. Mathematical models should not be expected to predict forces more
accurately than can be obtained experimentally.

Statistical methods
The overall %error, %PF, and %FTI error measures were statistically analyzed using a
three-way (3 × 2 × 3) univariate repeated-measures ANOVA for within-subject analyses of
model (Hill-Huxley-type nonlinear, second-order nonlinear and linear), stimulation pattern
(CT vs. DDT), and stimulation frequency (5, 10, and 20 Hz) for simple and interaction
effects (SAS 9.0, SAS Institute, Cary, NC). The error magnitudes for RT1/2, RFI, and
%DDiff were analyzed using a two-way (3 × 3) repeated-measures ANOVA for model and
frequency. TPT was evaluated using a one-way repeated-measure ANOVA (for model).
Repeated-measures P values were adjusted using the Huynh-Feldt epsilon when necessary to
correct for nonsphericity or heterogeneous variance and intrasu-bject correlation (35).
Significance was set at α = 0.05. The Bonferroni correction for multiple comparisons (n = 3)
was used for all follow-up tests to preserve the error level for each measure. Pilot analyses
predicted 80% power would be achieved to detect an effect size (Cohen’s d) of 2.0 for
%error using three subjects in a repeated design.
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RESULTS
Representative examples of the experimental data, including stimulation pulses, soleus
electromyographic signals, and the force output for the doublet ramp, 5-Hz single DT, 10-
Hz DDT, and 20-Hz CT are shown in Fig. 2. The two nonlinear models were able to more
closely fit (via optimization) the experimental doublet ramp pattern used to determine the
parameter values than the linear model (see Fig. 3). Using the optimized parameter values, a
representative example (n = 1) of several predicted force trains (CT and DDT) are displayed
in Fig. 4 relative to the experimental force trains. Note the ability for all three models to
represent paralyzed muscle forces reasonably well, particularly the two nonlinear models.
Each subject’s optimal model parameter values are provided in Table 2.

Overall %error
These three muscle models were able to predict human paralyzed muscle force trains with
mean errors ranging from 8.1 to 15.2% (Fig. 5) with the two nonlinear models more closely
predicting the actual muscle forces than the linear model. The individual subject results (Fig.
5A) demonstrate similar between-model error trends (Hill-Huxley-type ≤ second order
nonlinear < linear); the individual error magnitudes of the three models varied between
subjects. Overall, %error resulted in significant main effects for model [F(2,6) = 28.9,
Huynh-Feldt adjusted P value = 0.0042; Fig. 5B] as well as significant interactions for
model by frequency [F(4,12) = 13.18, adjusted P value = 0.0127; Fig. 5C], model by
stimulation pattern [F(2,6) = 15.47, adjusted P value = 0.0161; Fig. 5D], and model by
frequency by stimulation [F(4,12) = 18.65, adjusted P value < 0.0001]. The between-model
follow-up tests (Table 3) indicated the Hill-Huxley-type model produced the least overall
%error and the linear model produced the greatest %error. However, the difference between
the nonlinear models, although statistically significant, was small (<2%), and the differences
between the linear and the nonlinear models were only 5–7% (Table 3). Post hoc power
analyses revealed that this study was able to detect pairwise effect sizes (Cohen’s d) of 1.23,
3.79, and 3.02 for the two nonlinear models, the Hill-Huxley-type vs. linear models, and the
second-order nonlinear vs. linear models, respectively, despite the small sample size.

Specific force property errors
Significant between-model differences resulted for both directional and absolute %PF and
%FTI errors [F(2,6) values from 8.82 to 45.92, with Huynh-Feldt adjusted P values from
0.0404 to 0.0002; see Figs. 6 and 7]. Both nonlinear models were significantly better able to
predict PF than the linear model (Table 3), but for FTI predictions only the second-order
nonlinear model was significantly better than the linear model (Table 3). No differences
between the two nonlinear models were observed for either PF or FTI. Significant two- and
three-way interactions (model × frequency, model × stimulation pattern, and model ×
frequency × stimulation pattern) resulted for all directional and absolute %PF and %FTI
errors, except the model × stimulation pattern interaction for the absolute PF [F(2,6) = 0.28,
P = 0.7575]. See Figs. 6, C and D, and 7, C and D, to more clearly see how PF and FTI
errors varied across frequency and with stimulation pattern.

Significant between-model differences were observed for the absolute and directional errors
for the force time properties, TPT, RT1/2, and RFI (adjusted P values from <0.001 to
0.0187). The second-order nonlinear model produced force too rapidly, resulting in the
largest TPT errors (under-predictions) of the three models (Fig. 8A, Table 3). No interaction
effects were included for TPT, as only the 5-Hz CT force train was used to determine this
property. The overall mean RT1/2 was most accurately predicted by the nonlinear models:
first the Hill-Huxley-type model followed closely by the second-order nonlinear model (all
differences significant; Fig. 8B, Table 3). The only significant interaction for RT1/2 (model ×
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frequency; see Fig. 8B) occurred for the directional RT1/2 error [F(4,12) = 8.85, adjusted P
value = 0.0477]. Force fusion errors (RFI; Fig. 8C) also differed significantly between all
three models overall [F(2,6) = 8.31, adjusted P value = 0.0187 and 114.49, adjusted P value
<0.0001, absolute and directional, respectively]. The linear model over-predicted the RFI,
whereas the two nonlinear models significantly under-predicted the fusion level (Fig. 8C).
However, despite a significant between-model effect using the repeated-measures ANOVA,
individual pairwise comparisons of RFI error magnitude (absolute error) did not reach
significance using the conservative Bonferroni correction (Table 3). The model × frequency
interaction for RFI was significant (directional and absolute, adjusted P values from <0.0001
to 0.007), indicating between-model differences varied with frequency. For example, the
linear model, although showing the largest fusion errors overall, produced the lowest mean
RFI error at 10 Hz.

The catch-like property of muscle was evaluated using the overall %DDiff error (mean of
the normalized initial and mid-doublet differences). All three models had difficulty
predicting muscle forces resulting from doublet stimulations located either at the start or
within a train of stimuli, particularly at frequencies resulting in partial or full force fusion
(e.g., 10 and 20 Hz; Fig. 8D). The linear model produced mean %DDiff errors that far
exceeded the nonlinear models’ errors (Table 3, Fig. 8D). This difference between the
nonlinear and linear models was driven predominantly by the large linear model error at 20
Hz, where the linear model was incapable of scaling down the additional doublet force, as
occurred experimentally (see Fig. 4). This is supported by the significant model × frequency
interaction [F(4,12) = 40.78, adjusted P value = 0.0044]. This was the only specific force
property that the second-order nonlinear model provided significantly better predictions than
the Hill-Huxley-type nonlinear model (Fig. 8D, Table 3), but the mean difference (~2%) was
small relative to the observed mean errors (23 and 25% for the second-order nonlinear and
Hill-Huxley-type nonlinear models, respectively).

DISCUSSION
The primary finding of this study was that chronically paralyzed muscle force-time profiles
were most accurately predicted by the nonlinear models [Hill-Huxley-type nonlinear model
(18) followed closely by the second-order nonlinear model (5)], supporting our initial
hypothesis. However, significant two- and three-way interactions indicate differential errors
with stimulation frequency and pattern. The nonlinear models predicted most of the specific
force properties (PF, FTI, RT1/2, and catch-like property of muscle) better than the linear
model, although TPT and RFI were equally well represented by the linear model.
Interestingly, the more complex Hill-Huxley-type nonlinear model predicted only two
specific force properties, the TPT and RT1/2, better than the less-complex second-order
nonlinear model, contrary to the hypothesis that a Hill-based model might better represent
physiological force properties.

Specific force property predictions
Each model had its individual predictive strengths and weaknesses. The similar PF and FTI
errors across all models at the lower frequencies suggest that a linear approximation of
muscle force magnitude may be reasonable for unfused force trains. Beyond the fusion
frequency, the linear model would likely have increasing difficulty adjusting for the
nonlinear force saturation. However, for those with chronic paralysis, higher frequencies
may be associated with an increased risk of fracture (32), making lower frequency
stimulation a more desirable activation strategy.

The frequencies chosen in this study spanned a range of the force frequency curve for
human chronically paralyzed soleus muscle (43), with mean experimental RFIs of 8.4, 82.1,
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and 98.0% (where 100% indicates no discernable drop in force between pulses). Although
fusion is a nonlinear relationship, the linear and nonlinear models were equally able to
predict RFI for frequencies below full fusion.

Surprisingly, TPT was accurately predicted by the simple linear and the Hill-Huxley-type
nonlinear models, whereas the nonlinearities introduced by the second-order nonlinear
model (relative to the linear model) actually worsened the TPT estimates (Fig. 8). The linear
model had substantially more difficulty predicting RT1/2 suggesting muscle force decay
involves a more complex, nonlinear process than does force initiation.

Experimentally, the doublet produced considerably greater additional force at 5 Hz than at
20 Hz (see Fig. 4). Both nonlinear models were able to attenuate doublet force output with
increasing frequency, unlike the linear model. The second-order nonlinear model predicted
this catch-like property of muscle better than the Hill-Huxley-type nonlinear model despite
the inclusion of the force-modulating variable parameter, Ri, in the Hill-Huxley-type model
(15, 16). The frequency-dependent variable parameter, b, in the second-order nonlinear
model, although not previously described for this purpose, is able to represent this nonlinear
force summation phenomenon. Accordingly, both modeling approaches (i.e., using a force-
dependent or a frequency-dependent variable parameter) adequately model the nonlinear
nature of the catch-like property of muscle.

Previous error findings
Our observed errors are relatively consistent with previous studies. Ding and colleagues
reported R2 values for the Hill-Huxley-type model ranging from ~0.64 to 0.90 for PF and
FTI comparisons (37) and 0.80 to 0.99 (17) for overall force profiles in human able-bodied
quadriceps muscle activated at ~20% of maximum. We observed similar R2 values for the
Hill-Huxley-type model, ranging from 0.74 to 0.99. In paralyzed muscle, the Hill-Huxley-
type model previously produced <10% errors in PF and FTI for 81 and 89% of the test trials
(each the mean of two contractions) (14), but the mean or range of error values were not
reported. We observed similar errors of 7.2 ± 1.2 and 7.6 ± 1.5% for PF and FTI,
respectively.

The second-order nonlinear model produced from 2.4 to 5.5% error in isolated cat muscle
(5), which is relatively consistent with our observations in humans (5.4–16.0%). Differences
in experimental paradigms, isolated animal muscle vs. in vivo human testing and
nonparalyzed vs. paralyzed muscle, may explain these error discrepancies.

Second-order linear models have been used to fit experimental animal (36) and human (1, 3)
muscle forces but have been described as having poor predictive capabilities (5, 6, 24). No
specific error values were provided for these conclusions. Conversely, we observed
reasonable linear predictions of chronically paralyzed human muscle force for low CTs, with
poor linear force predictions with higher frequency or variable stimulation.

Limitations
Although spasticity can be problematic in chronically paralyzed muscle, consistent,
reproducible force profiles were readily obtained at each frequency with supra-maximal
nerve stimulation (e.g., Fig. 4), eliminating the need to average trials to reduce noise. These
results, however, are limited to supramaximally stimulated, isometric contractions in
paralyzed soleus muscle at a single joint angle and may not extend to different joint angles
(3), potentiation states, dynamic motions, and/or fatigue (21). The parameter values and
errors obtained for the soleus muscle may not be representative of those for other paralyzed
muscles, i.e., large, multi-joint muscles. Individualized parameterization techniques for each
model may improve their individual abilities to predict paralyzed muscle force; however,

Frey Law and Shields Page 9

J Appl Physiol. Author manuscript; available in PMC 2012 February 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



using a single method provided a common baseline for comparison. The small effect size
between the two nonlinear models for PF, FTI, and RFI may represent the predictive
similarities between these two nonlinear models or be a result of inadequate power for these
select comparisons. The purpose of this study was to determine the predictive modeling
errors associated with a fresh muscle state, but the test protocol stimulations induced a
minimal but measurable level of fatigue (≤10 % mean decrease in PF of the doublet ramp
train).

Considerations for an ideal muscle model
Specific force properties (PF, TPT, RT1/2, etc.) have been associated with Hill model
parameter values more frequently than with other types of modeling strategies. Therefore,
one might also expect specific force properties to be most accurately predicted by a Hill-
based model. Our findings do not support this assertion. The systems-based second-order
nonlinear model, described as a second-order filter by Bobet and Stein (5), was nearly
equivalent to the Hill-Huxley-type model for all specific force property measurements,
except for TPT. Equating parameter values with physiological muscle properties does not
appear to assist in making the most accurate force predictions for human paralyzed muscle.

Although model accuracy is a primary consideration for choosing an appropriate modeling
strategy, model complexity should be considered as well. Based on the law of parsimony
(38), a preferred model would use the simplest means to produce a reasonable force
representation. Given the similar predictive capabilities of the two nonlinear models relative
to their difference in complexities, coupled with the larger errors associated with the linear
model, the simplest model to best predict human chronically paralyzed muscle force is the
second-order nonlinear model. However, the linear model’s inaccuracies could be tolerable
if its simplicity is required, i.e., a complex control strategy is involved (24). Furthermore,
the relatively small differences in model accuracy between the two nonlinear models may be
important depending on the intended application (e.g., where accurate TPT is crucial).

In conclusion, the force predictions of three different muscle modeling approaches were
relatively similar, suggesting that physiological muscle force can be adequately represented
mathematically in multiple ways. Indeed, the interactions between model, frequency (5, 10,
and 20 Hz), and stimulation pattern (CT vs. DDT) indicate the difficulty in assessing the
differences between models, as the models’ accuracies varied between stimulation trains.
Any one of the three models could prove to be an ideal choice, depending on the intended
therapeutic application, and thus the frequency and/or stimulation patterns used. Considering
the three models’ predictive errors, we conclude that 1) the linear model is best able to
predict paralyzed muscle forces using constant, low-frequency stimulation trains; 2) the two
nonlinear models provide nearly equivalent force predictions despite their differences in
modeling strategies; and 3) the nonlinear models are most accurate when using higher
frequency or variable stimulation trains for predicting electrically activated muscle force in
chronically paralyzed human muscle.
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Fig. 1.
Schematic representation of the stimulation patterns, showing only the 10-Hz series and the
doublet ramp used for parameter determination for each model. CT, constant-frequency
train; DT, single doublet train; DDT, dual doublet train.
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Fig. 2.
Representative examples of the raw data from a single subject (subject 4) resulting from the
doublet ramp (A), the 5-Hz DT (B), the 10-Hz DDT (C), and the 20-Hz CT (D). EMG,
electromyogram. *Doublet pulses.
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Fig. 3.
Representative example of the optimized best fits for the 3 models to the experimental
doublet ramp (solid line) train for subject 1: linear (dotted line), 2nd-order nonlinear (NL;
dash-dot line), and the Hill-Huxley-type NL (dashed line).
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Fig. 4.
Experimental force (first row) and modeled forces (second to fourth rows) for chronically
paralyzed soleus muscle (subject 4) at 5, 10, and 20 Hz. The linear model is shown in row 2,
2nd-order NL model in row 3, and Hill-Huxley-type model in row 4. CT and DDT
stimulation patterns are displayed at left and right, respectively.
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Fig. 5.
Overall %error between modeled and experimental forces. A: mean (SD) %error by subject.
B: mean (SE) overall %error. C: mean (SE) %error by frequency. D: mean (SE) %error by
stimulation pattern.
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Fig. 6.
Overall %peak force (PF) error between modeled and experimental forces. A: mean (SD) PF
%error by subject. B: mean (SE) overall PF %error. C: mean (SE) PF %error by frequency.
D: mean (SE) PF %error by stimulation pattern. Note that mean errors may be approaching
zero but have clearly visible variances.
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Fig. 7.
Overall %force time integral (FTI) error between modeled and experimental forces. A: mean
(SD) FTI %error by subject. B: mean (SE) overall FTI %error. C: mean (SE) FTI %error by
frequency. D: mean (SE) FTI %error by stimulation pattern. Note that mean errors may be
approaching zero but have clearly visible variances.
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Fig. 8.
Specific force time errors between modeled and experimental forces by frequency. A: mean
(SE) time to peak tension (TPT) for 5 Hz only. B: mean (SE) half relaxation time (1/2RT).
C: mean (SE) relative fusion index (RFI). D: mean (SE) doublet difference %error (DDiff),
an indicator of the catch-like property of muscle.
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