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Purpose: To investigate the value of T2-weighted–based radiomics 
compared with qualitative assessment at T2-weighted im-
aging and diffusion-weighted (DW) imaging for diagno-
sis of clinical complete response in patients with rectal 
cancer after neoadjuvant chemotherapy–radiation therapy 
(CRT).

Materials and 
Methods:

This retrospective study included 114 patients with rectal 
cancer who underwent magnetic resonance (MR) imag-
ing after CRT between March 2012 and February 2016. 
Median age among women (47 of 114, 41%) was 55.9 
years (interquartile range, 45.4–66.7 years) and median 
age among men (67 of 114, 59%) was 55 years (inter-
quartile range, 48–67 years). Surgical histopathologic 
analysis was the reference standard for pathologic com-
plete response (pCR). For qualitative assessment, two 
radiologists reached a consensus. For radiomics, one ra-
diologist segmented the volume of interest on high-spatial-
resolution T2-weighted images. A random forest classifier 
was trained to separate the patients by their outcomes 
after balancing the number of patients in each response 
category by using the synthetic minority oversampling 
technique. Statistical analysis was performed by using the 
Wilcoxon rank-sum test, McNemar test, and Benjamini-
Hochberg method.

Results: Twenty-one of 114 patients (18%) achieved pCR. The ra-
diomic classifier demonstrated an area under the curve 
of 0.93 (95% confidence interval [CI]: 0.87, 0.96), sensi-
tivity of 100% (95% CI: 0.84, 1), specificity of 91% (95% 
CI: 0.84, 0.96), positive predictive value of 72% (95% CI: 
0.53, 0.87), and negative predictive value of 100% (95% 
CI: 0.96, 1). The diagnostic performance of radiomics was 
significantly higher than was qualitative assessment at T2-
weighted imaging or DW imaging alone (P , .02). The 
specificity and positive predictive values were significantly 
higher in radiomics than were at combined T2-weighted 
and DW imaging (P , .0001).

Conclusion: T2-weighted–based radiomics showed better classification 
performance compared with qualitative assessment at T2-
weighted and DW imaging for diagnosing pCR in patients 
with locally advanced rectal cancer after CRT.

q RSNA, 2018
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was compliant with the Health Insur-
ance Portability and Accountability 
Act, and waived the requirement for 
informed consent. We searched our 
retrospectively maintained database 
for consecutive patients who under-
went rectal MR imaging between 
March 2012 and February 2016. The 
inclusion criterion was patients with 
rectal adenocarcinoma who under-
went neoadjuvant CRT followed by 
surgery at Memorial Sloan Kettering 
Cancer Center from March 2012 to 
February 2016. The exclusion crite-
ria were as follows: (a) percentage of 
fibrosis unavailable on pathologic re-
port, (b) recurrent rectal cancer, (c) 
nonadenocarcinoma rectal cancer, (d) 
palliative surgery, (e) no rectal MR 
imaging between CRT and surgery, (f) 
interval between rectal MR imaging 
and surgery more than 3 months, (g) 
mucinous tumor, (h) incomplete tu-
mor coverage at MR imaging, (i) poor 
image quality, and (j) rectal perfora-
tion. The patient selection process is 
summarized in Figure 1.

Our final study population consisted 
of 114 of 327 patients: 67 (59%) men 

from 71% to 88% (17,18). Rectal MR 
imaging has been used to assess cCR by 
using morphologic (12,19) and/or func-
tional MR imaging sequences (18,20), 
but these approaches have variable di-
agnostic performances. After neoadju-
vant CRT, most rectal tumors develop 
fibrosis, which leads to decreased signal 
intensity on T2-weighted images. Nev-
ertheless, tumors may still exist within 
a scar, and adding diffusion-weighted 
(DW) imaging has been shown to im-
prove the prediction of response by im-
proving the depiction of viable tumor af-
ter neoadjuvant CRT (19,21). Currently, 
no consensus exists in the literature on 
which approach is the most reliable to 
assess tumor response after neoadju-
vant CRT, and a nonsurgical strategy 
is not currently supported by the Na-
tional Comprehensive Cancer Network 
guidelines (6). Therefore, there is an in-
creasing need for evaluation of tumor re-
sponse by using a variety of techniques.

Radiomics analysis involves comput-
er-based extraction of a large number of 
quantitative features and has potential 
for aiding clinical decision making (22). 
Prior studies have evaluated the use of 
radiomics analysis in MR imaging for 
distinguishing cancer from benign tissue 
or adding information about cancer ag-
gressiveness (21,23–30), as well as for 
predicting response after CRT (31–33). 
We hypothesize that MR imaging–based 
radiomics may add value to the current 
MR imaging assessment for evaluating 
patients with locally advanced rectal 
cancer after CRT, improving on qualita-
tive assessment to differentiate patients 
with clinical partial response from those 
with cCR after CRT.

The purpose of our study was to in-
vestigate the added value of T2-weighted– 
based radiomic features compared 
with the qualitative assessment at T2-
weighted and DW imaging for diagnosis 
of cCR in patients with locally advanced 
rectal cancer after neoadjuvant CRT.

Materials and Methods

Study Population
The institutional review board ap-
proved our retrospective study, which 
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Implications for Patient Care

 n Radiomics analysis of 
T2-weighted images may poten-
tially improve the discrimination 
between pathologic complete and 
pathologic partial response in 
patients with locally advanced 
rectal cancer after chemo-
therapy–radiation therapy.

 n Radiomics analysis to discrimi-
nate pathologic complete and 
partial response in patients with 
locally advanced rectal cancer 
after neoadjuvant therapy can 
be performed by using two  
different magnetic fields  
(1.5 T and 3.0 T).

Outcomes for patients with rectal 
cancer have improved in the past 
decades, in part because of bet-

ter staging with high-spatial-resolution 
rectal magnetic resonance (MR) im-
aging, better surgical technique, and 
the use of neoadjuvant chemotherapy– 
radiation therapy (CRT) (1–5). The stan-
dard treatment for patients with MR 
imaging–staged locally advanced rectal 
cancer is neoadjuvant CRT followed by 
total mesorectal excision. After neoad-
juvant CRT, approximately 50% to 60% 
of patients are downstaged and 15% to 
27% show pathologic complete response 
(pCR) (6–9). In addition, tumor response 
has been shown to facilitate margin-free 
surgical resection and serve as a prog-
nostic factor (6,10–12). Pioneering data 
from Brazil (7) and subsequent studies 
(13–15) have shown that selected pa-
tients with clinical complete response 
(cCR) can be safely treated with CRT 
alone. However, implementing a nonsur-
gical approach requires strict selection 
criteria and frequent follow-up, including 
endoscopy and MR imaging (7,13).

Although the assessment of cCR 
after neoadjuvant CRT has become in-
creasingly important, especially in non-
surgical management where accurate 
diagnosis is crucial, it is still a clinical 
challenge. Digital rectal examination and 
endoscopy have been used as the main 
examinations for evaluating tumor re-
sponse, but they are limited to the lu-
minal view (16) with accuracy ranging 
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The radiologists were aware that the pa-
tients had completed CRT before rectal 
MR imaging, but they were blinded to 
endoscopic and histopathologic results. 
The radiologists visually classified the 
area after treatment as either cCR or 
clinical partial response in consensus. 
The radiologists had the primary stag-
ing MR images at their disposal to guide 

Qualitative MR Evaluation
Two radiologists (N.H. and I.P., with 5 
years and 9 years of experience in rectal 
MR imaging, respectively) reviewed the 
T2-weighted images of all patients (n = 
114) and DW images, including visual 
assessment of the apparent diffusion 
coefficient maps in 106 patients (eight 
patients had suboptimal DW images). 

and 47 (41%) women, with a median 
age of 55 years (interquartile range, 
48–67 years). The median age among 
women was 55.9 years (interquar-
tile range, 45.4–66.7 years) and the 
median age among men was 55 years 
(interquartile range, 48–67 years). No 
statistical difference in age was found 
between male and female patients.

MR Imaging Protocol
The majority of rectal MR examina-
tions were performed at our insti-
tution (109 of 114; 96%) and a few 
were performed at other institutions 
(five of 114; 4%). MR images were 
acquired with different GE Health-
care System platforms (Discovery 
MR750, Optima MR450w, Signa EX-
CITE, and Signa HDxt; Waukesha, 
Wisc) by using a phase-array coil. 
The minimum sequence required was 
high-spatial-resolution axial oblique 
T2-weighted imaging through the tu-
mor, and DW imaging was used when  
available. The oblique axial T2-weighted  
imaging sequence was obtained per-
pendicular to the long axis of the 
rectal tumor and/or area after treat-
ment. MR imaging parameters at our 
institution are summarized in Table 1. 
Rectal MR images from other institu-
tions fulfilled the minimum standards 
agreed on by the investigators. The 
minimum standards were presence of 
high-spatial-resolution axial oblique 
T2-weighted imaging through the tu-
mor with section thickness of 3 mm 
and field of view of 180 mm.

Figure 1

Figure 1: Flowchart summarizes patient accrual. CRT = chemotherapy–radiation therapy, MSKCC = 
Memorial Sloan Kettering Cancer Center, TME = total mesorectal excision.

Table 1

MR Imaging Parameters 

Parameter Sequence
Repetition Time (msec)/ 
Echo Time (msec) Matrix Field of View (mm)

Section Thickness/
Gap (mm)

Bandwidth (kHz)/ 
FlipAngle (degree) b Value (sec/mm2)

Oblique T2-weighted  
imaging

 1.5 T FSE 4000–6000/120 320 3 224 180 3/1 31/160 …
 3.0 T FSE 4000–6000/120 320 3 320 180 3/1 41/110 …
DWI
 1.5 T DWI 6000/minimum 128 3 128 240 5/1 250/90 0,800
 3.0 T DWI 6000/minimum 128 3 128 240 5/1 250/90 0,800

Note.—DWI = diffusion-weighted imaging, FSE = fast spin-echo.
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partial response [pPR], n = 93). RF is 
an ensemble classifier that computes 
multiple decision tree–based classifiers 
by using implicit feature selection. Fea-
ture selection is performed by selecting 
features in each tree node that succes-
sively increases the purity of class mem-
berships of the data in the descendant 
nodes. In other words, the RF classifier 
seeks to partition the data into the dif-
ferent classes by using features that best 
split the data into the different classes 
in each node. Gini impurity or the Gini 
index (37) is a computationally efficient 
approximation of entropy that is com-
puted at each node split of the RF and 
captures how well the data can be split 
into two classes at a particular node in 
each tree. The Gini index measures the 
overall probability of misclassification for 
each feature (f) at a node (n) as follows:

( ) ( )
=

= −∑ 2

1

1
C

c
c

G f p f n ,

where G( f )is the Gini index for a fea-
ture f, p( fc|n) is the probability of clas-
sifying a feature f into class n, and C 
is the number of classes (where C = 2 
in our case and f = 34). The result of 
RF classification is a model for distin-
guishing the data into the constituent 
classes and a feature importance that 
shows the relative importance of each 
feature for the classification. Feature 
importance assigned by using Gini in-
dex corresponds to the rate of accurate 
classification by a particular feature.

Furthermore, the RF classifier 
down-weights uninformative features 
and those that are highly correlated to 
the informative features, thereby se-
lecting only those that lead to improved 
accuracy while keeping the number of 
features that contribute to the overall 
classification low. Therefore, even when 
there are a large number of features, 
highly correlated features would be 
down-weighted in favor of less corre-
lated features so as to obtain a classifier 
with few independent features.

The RF classifier was optimized for 
the number of trees (50, 250, 500, 750, 
1000, 1500, 2000) with repeated (n = 
100) and K = fivefold cross-validation and 
with all 34 real-valued (noncategorical) 

bandwidth (g = 1.4), and second-order 
texture measures on the Gabor edges 
(5 3 4 = 20) were computed. The first-
order textures captured the moments 
of T2-weighted MR imaging histogram 
(mean, standard deviation, kurtosis, 
and skewness) and were computed 
within the tumor volume of interest. 
The Haralick textures (34) (energy, en-
tropy, correlation, contrast, and homo-
geneity) were computed from gray-level 
correlation matrix after rescaling the 
intensities within the volume of inter-
est to lie within 0–255 and by using 24 
histogram bins. Haralick textures were 
computed from T2-weighted MR imag-
ing and Gabor edge images. Gabor edge 
images were extracted as described in 
the following paragraph.

Gabor features are orientation-sen-
sitive edge detectors that extract edges 
at specific orientations and specific spa-
tial scales. A Gabor filter is composed of 
a Gaussian envelope function superim-
posed on a sinusoidal wave. First-order 
histogram-based features summarize the 
signal intensities within a given volume 
of interest. On the other hand, second-
order gray-level correlation matrix or 
Haralick texture measures extract the 
frequency of local spatial variations in 
signal intensities within a volume of in-
terest. We used the aforementioned fea-
tures because these features were found 
to be relevant for distinguishing patients 
by outcomes in our previous studies by 
using MR imaging (25,35).

An in-house software was imple-
mented in MATLAB (version 2015b; 
MathWorks; Natick, Mass) and C++ by 
using the Insight ToolKit for computing 
the Gabor (36) and Haralick texture 
measures (34).

Classification of treatment outcomes 
by using texture measures.—A random 
forest (RF) classifier (37) was trained to 
separate the patients by their treatment 
outcomes after balancing the number of 
patients in each response category by us-
ing the synthetic minority oversampling 
technique (35,38). The features were 
centered and scaled prior to data aug-
mentation by using the synthetic minority 
oversampling technique, which increased 
the number of minority class (pCR, n 
= 21) to the majority class (pathologic 

the delimitation of the tumor bed. The 
readout sessions were performed daily 
for a week and a consensus was reached 
in all studies.

cCR at T2-weighted imaging was de-
fined as no residual intermediate signal 
intensity in the tumor bed and hypoin-
tensity or normalized rectal wall. At DW 
imaging, the definition of cCR was no 
high signal intensity on b = 800 sec/mm2 
images and no low apparent diffusion 
coefficient signal in the tumor bed. On 
the other hand, clinical partial response 
at T2-weighted imaging was defined as 
the presence of intermediate signal in 
tumor bed, and at DW imaging, high sig-
nal on b = 800 sec/mm2 images and low 
apparent diffusion coefficient signal in 
tumor bed. If the patient had restricted 
diffusion outside of the tumor bed, or 
if vague focal high signal at DW imag-
ing was questionable whether it corre-
sponded to the location of the former 
tumor, then readers did not classify it as 
clinical partial response.

In addition, the radiologists per-
formed combined assessment of T2 and 
DW imaging features. If cCR was not 
seen on either T2 or DW images, then 
the patient was classified as achieving 
clinical partial response.

Quantitative MR Texture Analysis
Image segmentation.—The two radiolo-
gists who performed qualitative MR eval-
uation also reviewed all imaging studies 
to reach a consensus on the treated tu-
mor region within the rectal wall. One 
of the radiologists (N.H.) manually seg-
mented the entire area after treatment 
within the rectal wall, excluding equiv-
ocal normal rectal wall and mucosal 
edema on the high-spatial-resolution 
axial oblique T2-weighted image by us-
ing a free open-source software package 
(ITK-SNAP, version 3.4.0; http://itk-
snap.org) to provide the volume of inter-
est for computer-based image analysis. 
When uncertainty existed concerning 
the treated tumor region, the area was 
not included in the segmentation.

Texture feature extraction.—Thirty-
four texture measures consisting of first 
order (n = 4), second-order Haralick 
(n = 5), Gabor edges at four different 
orientations (0°, 45°, 90°, 135°) and 
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MR imaging was 55 days (interquartile 
range, 30–64 days). The median in-
terval between MR imaging after CRT 
and surgery was 29 days (interquartile 
range, 20–46 days). Ninety-three pa-
tients (82%) achieved pPR at patho-
logic examination of surgical specimens 
and 21 (18%) achieved pCR. Among 
the 93 patients with pPR, there were 
39 (41.9%) women and 54 (58.1%) 
men. Among the 21 patients with pCR, 
there were eight (38.1%) women and 
13 (61.9%) men. Patient characteristics 
are summarized in Table 2.

Qualitative MR Assessment
The sensitivity, specificity, PPV, and 
NPV of T2-weighted imaging, DW im-
aging, and combined T2-weighted and 
DW imaging for diagnosing pCR are 
summarized in Table 3. Combined T2-
weighted and DW imaging achieved a 

specificity, PPV, and NPV were esti-
mated for the qualitative diagnosis of 
cCR by using T2-weighted images, DW 
images, and both. We compared the 
sensitivities, specificities, PPV, and NPV 
between qualitative and quantitative as-
sessment by using an exact McNemar 
test, whereas PPV and NPV were com-
pared by using the method described 
in Moskowitz et al (40). P values , .05 
were considered to indicate a signifi-
cant difference.

Statistical analyses were performed 
with software package R and SAS (ver-
sion 9.4; SAS Institute, Cary, NC).

Results

Patient Characteristics
The median interval between the end of 
neoadjuvant CRT and restaging rectal 

features after the same features were 
centered and scaled. Feature scaling 
ensured that the RF classifier did not 
place excessive importance features 
with larger range compared with other 
features. The number of predictors 
(two to six) used for splitting the nodes 
at each level of the tree was optimized 
through linear search. The upper limit 
for the number of features tested in each 
node was determined as ( )=, 34M M . 
Repeated cross-validation was used for 
training the RF classifier because cross-
validation leads to less biased estimates 
compared with when using only the out-
of-bag error estimates produced by the 
RF classifier (39). The implementation 
of the RF and the synthetic minority 
oversampling technique algorithm avail-
able in the Caret and DwR package in 
the R software (version 3.1; R Founda-
tion for Statistical Computing, Vienna, 
Austria) was used for the analysis.

Reference Standard
The reference standard was the histo-
pathologic report of the surgical resec-
tion specimens of the total mesorectal 
excision. We performed a retrospective 
chart review of pathologic results and 
no additional pathologic analysis was 
done solely for our project. All histo-
pathologic analysis was performed by 
specialized gastrointestinal pathologists 
with 10 years to 20 years of experience, 
and findings were reported in a stan-
dardized manner, including tumor stage, 
percentage of fibrosis, presence of resid-
ual tumor, and lymph node status. pCR 
was defined as stage ypT0N0 (where y 
means after neoadjuvant treatment and 
p means pathologic stage).

Statistical Analysis
Statistical comparisons between the 
continuous valued texture measures 
and magnet strengths (1.5 T vs 3.0 T) 
as well as the treatment outcome were 
performed by using Wilcoxon rank-sum 
test. Correction for multiple compari-
sons was performed by using Benjamini- 
Hochberg method. Machine learning 
classifier accuracy was determined by 
using sensitivity and specificity, positive 
predictive value (PPV), and negative 
predictive value (NPV). The sensitivity, 

Table 2

Characteristics of the Patients

Characteristic Total (n = 114) pCR (n = 21) pPR (n = 93)

Sex (M/F)*
 Male 67 (59) 13 (62) 54 (58)
 Female 47 (41) 8 (38) 39 (42)
Age (y) 55 (48–67) 48 (41–61) 56 (49–67)
Interval between CRT and MR imaging (d) 55 (30–64) 33 (24–55) 56 (31–67)
Interval between MR imaging and surgery (d) 29 (20–46) 29 (19–54) 29 (22–43)

Note.—Unless otherwise specified, data are medians, with interquartile ranges in parentheses. CRT = chemotherapy–radiation 
therapy, pCR = pathologic complete response, pPR = pathologic partial response.

* Data are medians, with percentages in parentheses.

Table 3

Sensitivity, Specificity, PPV, and NPV of T2-weighted Imaging, DW Imaging, Combined 
T2-weighted and DW Imaging, and Radiomics in the Diagnosis of pCR

pCR vs pPR T2-weighted Imaging DW Imaging
Combined T2-weighted  
and DW Imaging Radiomics*

Sensitivity 12/21 (57) [34, 78] 12/19 (63) [38, 84] 16/19 (84) [60, 97] 100 (84, 100)
Specificity 68/93 (73) [63, 82] 55/87 (63) [52, 73] 49/87 (56) [45, 67] 91 (84, 96)
PPV 12/37 (32) [18, 50] 12/44 (27) [15, 43] 16/54 (30) [18, 44] 72 (53, 87)
NPV 68/77 (88) [79, 95] 55/62 (89) [78, 95] 49/52 (94) [84, 99] 100 (96, 100)

Note.—Unless otherwise specified, data are numerators and denominators, with percentages in parentheses and 95% 
confidence intervals in brackets. DW = diffusion-weighted, NPV = negative predictive value, pCR = pathologic complete 
response, pPR = pathologic partial response, PPV = positive predictive value.

* Data are percentages, with 95% confidence intervals in parentheses.
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the Gini index; energy was the most 
relevant, homogeneity the third most 
relevant, and contrast the seventh most 
relevant feature. Furthermore, patients 
with pCR had significantly higher en-
ergy, higher homogeneity, and lower 
contrast compared with patients with 
pPR (Table 4); this indicates that tu-
mors with a homogenous appearance 
were associated with pCR. The entropy 
texture computed from T2-weighted 
MR imaging was among the least rel-
evant features (Table 4). On the other 
hand, the Gab45 entropy and Gab0 

(55.8%) men. With the exception of 
mean of the T2-weighted MR imaging, 
mean intensity of Gabor edges, and 
standard deviation of T2-weighted MR 
imaging, all computed within tumor, 
no other computed texture measures 
showed any significant difference by 
magnet strength (Table E1 [online]).

Figure 2 depicts the relative impor-
tance of features computed by using the 
Gini index as a metric. Second-order 
texture measures of energy, homogene-
ity, and contrast were among features 
that resulted in the largest decrease in 

sensitivity of 84% and a specificity of 
56% for depicting pCR, whereas the 
NPV and PPV were 94% and 30%, 
respectively.

Quantitative MR Texture Analysis
Sixty-two (55%) patients were imaged 
with 1.5-T units, whereas the remain-
ing 52 (45%) were imaged with 3.0-T 
units. Among the 62 patients imaged 
with 1.5-T units, there were 24 (38.7%) 
women and 38 (61.3%) men. Among 
the 52 patients imaged with 3.0-T units, 
there were 23 (44.2%) women and 29 

Table 4

Statistical Differences between pCR and pPR between Radiomic Features Determined by Using RF Classifier

pCR pPR

Feature Gini Importance Median Interquartile Range Median Interquartile Range P Value

Energy 0.99 84.5 76.8–97.0 68.1 59.5–82.9 .005
Kurtosis 0.95 3.7 3.2–5.1 4.9 3.8–7.3 .04
Homogeneity 0.82 71.6 66.5–80.9 50.2 33.4–66.5 .005
Gab45.contrast 0.78 63.6 45.4–88.1 95.7 78.7–107.9 .003
Gab45.entropy 0.69 104.8 80.1–114.3 128.3 111.1–140.3 .006
Gab90.contrast 0.66 70.9 36.1–85.1 93.9 76.4–105.0 .006
Contrast 0.61 18.8 13.2–24.4 9.9 6.0–15.8 ,.001
Gab0.entropy 0.58 105.5 78.3–118.5 130.1 113.6–140.9 .006
Skewness 0.53 0.56 0.27–1.1 0.92 0.57–1.4 .04
Gab0.contrast 0.51 79.7 30.2–85.2 91.2 77.7–109.1 .006
Standard deviation 0.48 53.6 30.9–91.3 59.5 37.1–91.0 .44
Gab45.correlation 0.45 91.9 62.8–105.0 98.9 88.7–105.4 .32
Gab90.entropy 0.42 105.6 79.3–120.9 129.5 113.5–144.3 .005
Gab135.contrast 0.41 80.2 33.1–97.3 97.1 82.5–107.0 .04
Gab135.entropy 0.39 99.9 77.4–121.5 129.0 111.4–141.0 .006
Correlation 0.39 213.9 208.7–217.3 201.1 194.0–209.7 .005
Gab0.mean 0.39 8.5 6.7–14.8 10.3 8.0–15.1 .43
Gab90.mean 0.37 7.7 5.9–13.7 10.3 8.0–15.0 .36
Gab135.mean 0.35 224.7 131.4–450.0 252.3 149.3–414.4 .96
Gab135.energy 0.35 38.9 22.4–47.7 33.3 29.2–39.4 .77
Gab0.correlation 0.32 91.7 62.0–116.5 99.1 88.4–106.7 .39
Gab45.mean 0.31 8.5 5.9–13.9 10.2 7.9–14.3 .44
Mean 0.30 8.2 5.3–11.6 9.8 6.8–13.8 .39
Gab90.homogeneity 0.28 95.4 63.2–111.5 98.6 90.9–106.6 .44
Gab135.homogeneity 0.27 101.1 80.7–107.1 101.1 89.9–109.9 .44
Gab135.correlation 0.24 90.4 60.3–111.4 98.9 87.4–105.4 .39
Entropy 0.23 156.9 134.9–166.4 148.5 133.4–164.8 .56
Gab90.energy 0.20 38.1 25.8–44.3 35.6 29.9–40.8 .88
Gab0.energy 019 38.9 22.4–50.3 34.8 29.0–40.5 .69
Gab90.correlation 0.19 94.7 58.1–101.9 100.7 89.3–106.9 .26
Gab90.homogeneity 0.18 92.7 76.6–104.4 100.1 85.5–111.1 .26
Gab45.energy 0.18 37.7 26.2–41.6 34.3 29.9–38.6 .78
Gab45.homogeneity 0.17 98.5 77.1–111.1 102.8 92.1–111.2 .32

Note.—Feature relevance was assessed by using mean decrease in Gini index–based feature importance averaged over 100 trials. P values are adjusted for false-discovery rate by using Benjamini-
Hochberg method. pCR = pathologic complete response, pPR = pathologic partial response, RF = random forest.
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and NPV were achieved; however, it 
resulted in low specificity. Overall, 
our results are in line with prior lit-
erature that report accuracy in the di-
agnosis of pCR ranging from 50% to 
90% among different groups and MR 
imaging sequences tested (20,41–43). 
When combined imaging features at 
T2-weighted and DW imaging were 
used to diagnose cCR, we found higher 
sensitivity and NPV than previously 
described (18) (84% and 94% vs 35% 
and 75%, respectively) and lower 
specificity and PPV (56% and 30% vs 
94% and 75%, respectively). Aside 
from the expected variation between 
observers and institutions, this differ-
ence might be explained by the fact 
that previous studies (18) used five 
levels of confidence for assessing cCR 
with a cutoff of between levels two and 
three, compared with use of a binary 
interpretation in our study.

We then evaluated performance 
of radiomic features in diagnosing 
pCR. To the best of our knowledge, 
there is no published study in the lit-
erature comparing radiomics with 
qualitative evaluation of cCR. In our 
study, the radiomic classifier demon-
strated high diagnostic performance 
when compared with qualitative as-
sessment at T2-weighted imaging and 
DW imaging separately. When com-
pared with the assessment of both 

0.53, 0.87), and NPV of 100% (95% CI: 
0.96, 1).

Figures 4 and 5 demonstrate rep-
resentative patients of pCR and pPR at 
T2-weighted imaging and on relevant 
intensity-based features overlaid on T2-
weighted images.

Comparison between Qualitative and 
Quantitative Analysis
The differences between qualitative and 
quantitative assessments were signifi-
cantly different for the vast majority of 
the results, except when we compared 
the sensitivity and NPV of RF versus 
T2-weighted imaging and DW imaging. 
Table E3 (online) summarizes the com-
parison between these assessments.

Discussion

Our study evaluated the ability of qual-
itative MR imaging features to help 
differentiate cCR from clinical partial 
response at T2-weighted imaging, DW 
imaging, and the combination of both 
in patients with locally advanced rec-
tal cancer after neoadjuvant therapy. 
When combined imaging features at 
T2-weighted and DW imaging were 
used to diagnose cCR, high sensitivity 

entropy textures were the fifth and 
eighth most relevant features (Fig 2) 
and were significantly lower in patients 
with pCR compared with patients with 
pPR (Table 4). Kurtosis was the only 
first-order feature found to be among 
the most relevant features (Fig 2) and 
tumors with significantly lower kurtosis 
were associated with pCR (Table 4). 
Finally, nonrobust features such as the 
mean computed from the T2-weighted 
imaging and Gabor edge images, as well 
as the standard deviation computed 
from the T2-weighted imaging, were 
not selected among the top 10 relevant 
features.

Fourteen of the 34 features were 
significantly different between pCR and 
pPR (Table 4). The relative importance 
of the features computed by using the 
Gini index is shown in Table 4.

The RF classifier trained by using 50 
trees and six variables (for node splits) 
produced the best performance (Table 
E2 [online]). The RF classifier achieved 
an area under the curve of 93% (95% 
confidence interval [CI]: 0.87, 0.97) 
for differentiating pCR from pPR  
(Fig 3), with a sensitivity of 100% (95% 
CI: 0.84, 1), specificity of 91% (95% 
CI: 0.84, 0.96), PPV of 72% (95% CI: 

Figure 2

Figure 2: Feature importance plot shows mean decrease in Gini impurity. Features that most reduce Gini 
impurity are those that result in the least misclassification.

Figure 3

Figure 3: Graph shows receiver operating 
characteristic curve for random forest classifier in 
differentiating pathologic complete response versus 
pathologic partial response by using repeated 
fivefold cross-validation.
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difference between imagers by mag-
netic field strengths (1.5 T vs 3.0 T). 
Given the large number of MR imagers 
available in the market, a wide variety 
of equipment exists not only among 
different facilities but also within the 
same institution. Hence, the evalua-
tion of robustness of quantitative met-
rics is of key importance to allow the 
widespread use of a variety of imaging 
techniques. Prior studies have studied 
the repeatability of radiomics features 
from computed tomographic (CT) im-
ages (44,45) and the effect of imaging 
parameters, including contrast mate-
rial enhancement and section thick-
ness from CT images on predictability 
by using radiomics measures (46). To 
the best of our knowledge, no previous 
study in the literature has studied the 
robustness of radiomics features be-
cause of differences in field strength at 
MR imaging.

the potential of the radiomics features 
for diagnosing patients with pCR. Data 
augmentation has been used in several 
studies because of higher prevalence of 
data imbalance in medical data sets, 
such as to distinguish between highly 
aggressive and nonaggressive prostate 
cancers (35), predict outcomes of pa-
tients with non-small cell lung cancers 
(28), distinguish histopathologic grade 
of soft-tissue sarcomas (27), and eval-
uate endometrial carcinoma (26).

The absence of a significant statis-
tical difference for the majority of the 
computed textures between imagers 
with different magnetic strengths is 
an important finding. In our study, 
only the mean and standard deviation 
measures showed difference between 
the imagers, whereas all the texture- 
and edge-based measures that capture 
the relative differences in the inten-
sities between local regions showed no 

T2-weighted and DW imaging, ra-
diomics had significantly higher speci-
ficity and PPV; however, sensitivity and 
NPV were not statistically different. 
We postulate that small clusters of  
residual tumor cells within the residual 
area after treatment in pPR may explain 
the difference in texture in pCR and 
pPR; however, additional studies with 
direct correlation to whole-specimen 
histopathologic analysis are necessary 
to investigate this further. Our results 
also show that homogeneously appear-
ing tumors or those with high energy 
and homogeneity were significantly as-
sociated with pCR. Although encour-
aging, radiomics classification was pos-
sible only following data augmentation, 
which could potentially lead to overop-
timistic results. However, all reported 
results were performed by using cross-
validation. Further validation on an in-
dependent data set will help determine 

Figure 4

Figure 4: Images show radiomics analysis in a 60-year-old man with rectal adenocarcinoma after 
completion of chemotherapy–radiation therapy with surgically proven complete response. (a) High-
spatial-resolution axial oblique T2-weighted image demonstrates treated area with low signal intensity 
(arrow). (b–e) Illustration of intensity-based texture features overlaid on high-spatial-resolution axial 
T2-weighted images as follows: (b) contrast, (c) Gabor 45 contrast, and (d) homogeneity.



Radiology: Volume 287: Number 3—June 2018 n radiology.rsna.org 841

GASTROINTESTINAL IMAGING: MR Imaging of Rectal Cancer Horvat et al

neoadjuvant therapy. Although promis-
ing, these results are preliminary and 
require validation on a larger and inde-
pendent data set to assess the potential 
for clinical translation. After validation, 
this radiomic assessment may become 
a potential imaging biomarker of cCR 
and complement the current modalities 
in the management of rectal cancer af-
ter neoadjuvant treatment.
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variability in acquisition parameters. 
We anticipate that the performance of 
radiomics analyses may improve with 
the inclusion of other MR imaging se-
quences, including DW imaging. Fifth, 
manual segmentation of volume of in-
terest is a time-consuming process; 
therefore, it is important to develop 
a user-friendly tool to encourage the 
use of radiomic measures in daily clin-
ical practice. Last, we did not perform 
external validation. Therefore, further 
studies are needed to overcome these 
limitations and to validate the reported 
data to provide a better generalization 
of our results.

In conclusion, our preliminary study 
shows that the radiomics measures 
by using cross-validation showed bet-
ter classification performance com-
pared with the qualitative assessment 
for diagnosing pCR in patients with 
locally advanced rectal cancer after 

Our study had several limitations. 
First, the number of patients with pCR 
is low and our study design did not in-
clude patients with cCR on nonsurgical 
(“watch and wait”) management. We 
might have introduced selection bias by 
not including patients on nonsurgical 
management. However, this design was 
chosen to have the histopathologic ref-
erence standard from all patients and 
a homogeneous data set. Second, our 
study did not include lymph node eval-
uation and it is known that lymph node 
metastasis can be present in patients 
with pCR (47). Third, the radiologic 
assessment was performed in consen-
sus, and interreader agreement was 
not evaluated. Furthermore, consid-
ering that only one reader segmented 
the images, it is impossible to assess 
the reproducibility of segmentation. 
Fourth, radiomics was performed only 
on T2-weighted images to minimize 

Figure 5

Figure 5: Images show radiomics analysis in a 49-year-old man with rectal adenocarcinoma after 
completion of chemotherapy–radiation therapy with surgically proven residual tumor and 90% of fibrosis. 
(a) High-spatial-resolution axial oblique T2-weighted image demonstrates treated area with low signal 
intensity (arrow). (b–e) Illustration of intensity-based texture features overlaid on high-spatial-resolution 
axial T2-weighted images as follows: (b) contrast, (c) Gabor 45 contrast, and (d) homogeneity.
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