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 13 

ABSTRACT 14 

In p-type dye sensitized solar cells (p-DSCs) with nickel oxide (NiO) based photocathodes one of 15 
the main causes of their relatively poor photoconversion performances is the fast recombination 16 

between the photoinjected holes in the valence band of the p-type semiconductor and the reduced 17 
form of the redox shuttle (typically I-). As a matter of fact, recombination phenomena at the 18 
NiO/electrolyte interface heavily limit both photovoltage and photocurrent. Different approaches 19 

have been adopted to minimize such an unwanted process: these range from the pretreatment of the 20 
electrode surface with NaOH to the employment of passivating organic molecules (e.g. CDCA) in 21 

the sensitizing solution and/or in the electrolyte solution. The present contribution describes the 22 
implementation of the addition of zirconia (ZrO2) nanoparticles in nanostructured NiO films as anti-23 
recombination agent in p-DSCs due to the electro-inactivity of ZrO2. ZrO2 nanoparticles with 24 

diameter, Ø, of  20 nm,  and NiO nanoparticles with Ø < 50 nm were dispersed together in the paste 25 

precursor for screen-printing. Different compositions of the mixture of NiO and ZrO2 nanoparticles 26 
were considered. From the combined analysis of the electrochemical and photoelectrochemical 27 
properties of different nanocomposites it was concluded that the molar ratio ZrO2/NiO had the 28 
optimal range of 2-5 % for realizing photocathodes more efficacious than sole nanostructured NiO. 29 

Among the nanocomposite photoelectrodes the one obtained from the inclusion of 2% of ZrO2 30 
nanoparticles produced the better photoelectrochemical performance being the short-circuit current 31 

density JSC = 2.037 mA/cm2 and the overall efficiency  = 0.088% when P1 is the sensitizer. These 32 

results show an increase up to 40% compared to the un-modified NiO electrode. The unexpectedly 33 
low efficiency of electrode with molar ratio of zirconia in nickel oxide of 5% was associated to an 34 
insufficient dye-loading on NiO, in combination to the increase of the percentage of the 35 
photoelectrochemically inert ZrO2 additive. The electrochemical impedance spectroscopy (EIS) 36 
data of the complete device under illumination confirmed that the improvement is mainly due to an 37 

increase of the recombination resistance, Rrec, ongoing from sole nanostructured NiO (Rrec = 56.3 ) 38 

to the electrode obtained from the nanocomposite with molar ratio ZrO2/NiO = 0.02 (Rrec = 70.3 ). 39 
 40 
 41 
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INTRODUCTION 47 

 48 
Among photovoltaic technologies the monocrystalline silicon-based devices and lead iodide based 49 

perovskite solar cells are capable to reach conversion efficiencies up  to 20% under solar 50 
irradiation1. When indoor illumination with diffuse features is considered as source of luminous 51 
energy the  dye-sensitized solar cell  (DSC)2 appears as the most effective choice despite the fact 52 
that the highest efficiency of a DSC is below 15%3. More recently, Gräetzel4 and co-workers 53 
reported overall efficiency up to 30% when the source intensity is as low as 100 lux. Conversions 54 

up to 40% could be theoretically achieved by creating a p-n junction5 (i.e. by coupling a photoanode 55 
to a photocathode) when the solar radiation is considered as excitation source. Such a tandem 56 
configuration would sensibly reduce also the costs of production of the corresponding device. The 57 
theoretical limit of 40% is still far to be reached because of the generally poor performance of 58 
photocathodes. To our knowledge, the best performance reported so far for a p-type DSC (p-DSC) 59 

is lower than 2% under 1 Sun of illumination6. One of the main causes of this is the fast 60 
recombination reaction that occurs between the photoinjected holes in the valence band (VB) of the 61 

photocathode (usually made of NiO)7–10 and the reduced form of the redox shuttle (typically the 62 
iodide anion)11–13. In fact, recombination phenomena at the NiO/electrolyte interface heavily limit 63 
both photovoltage and photocurrent. The photoinjected holes are mainly localized onto NiO surface 64 
in correspondence of the electron-deficient Ni3+ sites. Different approaches have been adopted to 65 

minimize such an unwanted reaction. The rational design of a sensitizer with bulky 66 
substituents6,14,15  could help to keep iodide distant from the holes localized on the electrode surface. 67 

The implementation of a NiO compact layer has been proved to reduce recombination phenomena 68 
at the electrolyte/FTO interface16–18. Metal-doping or UV irradiation of NiO electrode are feasible 69 
approaches to tune the opto-electronic properties of photocathode but are as not effective in 70 

reducing the interfacial recombination19–21. An alternative route is the direct modification of the 71 
photocathode. In a previous paper we showed that the treatment of NiO surface with soda has a 72 

twofold effect: it reduces the surface concentration of superficial Ni3+ sites and passivates the NiO 73 
surface prior sensitization22. The success of this method has been confirmed by the achievement of 74 
a less dark film. Unfortunately, the reduction of the number of Ni3+ sites lowered also the amount of 75 

loaded sensitizer leading to a less performing device (lower photocurrent). We also tested CDCA 76 
(chenodeoxycholic acid) in squaraines-based p-DSC23. In that work CDCA (acting as both 77 

disaggregating and passivating agent) was added in the sensitizer solution with a concentration of 78 

20 mmol. The overall efficiency was enhanced by 25% due to the depression of dye aggregation. 79 
Nevertheless, the amount of chemisorbed dye was lowered because of the competition between 80 
sensitizer and CDCA in binding Ni3+ sites. To avoid the latter phenomena, Odobel et al.24 dissolved 81 
CDCA (50 mM) in the electrolyte. They reported an enhancement of the 20 % of the conversion 82 
efficiency due mainly to a higher VOC whereas the JSC was substantially unchanged. The 83 

employment of an insulating layer of Al2O3 was proposed by Uehara and coworkers25 but it 84 
diminished the electron injection of surface chemisorbed sensitizer more than the desired 85 
recombination phenomena Natu and co-authors reported the implementation of a more efficient 86 
Al2O3 insulating layer directly deposited  onto the NiO electrode by Atomic Layer Deposition26. 87 
Yet, the enhancement of photoelectrochemical properties is modest. As far as we are aware, no 88 

research group previously attempted the nanometric approach in the framework of DSCs with the 89 
preparation of the nanocomposites here reported. In particular, throughout this work we described, 90 

for the first time, the employment of ZrO2 nanoparticles, NPs, with diameter Ø < 20 nm) as not 91 
electroactive additive in NiO electrodes for p-DSC application. ZrO2 is an insulating oxide with a 92 
bandgap higher than 5 eV. We expect that the presence of zirconia nanoparticles, i.e.  a 93 
nanostructured version of ZrO2 with strong tendency of being finely dispersed on the electrode 94 
surface, diminishes the portion of NiO exposed to the electrolyte thus diminishing the probability 95 
with which Ni3+ sites on the surface recombine with the redox shuttle. The effect of NiO dilution 96 
imparted by of zirconia nanoparticles on the electrode surface brings necessarily about the 97 



consequent minimization of recombination phenomena at the electrode/electrolyte interface as well 98 

as flux of photoinjected charges in the photocathode. The purpose of this study is to evaluate to 99 
which extent the presence of ZrO2 NPs favors the suppression of recombination without being 100 

excessively detrimental against dye-loading and photoinjection on the NiO portions of the 101 
nanocomposite. ZrO2 has been chosen because of its chemical inertness and long-term stability. The 102 
formation of a mixed oxide of nickel and zirconium with a structure distinct from the ones of NiO 103 
and ZrO2 has not been evidenced (vide infra)27.  Therefore, the attainment of a solid solution from 104 
the mixing and the sintering of NiO and ZrO2 NPs is reasonably excluded. On these bases we 105 

expect that the nanocomposites are actually constituted by two segregated oxides. 106 

 107 
EXPERIMENTAL PART 108 
 109 

The chemicals ethylcellulose, -terpineol, NiO nanopowders, ethanol and acetonitrile (ACN) were 110 
purchased from Fluka or Sigma-Aldrich whereas ZrO2 nanoparticles were purchased from US 111 

Research Nanomaterials. All chemicals were used without any further treatment of purification.  112 
The experimental procedure to produce NiO/ZrO2 slurry consists on a modified version of the one 113 
reported in our previous paper28,29: an ethanol solution of NiO nanopowders (6 g), ZrO2 114 

nanospheres (variable amount), -terpineol as solvent (20 g) and ethylcellulose as crosslinker were 115 
mixed together under continuous stirring. Then this solution was slowly heated at 50 °C to let 116 

completely evaporate the solvent. The resulting slurries were screen-printed over 2.2 mm thick 117 
FTO/glass substrates (TEC7 from NSG), which were previously cleaned in an ultrasonic bath with 118 
acetone for 10 min and successively with isopropyl alcohol for 10 min. The electrodes with 119 

geometrical area of 0.36 cm2, were annealed at 450 °C in oven for 30 minutes. The thickness of the 120 
annealed samples ranged between 2 and 3 μm (evaluated with a Dektak 150® profilometer from 121 

Veeco). The morphology has been investigated with a FESEM Auriga Zeiss Field Emission. EDX 122 

(EDX Quantax Bruker, Resolution 123 eV (Mn K) was employed for the elemental analyses. The 123 
amount of added ZrO2 varied from 0 (pure NiO) to 856 mg (corresponding to the molar ratio 124 

ZrO2/NiO = 0.11). Six slurries have been prepared with different values of ZrO2/NiO molar ratio: 125 

• Pure NiO as reference 126 

• ZrO2/ NiO = 0.001, with     8 mg of ZrO2 127 

• ZrO2/ NiO = 0.010, with   85.6 mg of ZrO2 128 

• ZrO2/ NiO = 0.020, with 171.2 mg of ZrO2 129 

• ZrO2/ NiO = 0.053, with 428 mg of ZrO2 130 

• ZrO2/ NiO = 0.111, with 856 mg of ZrO2 131 

The resulting slurries were chemically and physically stable for several months in ambient 132 
conditions. Throughout the paper, each electrode made starting from these slurries has been named 133 

as NiO_ZrO2_X where X represents the ZrO2/NiO molar ratio.  134 

The electrochemical characterization of ZrO2/NiO samples consisted in the recording of cyclic 135 
voltammetries (CVs), and electrochemical impedance spectra with Autolab potentiostat/galvanostat 136 

Mod. PGSTAT12® from Metrohm. PGSTAT was remotely controlled from a computer by means 137 
of the software Nova 1.9. The electrochemical cell had a three-electrode configuration with NiO 138 
(either bare or ZrO2-modified as nanocomposite) as working electrode, a platinum wire as the 139 
counter-electrode and Ag/AgCl electrode as the reference electrode. The supporting electrolyte was 140 
0.1 M LiClO4 in ACN. With regard to the CV measurements the applied potential has been varied 141 

from -0.27 to 1.13 V with a variable scan rate (10, 20, 50, 100 or 200 mV*s-1). Impedance spectra 142 
were recorded in the same experimental set up by applying a frequency value ranging from 100 143 
KHz to 0.1 Hz with a potential amplitude of stimulus of 20 mV.  144 



WAXS experiments were carried out on a Bruker D8 Advance with DaVinci design diffractometer 145 

(angle dispersive). The diffractometer is equipped with a Cu Kα X-Ray tube (λ = 1.5406 Å). The 146 
instrument is fitted with focusing Göbel mirrors along the incident beam and Soller slits on both 147 

incident and diffracted (radial) beams. Data were measured in step-scan mode in the 20-80° angular 148 
range with a step of 0.02° within the Bragg-Brentano para-focusing geometry. Only the incident 149 
beam slit was closed (0.2 mm width), while the diffracted beam slit was left open. The samples 150 
were held on microscope slides within a humidity-controlled chamber purposely developed. The 151 
scattered intensity was gathered with the Lynxeye XE Energy-Dispersive 1-D detector. 152 

For the assembly of the DSC the different electrodes were sensitized by dipping them in a P130 153 

solution (0.3 mM in ACN) for 16 hours. The electrodes were rinsed with ACN to remove the excess 154 
of not chemisorbed dye. Optical transmittance of sensitized photocathodes was measured with a 155 
double ray spectrometer [UV-2550 by Shimazdu, Kyoto (JP)].   156 

Bare and P1-sensitized photocathodes were assembled in a sandwich configuration with platinised-157 
FTO as counter-electrode. A double layer of Platinum (3D-nano) was screen-printed onto the 158 

counter-electrodes. The first layer was dried at 120 °C for 10 min before printing the second one. 159 
As the first, the second layer was dried at 120°C in order to burn the solvents. Successively the 160 
counter-electrodes were fired at 480 °C in oven for 30 min for the thermal reduction of the Pt 161 

precursor31. A thermoplastic resin (Surlyn®, from Dupont), was used as spacer and sealant. The 162 
electrolyte (Iodolyte-H from Solaronix) was injected inside the two sandwiched electrodes by 163 
vacuum backfilling technique through a drilled hole -one for each cell- in the Surlyn® mask. These 164 

holes were sealed with a specific UV-curable resin (TB3035B from ThreeBond®). 165 

Photoelectrochemical characterization of the p-DSCs consisted in the recording of the JV 166 
characteristic curves, incident photon-to-current conversion efficiency (IPCE) spectra and in-light 167 
EIS data. All the measurements were recorded with a Sun Simulator AM 1.5G at 1 SUN (Incident 168 

Power = 1000 W m−2) using a Keithley 2420 as a source-meter in ambient conditions. The light 169 
source was calibrated with s SKS1110 sensor (Skye Instruments Ltd). 170 

 171 

RESULTS AND DISCUSSION 172 

Figure 1 shows the voltammograms of bare NiO and NiO_ZrO2_2%, which were recorded within 173 
the potential range -0.5 - 1 V vs Ag/AgCl at different scan rates (range:10-200 mV s-1). In both 174 
series of CVs two main peaks are observed: the peak at lower potential corresponds to the reversible 175 

solid state oxidation of NiO with occurrence of Ni2+→ Ni3+ + 1 e- (named O1);  the peak at higher 176 
potential is assigned to the formal oxidation of preexisting Ni3+ sites into Ni4+ (named O2)32. The 177 

current peak of O1 was more than doubled in going from bare NiO to the sample NiO_ZrO2_2%. 178 
Moreover, a sensible variation of the O2/O1 ratio is observed in the compared analysis of NiO and  179 
NiO_ZrO2_2% electrodes being the O2 peak less pronounced when the electrode is 180 
doped/combined with ZrO2. This combination of findings leads us to suppose that the presence of 181 
zirconia as a fine dispersion diminishes the surface concentration of Ni(III) in the as deposited 182 

sample. Beside the diminution of the portion of defective NiO, i.e. the portion containing Ni(III) 183 
sites, the presence of zirconia would favor the relative increase of the surface concentration of 184 

Ni(II) sites with respect to bare NiO. The latter statements are going to be verified in a successive 185 
study through the adoption of the XPS technique for the speciation of these NiO/ZrO2 186 

nanocomposites. In Table 1, the charge density exchanged during the occurrence of O1 and O2 as 187 
well as their relative ratio are reported. The O2/O1 ratio decreases regularly upon increase of ZrO2 188 
content up to the composition NiO_ZrO2_2%. When the ZrO2/NiO ratio becomes higher (samples 189 
NiO_ZrO2_5% and NiO_ZrO2_10%), the ratio O2/O1 increases again. This is a consequence of the 190 
fact that zirconia should form aggregates at relatively high concentrations thus becoming a 191 



segregated phase, i.e.  ZrO2 is not longer homogeneously dispersed in the form of nanoparticles 192 

within the NiO nanostructure. In the aggregated state zirconia, i.e. the component representing the 193 
passivating and non-electroactive agent of the composite, becomes less efficient in blocking the 194 

Ni3+ sites. Simultaneously, the presence of ZrO2–based macrostructure on the NiO surface 195 
decreases the active surface area of the electrode. In this context the presence of ZrO2–based 196 
macrostructure on NiO surface can explain both the detrimental effect on NiO electrochemical 197 
activity of the electrode as well as the increase in O2/O1 ratio.  198 

 199 

Figure 1. CVs of (right) NiO bare and (left) NiO_ZrO2_2% at different scan rates [10 mV/s (light blue), 20 mV/s (red), 50 mV/s 200 
(green), 100 mV/s (light red) and 200 mV/s (dark blue)]. The supporting electrolyte was 0.1 M LiClO4 in ACN. CE was a 201 
platinum rod and RE is SSE ( +0.220 mV vs NHE). 202 

Electrode O1 peak (mC cm-2) O2 peak (mC cm-2) O2/O1 (%) 

NiO 0.195 0.207 106.2 

NiO_ZrO2_0.1% 0.206 0.178 86.4 

NiO_ZrO2_1% 0.461 0.144 31.2 

NiO_ZrO2_2% 0.990 0.200 20.2 

NiO_ZrO2_5% 0.686 0.162 23.3 

NiO_ZrO2_10% 0.096 0.033 34.3 

Table 1. Charge density exchanged during the processes identified as O1 and O2 and relative ratio.  203 

From Table 1, it could be evidenced that NiO_ZrO2_2% showed both the better electrochemical 204 
activity, i.e. the higher value of exchanged charge, and the relatively lower extent of Ni3+ in the 205 
sample being this characteristic associated with the lower O2/O1 ratio. Because of that, sample 206 
NiO_ZrO2_2% appeared as the most suitable electrode to be employed as photocathode in a p-207 

DSC33.  208 

For the detection of the eventual presence of these ZrO2–based macrostructures we performed 209 
combined SEM-EDX measurements. SEM (Figure 2) evidenced all samples possessed a quite open 210 

morphology with a lot of nanometer size voids: such a morphological feature is essential to assure a 211 
sufficiently high dye-loading for DSC purposes. The presence of ZrO2 macrostructures was detected 212 
in all samples. For the determination of the actual chemical nature of the macrostructures we 213 
analyzed the elemental distribution on the electrode surface with Energy Dispersive X-ray (EDX, 214 
figure 3) spectroscopy. The analysis concerned the search of the elements Ni, O and Zr. The 215 



eventual presence of Sn from FTO substrate was also checked to evaluate the porosity of the screen-216 

printed electrodes.  Are here shown the SEM and EDX images of NiO, NiO_ZrO2_2% and 217 
NiO_ZrO2_5%. Additional images have been collected in the supporting information (Figures 218 

ESI1-ESI4). 219 

    220 

     221 

Figure 2. SEM image of the NiO electrodes differing for the amount of ZrO2: (top left) NiO; (top right) NiO_ZrO2_2% and (bottom 222 
left) NiO_ZrO2_10%. A magnification of NiO_ZrO2_2% has been shown (bottom right) to evidence the dispersion of ZrO2 NPs onto 223 
the NiO surface. 224 

By the comparison of images in Figure 2 and ESIX, one can see that a ZrO2/NiO molar ratio higher 225 

than 2% leads to the growth of some macrostructures. The latter feature became more evident in 226 
NiO_ZrO2_10%. Interestingly, the presence of nanoparticles randomly dispersed onto the electrode 227 

surface was evidenced too with EDX spectroscopy. EDX confirmed also that the ZrO2 228 
macrostructures were formed by the aggregation of ZrO2 NPs in the samples with the largest 229 
concentration of zirconia.  As shown in figure ESIX, a concentration of Zr and a lower amount of 230 

Ni was revealed in the analyzed area. Moreover, this structure is not porous since the signal of Sn 231 
could not be detected. The presence of superficial Zr could not be found in NiO_ZrO2_0.1% (Figure 232 
ESI1) because of the too high dispersion of ZrO2 NPs, which is below the sensitivity of the EDX 233 
instrument (0.065 mmol per unit area). The signal of Sn was detected for all nanocomposites with 234 

molar content of Zr smaller than 10% (See ESI5).  235 

 236 



          237 

Figure 3. EDX images of (left column) NiO_ZrO2_1%, (middle column) NiO_ZrO2_2% and (right column) NiO_ZrO2_5%. The 238 
surface distribution of different elements has been marked with different colors: violet-blue = O (first row of images); green = Ni 239 
(second row of images); pink = Zr (third row of images); red = Sn (fourth row of images). The bottom row represents the 240 
morphology of the three different samples of nanocomposites here considered. 241 

 242 



 243 

The Tauc’s plot was employed to determine the optical band gap of not sensitized electrodes upon 244 

variation of zirconia content (Figure 4).  245 

 246 

Figure 4. Tauc’s plot for the extrapolation of the optical bandgap in the different nanocomposites of NiO and ZrO2. Black circles: 247 
NiO; light blue squares: NiO_ZrO2_0.1%; dark blue diamonds: NiO_ZrO2_1%; orange triangles: NiO_ZrO2_2%; red triangles: 248 
NiO_ZrO2_5%; green triangles: NiO_ZrO2_10%. 249 

In the present case, the bandgap Eg for this series of nanocomposites tends to increase 250 

monotonically on going from NiO to NiO_ZrO2_5% whereas the bandgap of NiO_ZrO2_10% is 251 

very similar to the one of NiO. More precisely, the calculated bandgap is 3.62, 3.61, 3.68, 3.71, 3.75 252 

and 3.63 for NiO, NiO_ZrO2_0.1%, NiO_ZrO2_1%, NiO_ZrO2_2%, NiO_ZrO2_5% and 253 

NiO_ZrO2_10%, respectively. The blue-shifted Eg of the ZrO2 /NiO electrode with respect to NiO 254 

leads to more transparent films of the nanocomposites with respect to NiO in the visible range. A 255 

larger number of defects in the lattice corresponds to a system with a tighter the optical band gap. 256 

Electrochemical impedance spectra were recorded in a three-electrode cell configuration in dark 257 

condition in order to avoid any modification induced by the eventual photoactivity of NiO working 258 
electrode. The applied potential ranged in the interval -0.2 - 1.1 V (vs Ag/AgCl) (Figure 5). 259 

Experimental data have been fitted with the equivalent circuit depicted in Figure ESI5: the first 260 
element simulates charge-transfer phenomena occurring at the electrode/electrolyte interface whilst 261 
the second accounts for the charge transport through the electrode with its characteristic charge 262 
transport resistance and capacitance. In the present context, we focus our attention and discuss 263 
mainly the former type of phenomenon, i.e. interfacial charge transfer since this represents the 264 

process at the basis of recombination in the actual p-DSC device and constitutes the problem which 265 
is here tackled through the introduction of nanocomposites of electroactive NiO and 266 

electrochemically inert ZrO2. The electrolyte composition in the experiments of electrochemical 267 
impedance is the same as the one employed in the experiments of cyclic voltammetry.  268 

In Table 2 RCT represents the charge transfer (CT) resistance at the electrolyte/electrode interface, 269 
CINTER is the double layer capacitance whereas Celectrode is the capacitance of the electrode layer. EIS 270 
data evidenced that RCT diminishes with the applied potential irrespective of the amount of zirconia 271 
in the electrode. This is expected since the increase of the applied potential is accompanied by the 272 
concomitant increase of the number of holes, i.e. the mobile charged species that are injected 273 



electrochemically in the film of NiO during its oxidation. Beside the improvement of the charge 274 

transfer properties these holes contribute to the double layer capacitance CINTER at 275 
electrode/electrolyte interface and to the capacitance Celectrode of the electrode bulk.  When CT is 276 

relatively fast it promotes the formation of a diffuse double layer instead of a compact one. The RCT 277 
values decrease sharply when the applied potential approaches the values of NiO redox processes, 278 
i.e. between 0 and 0.25 V and between 0.5 and 0.7 V for Ni2+ -> Ni3+ and Ni3+ -> Ni4+ reactions, 279 
respectively. A similar behaviour has been already reported for NiO when is polarized in aqueous 280 
electrolytes34. Among the various formulations of the nanocomposites in the pristine state, the 281 

system NiO_ZrO2_2% showed the lowest RCT (2218 ), and the largest values of the capacitive 282 
terms Celectrode and CINTER. These findings denote the existence of a quite defective material with a 283 

relatively high number of native charges in starting NiO_ZrO2_2%.  Upon completion of the 284 
oxidation processes (Eappl = 1.10 V vs Ag/AgCl) NiO_ZrO2_2% presented also the largest value of 285 
RCT (twice the value of bare NiO one): this is an indication of the stronger tendency of this 286 
particularly formulation of nanocomposite to suppress efficaciously recombination at the 287 
electrode/electrolyte interface with respect to the other combinations. 288 

 289 

   290 

  291 
Figure 5. EIS data of (top left) NiO bare, (top right) NiO_ZrO2_1%, (bottom left) NiO_ZrO2_2% and (bottom right) NiO_ZrO2_10% 292 
at different applied potential: -0.20 (dark red circles), 0.00 (dark green squares), 0.25 (dark blue diamonds), 0.50 (red triangles), 0.70 293 
(purple triangles), 0.90 (orange triangles) and 1.10 V vs Ag/AgCl (light blue triangles). The fittings have been reported as full lines.  294 

 295 

 296 



 E / V vs Ag/AgCl 

 
-0.20 0.00 0.25 0.50 0.70 0.90 1.10 

NiO RCT /  3715 1942 284 131 88 71 62 

CINTER / F 33.2 28.6 24.4 16.2 11.9 10.2 9.2 

Celectrode / F 53.8 178.2 198.5 212.1 225.2 236.7 239.8 
NiO_ZrO2_0.1% RCT /  3134 707 312 198 131 99 84 

CINTER / F 37.3 31.7 22.3 20.7 14.1 13.5 12.4 

Celectrode / F 55.3 184.4 218.8 232.2 242.6 252.9 254.6 
NiO_ZrO2_1% RCT /  2540 635 328 237 151 126 102 

CINTER / F 43.8 35.9 26.1 21.3 17.9 15.3 13.6 

Celectrode / F 65.1 223.2 293.2 301.2 332.9 336.5 362.8 
NiO_ZrO2_2% RCT /  2218 593 248 179 148 130 119 

CINTER / F 49.7 33.7 26.5 20.4 17.6 15.6 14.8 

Celectrode / F 170.1 332.2 383.3 393.8 436.4 446.0 470.7 
NiO_ZrO2_5% RCT /  2649 741 346 264 164 133 112 

CINTER / F 47.9 36.0 26.5 19.7 17.3 15.1 13.8 

Celectrode / F 132.0 248.9 340.8 342.8 367.9 384.6 402.3 
NiO_ZrO2_10% RCT /  4135 1002 422 280 136 117 108 

CINTER / F 46.6 31.7 23.7 17.2 14.4 12.6 11.7 

Celectrode / F 72.2 191.8 198.6 204.6 228.9 230.9 236.9 
Table 2. Electric parameters derived from the fit of experimental impedance spectra. The errors on the fitting parameters are less 297 
than 3%. 298 

In order to check the crystallographic structure of our modified samples and the eventual arising of 299 

some NiO/ZrO2 mixed phase, we performed X-Ray Diffraction measurements. The results have 300 

been reported in figure 6: as one can see, the XRD spectrum of bare NiO (JCPDS card No. #47-301 

1049) shows one main peak corresponding to the 111 plane (at 37.2°) and a smaller peak at 75.1° 302 

corresponding to the 311 plane. All the peak indexed with * arising from the FTO employed as 303 

substrate35. The addition of ZrO2 NPs leads to a slight modification of the XRD pattern: two small 304 

peaks could be evidenced at 42.8° and 62.5° ascribable to the 200 and 220 plane of cubic NiO 305 

(JCPDS card No. #47-1049), respectively. Furthermore, there is not any evidence of peak due to 306 

ZrO2 or NiO/ZrO2 mixed phases. The XRD pattern of monoclinic ZrO2 usually presents two main 307 

peaks at 28.1° (110) and 31.4° (111), JCPDS card No. #78-1807, whereas the spectrum of 308 

tetragonal zirconia is composed by three main peaks centred at 30.2° (101), 50.2° (112) and 60.2° 309 

(211), JCPDS card No. #79-1769. The absence of any crystallographic peak of ZrO2 is ascribable to 310 

the homogenous dispersion of the nanoparticles (figure 3) that not allow the occurrence of large 311 

ZrO2 crystallographic domains. Therefore, the effect of the addition of ZrO2 results in the growth of 312 

the NiO matrix in additional crystalline planes. More interestingly, the rise of NiO/ZrO2 mixed 313 

phase could be completely ruled out. 314 

 315 



 316 

Figure 6. XRD spectra of bare NiO (black line), NiO_ZrO2_2% (orange line) and NiO_ZrO2_5% (red line) films. The peak due to the 317 
presence of crystalline NiO are indexed by the name of the corresponding plane. *-indexed peak refers to FTO substrate. 318 

The JV curves of the p-DSCs with the six formulations here considered have been recorded for both 319 

pristine and P1-sensitized electrodes to stress eventual changes in the operating features of the NiO-320 

based electrode after sensitization. When dye is not loaded onto the NiO surface, the only accessible 321 

pathway to produce photocurrent is the excitation of an electron from the VB of NiO to its CB at 322 

the approximate wavelength of excitation exc ≈ 320 nm. To reduce the current losses due to 323 

recombination phenomena, Ni3+ sites should be inaccessible to the reducing species that are present 324 

in solution: the implementation of ZrO2 NPs avoids that the surface of nickel oxide with its 325 

recombination defects is fully exposed to the electrolyte. The practical effect of the introduction of 326 

ZrO2 NPs is the increase in the powered photocurrent: +123% on going from pristine NiO to 327 

NiO_ZrO2_2% (Figure 7 and Table 3) accounting for a huge decrease in recombination phenomena. 328 

NiO and NiO_ZrO2_2% produced a photocurrent of 0.448 mA*cm-2 and 0.994 mA cm-2 , 329 

respectively. The trend of photocurrent is not monotonic: it reached its maximum when ZrO2 to 330 

NiO have a molar ratio of 2% and it decreased for NiO_ZrO2_5% and NiO_ZrO2_10% (JSC = 0.747 331 

and 0.414 mA cm-2, respectively). This trend is in accordance with the CV and EIS data (vide 332 

supra). Such a combination of findings shows how revealing is the analysis of the electrochemical 333 

properties in case of nanostructured NiO electrodes for the successive evaluation of their 334 

photoelectrochemical performance. When compared to sole NiO, the sample of NiO_ZrO2_0.1% 335 

does not show any significant difference in terms of electrochemical and photoelectrochemical 336 

behavior due to the fact that zirconia NPs are too dispersed to effectively influence the 337 

(photo)electrochemical properties of the corresponding nanocomposite electrode. NiO_ZrO2_1%, 338 

NiO_ZrO2_2% and NiO_ZrO2_5% manifested similar electrochemical behavior and displayed 339 

similar morphologies. In case of NiO_ZrO2_1% such a concentration of ZrO2 does not allow a good 340 

dispersion of the nanoparticles throughout the NiO film whereas molar percentage values higher 341 

than 2% causes the formation of pure ZrO2 macrostructure that can prevent the exposure of the Ni3+ 342 

sites. Among the doped electrode NiO_ZrO2_10% showed the worst performance: the electrode 343 

mainly suffered for an extremely low Fill Factor (FF ≈ 25%). Such a result could be ascribed to the 344 

presence of large aggregates of zirconia that produce as main effect the inhibition of the process of 345 



photoinjection rather than preventing recombination. Moreover, the electrode formulation 346 

NiO_ZrO2_5% showed a relatively low FF (≈ 28%) too. Open circuit potential (VOC) values ranged 347 

from 78 to 85 mV without showing any clear trend with the amount of dispersed zirconia.  348 

     349 

Figure 7. (Left) JV curves and (right) IPCE spectra of the p-DSCs employing bare electrodes with different doping degree: 0% 350 
(black), 0.1% (light blue), 1% (dark blue), 2% (orange), 5% (red) and 10% (green). 351 

By definition the IPCE (Incident Photo-to-current Conversion Efficiency) is the ratio of the number 352 

of collected carriers to the number of all the incident photons on the device active area at a given 353 

wavelength. The differences in the spectra reported in figure 7 evidence that the probability with 354 

which the photoinjected holes reach the current collector (tr) varies with the content of zirconia 355 

and follows the trend of the photocurrent, i.e.  the higher the photocurrent powered by the device, 356 

the higher the maximum of the IPCE spectra. Some little shifts of the wavelength corresponding to 357 

IPCE maximum are expected for the different electrodes due to the blue-shift of the optical bandgap 358 

introduced by the presence of zirconia, as previously outlined.  359 

P1 was the sensitizer of our p-DSCs36 (sensitization conditions: 16 hours in a 0.3 mM solution of 360 

the dye in ACN). NiO_ZrO2_10% has been excluded from the analyses because of its poor 361 

electrochemical and photoelectrochemical performance. Upon sensitization the enhancement of the 362 

photocurrent is clear in going from NiO to NiO_ZrO2_2%. Yet the magnitude of such an increase is 363 

lower compared to the corresponding increase when un-sensitized electrodes are employed (+ 46% 364 

vs +123%, respectively). This difference was mainly due to the presence of the sensitizer: the dye 365 

partially acts as a passivating agent by reducing the free Ni3+ sites that represent the actual sites of 366 

anchoring. Some of the Ni3+ sites are actively involved in binding P1 onto the NiO surface, whereas 367 

other are simply covered as a consequence of the steric hindrance of the organic molecule. JSC 368 

values varied from 1.447 mA cm-2 to 2.037 mA cm-2 in passing from bare NiO to NiO_ 369 

ZrO2_0.020. To our knowledge the efficiency value of 0.088% here obtained with P1-sensitized 370 

NiO_ZrO2_0.020. is the highest reported for a P1-sensitized screen-printed NiO electrode without 371 

the integration of a NiO compact layer37,38. NiO_ZrO2_0.1% and NiO_ZrO2_1% have shown quite 372 

similar performances (1.611 and 1.690 mA cm-2 of short circuit current density, respectively) but 373 

far from the record value.  374 

 375 



 Dye JSC/ mA*cm-2 
VOC / 

mV 
FF / %  / % 

Dye Loading / 

108*mmol*cm-2 

NiO - 0.448 ± 0.012 83 ± 2 33.8 ± 0.9 0.012 - 

NiO_ZrO2_0.001 - 0.480 ± 0.020 83 ± 2 34.1 ± 0.7 0.014 - 

NiO_ZrO2_0.010 - 0.618 ± 0.023 78 ± 1 33.2 ± 0.7 0.016  - 

NiO_ZrO2_0.020 - 0.994 ± 0.033 78 ± 2 33.7 ± 0.6 0.026  - 

NiO_ZrO2_0.053 - 0.747 ± 0.028 75 ± 3 27.9 ± 0.9 0.017  - 

NiO_ZrO2_0.111 - 0.414 ± 0.056 84 ± 3 25.3 ± 0.8 0.009 - 

NiO  P1 1.447 ± 0.120 129 ± 2 32.5 ± 0.6 0.060 3.19 ± 0.62 

NiO_ZrO2_0.001 P1 1.611 ± 0.089 130 ± 2 32.4 ± 0.5 0.068 3.16 ± 0.52 

NiO_ZrO2_0.010 P1 1.690 ± 0.103 130 ± 3 34.4 ± 0.5 0.075 3.27 ± 0.39 

NiO_ZrO2_0.020 P1 2.037 ± 0.095 129 ± 2 33.6 ± 0.6 0.088 3.22 ± 0.41 

NiO_ZrO2_0.053 P1 1.313 ± 0.063 126 ± 1 30.5 ± 0.3 0.050 2.65 ± 0.53 

NiO_ZrO2_0.111 P1 - - - - - 
Table 3. Photoelectrochemical parameters of the p-DSCs with the differently doped ZrO2-NiO nanocomposite photoelectrodes. The 376 
reported values are obtained from averaging the performances of five devices. The errors on the efficiency values are lower than 377 
0.001 and have not been reported. 378 

 379 

 380 

Figure 8. JV curves of the complete devices built up with P1-sensitized electrodes with different doping degree: 0% (black), 0.1% 381 
(light blue), 1% (dark blue), 2% (orange) and 5% (red). 382 

NiO_ZrO2_5% displayed the worst performance in terms of current density and open circuit 383 

voltage. The lower values of JSC, Voc and FF are mainly due to an insufficient dye-loading (see 384 

Table 3): zirconia macrostructures, even if they are not as extended as in case of NiO_ZrO2_10% 385 

(see SEM pictures in Figure 2), seem to prevent the full penetration of the sensitizer throughout the 386 

porous structure of the electrode with consequent insufficient dye-loading. Similar to not sensitized 387 

devices, no substantial variations of VOC could be observed. The highest values of fill factor (34.4% 388 

and 33.6%), have been reported when the fraction of ZrO2 are 1% and 2%. This evidence confirms 389 

the optimal dispersion of zirconia NPs in the fraction range of 1-2 % as already outlined by the 390 

electrochemical measurements. IPCE spectra of the P1-sensitized devices (Figure 9), confirmed the 391 

trend shown by JV curves.  392 



 393 

Figure 9. IPCE spectra of the complete devices built up with P1-sensitized electrodes with different doping degree: 0% (black), 0.1% 394 
(light blue), 1% (dark blue), 2% (orange) and 5% (red). 395 

The different performances of the p-DSCs differing for the composition of the nanocomposite 396 

electrodes could be ascribed to a minimization of the recombination reactions involving the reduced 397 

species in the electrolyte, i.e. I-, and the surface localized holes in the NiO electrode. The similar 398 

values of dye loading and bandgap for the series of electrodes here considered indicate that the 399 

kinetics of charge injection is not sensibly altered by the fraction of zirconium oxide. The 400 

electrochemical impedance spectra of the different photelectrochemical cells are presented in Figure 401 

9. For sake of simplicity the impedance spectrum of the DSC with NiO_ZrO2_0.1% photocathode is 402 

not shown due to the similarity with the spectrum of the cell having sole NiO photocathode.  403 

The electric parameters reported in Table 4 could be extracted from experimental data when the 404 

equivalent circuit28 of the inset of Figure 10 is adopted as model. In this model Rs is the resistance 405 

of all the external elements. It should be constant within the experimental error. RCE is the resistance 406 

of charge transfer through the electrolyte/counter electrode interface and corresponds to the process 407 

of oxidation of the reduced species of the redox shuttle (i.e. I-) at Pt electrode. CCE is the capacitance 408 

at the electrolyte/counter electrode interface. The following circuital elements have been defined in 409 

the transmission line element adapted by Bisquert to analyze the impedance response of n-type 410 

DSCs 39 and successfully employed for the analysis of the impedance spectra of  p-type DSCs28: 411 

• Rt is the (transport) resistance of the electronic charge carriers, i.e the holes, to traverse the 412 

NiO electrode and reach the FTO back contact (charge collector). 413 

• Rrec is the resistance of recombination the charge carriers experience after photogeneration. 414 

Patterns of recombination can be due either to the recombination of the excited/oxidized dye 415 

with the hole or to the recombination of the photogenerated hole with a reducing species in 416 

the electrolyte, namely I-. 417 

• C is the (chemical) capacitance of the NiO-based photocathode and is related to the content 418 

of charge that is present inside the illuminated photocathode. 419 

The employment of the transmission line element is consistent with the mesoporous nature of the 420 

photocathodes. The pure capacitive elements are here replaced with the CPE (constant phase 421 



element) that allows an easier fit of the experimental data without influencing the reliability of the 422 

obtained parameters. The actual capacitance (Creal) could be calculated applying the following 423 

equation: 424 

𝐶𝑟𝑒𝑎𝑙 =  
(𝐶𝐶𝑃𝐸 ∗ 𝑅)(

1
𝑛

)

𝑅
 425 

in which CCPE and n are the two parameters describing the capacitive properties of the CPE element 426 

whilst R is the value of the resistance associated to CPE. If n is equal to 1, the CPE acts a pure 427 

capacitance.   428 

 429 

Figure 10. EIS spectra of the complete devices built up with P1-sensitized electrodes differing for the fraction of zirconia dopant: 0% 430 
(black dots), 1% (dark blue diamonds), 2% (orange triangles) and 5% (red triangles). In the inset, the equivalent circuit employed for 431 
the experimental data interpolation is reported. 432 

The determination of these electrical parameters allows the direct calculation of the following 433 

microscopic parameters:  434 

• h (= Rt * C), i.e.  the time the photoinjected holes take to reach the FTO charge collector; 435 

• rec (= Rrec * C), i.e.  the holes lifetime that corresponds to the time the photoinjected holes 436 

spend before undergoing any type of recombination process;  437 

• Lh [= l (Rt/Rrec)
1/2, where l is the nominal film thickness] is the mean free path of the 438 

photoinjected holes before being involved in recombination reactions; 439 

• Dh (=Lh
2 /h) is the average diffusion coefficient of the photoinjected holes through the 440 

photocathode. 441 

The values of both RCE and CCE did not vary considerably with the concentration of ZrO2 NPs in the 442 

nanocomposite electrode. The modification in electronic and photoelectronic properties of the 443 

working photoelectrode do not influence the kinetics of charge transfer processes at the counter-444 

electrode. 445 

In the p-DSCs the value of Rt decreased with the increase of ZrO2 molar content in the 446 

photocathode in agreement with the ameliorated electronic transport properties of the NiO electrode 447 



due to the controlled doping with zirconia when the three-electrode cell was analyzed. The presence 448 

of zirconia NPs onto the NiO surface reduces the number of free trap sites (i.e. Ni3+ surface located 449 

sites) which contribute to the chemical capacitance of the electrode. This is proved by the higher 450 

value of C reported for NiO_ZrO2_1% and NiO_ZrO2_2% (101 F and 115 F, respectively) 451 

compared to the un-doped NiO electrode (89 F). The relatively low value of chemical capacitance 452 

(i.e. 97 F) recorded for NiO_ZrO2_5% is probably due to the insufficient dye loading that prevents 453 

the photoinjection of a high number of carriers. The low value of Rrec for the NiO_ZrO2_5% 454 

electrode is associated with a relatively low amount of dye. Both un-doped NiO and NiO_ ZrO2_5% 455 

electrode showed the lowest Rrec values (56.3  and 57.3  respectively) while NiO_ZrO2_1% 456 

with 63.8  and NiO_ZrO2_2% with 70.3   gave the best performing cells in combination with 457 

the higher resistance of recombination (see JV curves in Figure 7). The analysis of the data showed 458 

a linear correlation between Rrec and JSC: the higher the former the higher the latter. Such a linear 459 

correlation does not hold when  is correlated to Rrec (and JSC). The values of rec followed the same 460 

trend of Rrec. A remarkably long time of recombination of 8.1 ms for the charge carriers diffusing 461 

through NiO_ZrO2_2% has been found in combination with long diffusion length (3.7 m) and high 462 

diffusion coefficient (5.7 *10-5 cm2 s-1). This is a consequence of the fact that the photoinjected 463 

holes have a longer mean free path and a higher rate of diffusion throughout the NiO film in 464 

presence of zirconia nanoparticles with respect to undoped NiO. The Ni3+ trap states are expected to 465 

be masked and eventually annihilated upon addition of zirconia nanoparticles. For the confirmation 466 

of the latter statement the analysis of the surface with XPS will be necessary and is planned in a 467 

successive study. The photoelectrode formulation NiO_ ZrO2_5% presented a low value of rec, as 468 

well as the lowest value of h within the series of the electrodes. It is expected that such a content of 469 

zirconia prevents the homogeneous sensitization of the anchoring sites of NiO, which also behave 470 

as trapping species. Such sites in the not sensitized state contribute to lower the hole diffusion time 471 

with the consequent attainment of high values of Dh (Table 4). 472 

 473 

ZrO2 (%) 0 1 2 5 

RCE () 13.0 ± 0.1 13.3 ± 0.2 13.0 ± 0.1 12.8 ± 0.1 

CCE (F) 12.7 ± 0.3 13.1 ± 0.2 12.4 ± 0.2 12.3 ± 0.1 

Rt () 27.3 ± 0.5 23.0 ± 0.4 20.8 ± 0.2 18.6 ± 0.5 

Rrec () 56.3 ± 0.5 63.8 ± 0.8  70.3 ± 0.7 57.3 ± 0.8 

C (F) 89 ± 3 101 ± 3 115 ± 4 97 ± 3 

h (ms) 2.4 ± 0.1 2.3 ± 0.1 2.3 ± 0.1 1.8 ± 0.1 

rec (ms) 5.0 ± 0.1 6.4 ± 0.2 8.1 ± 0.1 5.6 ± 0.1 

Lh (m) 2.9 ± 0.3 3.3 ± 0.2 3.7 ± 0.2 3.5 ± 0.2 

Dh (cm2/s) *10-5 3.4 ± 0.1 4.8 ± 0.2 5.7 ± 0.2 6.9 ± 0.3 
Table 4.  Microscopic parameters  with the relative errors  as determined by the interpolation of EIS spectra of Figure 9. The 474 
reported values are averaged considering the measurements conducted on five different cells with the photoelectrodes from the same 475 
batch. 476 

Treatments like the deposition of a blocking layer between the FTO and the photocathode or the 477 

post-sintering surface modification of NiO based electrodes are expected to further enhance the 478 

performance of p-DSCs. For this reason, further experiments in the direction of the modification of 479 

the photocathode with inclusion of a blocking compact layer and consideration of post deposition 480 

treatments will be planned. The main motivation of the conduction of this type of studies is the 481 

implementation of the best performing photocathodes in tandem DSCs when comparable current 482 



densities and efficiencies are achieved at the corresponding photoelectrodes of p- and n-type 483 

devices.  484 

 485 

CONCLUSIONS 486 

The nanocomposites obtained from the sintering of nanoparticles (NPs) of nickel oxide (NiO) and 487 

zirconia (ZrO2) have been employed as photocathodes of p-type dye-sensitized solar cells (p-488 

DSCs), P1 being the sensitizer. NiO represented the component in large excess whereas ZrO2 489 

constituted   the doping species of the nanocomposite with a percentage of less than 10%. Nano-490 

dispersed ZrO2 minimized recombination phenomena at the electrode/electrolyte interface of the p-491 

DSC when the redox shuttle was the couple I-/I3
-. The best performance of the photoelectrochemical 492 

cell was obtained with the electrode having the 2% of ZrO2 in the NiO matrix. This enhancement 493 

(due to the addition a controlled amount of ZrO2 NPs) was firstly ascribed to a minimization of the 494 

recombination phenomena occurring at the electrode/dye/electrolyte interface. Electrochemical 495 

impedance measurements were employed to prove this hypothesis: recombination resistance was 496 

improved by 25% (from 56.3 to 70.3 ); additionally, hole transport resistance was reduced to 20.8 497 

 (from 27.3  of bare NiO). These evidences lead to slower recombination time, faster hole 498 

transport, longer hole diffusion length and higher diffusion coefficient. The efficiencies of the p-499 

DSCs with NiO/ ZrO2 nanocomposites were 123% and 48% higher than un-doped NiO for the bare 500 

and sensitized electrode, respectively. SEM-EDX experiments have been performed to visualize the 501 

pattern of dispersion of ZrO2 NPs in the NiO matrix. The values of 0.1 and 1% of zirconia  do not 502 

assure a uniform dispersion. When the concentration of zirconia was higher than 5%, the NPs 503 

merged to form macrostructures. This phenomenon of ZrO2 NPs aggregation on the electrode 504 

surface prevented surface passivation and efficient dye-loading. The enhancement here reported 505 

consists in a considerable breakthrough as far as the lowering of charge recombination phenomena 506 

p-DSCs is concerned. On the other hand, the optimization of the other cell elements, e.g. dye, 507 

electrolyte etc., will be mandatory to further improve the conversion performance of this type of 508 

devices in perspective of assembling tandem devices with nanocomposite photocathodes.   509 
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