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Purpose: To identify the molecular basis of quantitative imaging char-
acteristics of tumor-adjacent parenchyma at dynamic con-
trast material–enhanced magnetic resonance (MR) imaging 
and to evaluate their prognostic value in breast cancer.

Materials and 
Methods:

In this institutional review board-approved, HIPAA-com-
pliant study, 10 quantitative imaging features depicting 
tumor-adjacent parenchymal enhancement patterns were 
extracted and screened for prognostic features in a dis-
covery cohort of 60 patients. By using data from The Can-
cer Genome Atlas (TCGA), a radiogenomic map for the 
tumor-adjacent parenchymal tissue was created and mo-
lecular pathways associated with prognostic parenchymal 
imaging features were identified. Furthermore, a multigene 
signature of the parenchymal imaging feature was built in a 
training cohort (n = 126), and its prognostic relevance was 
evaluated in two independent cohorts (n = 879 and 159).

Results: One image feature measuring heterogeneity (ie, informa-
tion measure of correlation) was significantly associated 
with prognosis (false-discovery rate , 0.1), and at a cutoff 
of 0.57 stratified patients into two groups with different re-
currence-free survival rates (log-rank P = .024). The tumor 
necrosis factor signaling pathway was identified as the top 
enriched pathway (hypergeometric P , .0001) among genes 
associated with the image feature. A 73-gene signature 
based on the tumor profiles in TCGA achieved good asso-
ciation with the tumor-adjacent parenchymal image feature 
(R2 = 0.873), which stratified patients into groups regarding 
recurrence-free survival (log-rank P = .029) and overall sur-
vival (log-rank P = .042) in an independent TCGA cohort. 
The prognostic value was confirmed in another independent 
cohort (Gene Expression Omnibus GSE 1456), with log-
rank P = .00058 for recurrence-free survival and log-rank  
P = .0026 for overall survival.

Conclusion: Heterogeneous enhancement patterns of tumor-adjacent  
parenchyma at MR imaging are associated with the tumor ne-
crosis signaling pathway and poor survival in breast cancer.

q RSNA, 2017

Online supplemental material is available for this article.
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First, we extracted quantitative imaging 
features depicting tumor-adjacent pa-
renchymal enhancement patterns and 
screened for those that were potentially 
prognostic for survival. Second, we cre-
ated a radiogenomic map to link prog-
nostic imaging features of the tumor-
adjacent parenchyma with associated 
molecular pathways. Finally, we built a 
multigene signature of the parenchymal 
imaging feature and aimed to validate its 
prognostic value by leveraging large, pub-
licly available genomic data sets.

Patient Population
The prognostic imaging biomarker dis-
covery was based on a retrospective 
single-institution cohort of 60 patients 
with invasive breast cancer, for whom the 
pretreatment dynamic contrast-enhanced 
MR imaging and recurrence-free survival 
(RFS) data are publicly available at The 
Cancer Imaging Archive (TCIA) (27). The 
details of this cohort have been published 
(28,29). A multi-institution cohort from 
The Cancer Genome Atlas (TCGA) (30) 
was used in the radiogenomic discovery 
and validation steps. The patient data are 

and survival (15,16). An important limi-
tation of existing studies is that the image 
analysis was focused on the tumor, while 
the surrounding tissues were ignored.

Several recent studies have demon-
strated that global enhancement patterns 
of background parenchyma at dynamic 
contrast-enhanced MR imaging are asso-
ciated with the risk of developing breast 
cancer in a screening population (17–21), 
and with response to chemotherapy (22), 
disease-free survival, and overall survival 
(23) in patients with invasive breast can-
cer. Furthermore, because breast cancer 
invades its neighboring tissue and induces 
extensive remodeling during tumor pro-
gression (24), enhancement patterns of 
tumor-adjacent parenchyma at dynamic 
contrast-enhanced MR imaging have also 
been associated with response to chemo-
therapy (25) and local recurrence (26). 
Yet the biologic underpinning of paren-
chymal imaging characteristics is poorly 
understood, and their clinical relevance 
requires further validation.

The purpose of this study was to 
identify the molecular basis of quantita-
tive imaging characteristics of tumor-ad-
jacent parenchyma at dynamic contrast-
enhanced MR imaging and to evaluate 
their prognostic value in breast cancer.

Materials and Methods

Study Design
In this institutional review board–ap-
proved, Health Insurance Portability and 
Accountability Act–compliant study, we 
investigated the prognostic performance 
of quantitative imaging phenotypes that 
characterize the enhancement patterns 
of tumor-adjacent parenchyma and ex-
plored the underlying molecular basis of 
the prognostic imaging feature. We per-
formed this study in three steps (Fig 1a).  
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Advances in Knowledge

nn A 73-gene signature of the 
tumor-adjacent parenchymal 
image feature stratified patients 
into low-risk versus high-risk 
groups in terms of recurrence-
free survival (log-rank P = .029, 
hazard ratio [HR] = 1.54, 95% 
confidence interval [CI]: 1.03, 
2.29) and overall survival (log-
rank P = .042, HR = 1.51, 95% 
CI: 1.02, 2.28) in an independent 
The Cancer Genome Atlas 
testing cohort (n = 879).

nn The multigene signature stratified 
an independent gene expression 
cohort (Gene Expression Omni-
bus GSE 1456, n = 159) into low-
risk versus high-risk groups in 
terms of recurrence-free survival 
(log-rank P = .00058, HR = 2.84, 
95% CI: 1.53, 5.29) and overall 
survival (log-rank P = .0026, HR 
= 2.92, 95% CI: 1.40, 6.08).

Implication for Patient Care

nn Breast cancer with greater paren-
chymal enhancement heteroge-
neity at dynamic contrast-
enhanced MR imaging may be 
associated with inflammatory 
response and tends to have a 
poor prognosis.

Breast cancer is the most com-
mon noncutaneous malignancy 
in women. Around 20%–30% of 

women diagnosed with invasive breast 
cancer will have a metastatic recurrence 
and may eventually die of this disease 
(1). Adjuvant chemotherapy reduces the 
absolute rate of recurrence by up to 5 
percentage points and is recommended 
for a majority of patients with invasive 
breast cancer (2,3). However, not all pa-
tients derive benefit from chemotherapy, 
given its toxicity and side effects (4). Re-
liable prognostic biomarkers are needed 
to identify patients who are at low risk 
of recurrence and to reduce overtreat-
ment with chemotherapy.

Dynamic contrast material–en-
hanced magnetic resonance (MR) im-
aging is clinically used for the diagnosis 
and evaluation of treatment response in 
breast cancer. Quantitative image fea-
tures such as tumor size, shape, margin, 
and kinetics have been shown to improve 
on or augment the opinions of human 
experts for diagnostic purposes (5–9). 
Recently, tumor texture features have 
also been investigated (10–14). However, 
their prognostic accuracy appears to be 
limited for predicting disease recurrence 
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these three subgroups, data in a separate 
group of 879 patients (subgroup 4) with 
clinical outcome data were used for inde-
pendent testing purposes. The genomic 
data acquisition method is shown in Fig-
ure 1c. In addition, another independent 
breast cancer cohort (GSE 1456, n = 159) 
with publicly available microarray gene 

contrast-enhanced MR imaging data were 
available for 126 patients (subgroup 3) 
through the Genomic Data Commons 
data portal and TCIA (27,32). Twenty-
four patients in TCGA (subgroup 2) had 
both tumor-adjacent gene expression and 
dynamic contrast-enhanced MR imag-
ing data available. In addition to data in 

summarized in Figure 1b. A total of 1095 
patients with invasive breast cancer were 
included, all of whom had RNA sequenc-
ing data available for tumor samples. 
RNA sequencing data for tumor-adjacent, 
pathologically normal parenchyma (,2 
cm) (31) were available for 114 patients 
(subgroup 1), and pretreatment dynamic 

Figure 1

Figure 1:  (a) Flowchart of the overall design for the radiogenomic study, which involves three key steps. (b) Venn diagram of 
the TCGA data composition and four subgroups. (c) The acquisition protocol for tumor and parenchymal RNA sequencing (RNA-
Seq) data in TCGA. The tumor-adjacent parenchyma is defined as the red region, where the yellow line is the tumor boundary 
and the blue dotted line is the dilated tumor boundary of 2 cm. DCE = dynamic contrast enhanced, GEO = Gene Expression 
Omnibus, OS = overall survival.
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expression data and clinical outcomes 
(overall survival and RFS) were used 
in the final validation stage through the 
Gene Expression Omnibus. Details of this 
cohort have been published (33). The de-
mographic and clinical information for all 
three cohorts is summarized in Table 1, 
and information for the three TCGA sub-
groups is presented in Table E1 (online).

Segmentation of Tumor-adjacent 
Parenchyma
Tumor-adjacent parenchyma was defined 
as parenchyma that falls within a 2-cm 
distance to the tumor boundary. This 
definition is spatially congruent with the 
acquisition of RNA sequencing data for 
the tumor-adjacent tissue in TCGA (31). 
Similarly, another imaging and histo-
logic correlative study also used a 2-cm 
distance to the tumor margin for defining 
cancer-associated stroma in breast can-
cer (34). For tumor segmentation, two 
radiologists (G.C. and X.S., with 17 and 
11 years of experience in breast imaging, 
respectively) manually delineated the 
tumor section-by-section in consensus. 
Next, we used fuzzy c-means clustering 
(32) to automatically segment the entire 
breast region into fatty tissue and non-
fatty tissue. The ipsilateral breast paren-
chyma was defined as the nonfatty tissue 
region excluding the tumor and was con-
firmed by both radiologists in consensus. 
Finally, we dilated the tumor contours by 
2 cm in three dimensions using a 3 3 3 3 
3 6-connected kernel (35), and the inter-
section between this hollow sphere struc-
ture and the breast parenchyma was de-
fined as the tumor-adjacent parenchyma.

Extraction of Tumor-adjacent 
Parenchymal Image Features
Ten quantitative image features were 
extracted to characterize the degree 
and heterogeneity of contrast-enhancing 
patterns of the tumor-adjacent paren-
chyma. We first extracted the signal en-
hancement ratio (SER) maps from three 
sequential dynamic contrast-enhanced 
MR images—precontrast, early postcon-
trast (around 2.5 minutes), and late post-
contrast (around 7.5 minutes). Then we 
calculated three relative enhancing vol-
umes (16), two histogram-based features 
(23,25,26), and five Haralick features 

Table 1

Demographic and Clinical Data of the Study Cohorts

Parameter
Imaging Biomarker  
Discovery Cohort (n = 60)

TCGA Cohort  
(n = 1095)

GSE 1456 Cohort  
(n = 159)

Age (y)
  Median* 48.1 (29.7–72.4) 58 (26–90) …
  Mean 6 standard deviation 48.0 6 9.9 58.0 6 13.2 58 6 13.6
Race
  Asian 4 (7) 61 (6) …
  Black or African American 3 (5) 183 (17) …
  White 45 (75) 757 (69) …
  Unknown or others 8 (13) 1 (0) …
Estrogen receptor status
  Positive 28 (47) 601 (55) 130 (82)
  Negative 20 (33) 179 (16) 29 (18)
  Indeterminate 0 2 (0) 0 (0)
  Unknown 12 (20) 313 (29) 0 (0)
Progesterone receptor status
  Positive 22 (37) 522 (48) 114 (72)
  Negative 26 (43) 255 (23) 45 (28)
  Indeterminate 0 4 (0) 0 (0)
  Unknown 12 (20) 314 (29) 0 (0)
Human epidermal growth factor  

  receptor 2 status
  Positive 14 (23) 114 (10) …
  Negative 31 (52) 652 (60) …
  Equivocal 0 10 (1) …
  Unknown 15 (25) 319 (29) …
Histologic type
  Infiltrating ductal carcinoma 37 (62) 780 (71) …
  Infiltrating lobular carcinoma 11 (18) 190 (17) …
  Other 12 (20) 104 (9) …
  Unknown 0 21 (2) …
Surgery type
  Lumpectomy 27 (45) 266 (24) …
  Mastectomy 33 (55) 504 (46) …
  Other 0 252 (23) …
  Unknown 0 73 (7) …
Follow-up (y)† 
  Median* 6.67 (0.95–9.84) 2.17 (0.03–23.58) 7.47 (0.23–8.49)
  Mean 6 standard deviation 6.05 6 2.35 3.33 6 3.19 6.97 6 1.46
Recurrence‡

  Event 22 (37) 113 (10) 40 (25)
  No event 37 (62) 689 (63) 119 (75)
  Unknown 1 (2) 293 (27) 0 (0)
Death†

  Event … 149 (14) 29 (18)
  No event … 923 (84) 130 (82)
  Unknown …. 23 (2) 0 (0)

Note.—Unless otherwise indicated, data are numbers of patients, with percentages in parentheses.

* Data in parentheses are the range.
† Computed with subjects alive.
‡ Follow-up data were updated in April 2017 through the Genomic Data Commons Data Portal.
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analysis (WGCNA) (44) to identify a 
small number of gene modules—that 
is, clusters of closely connected genes. 
Compared with conventional clustering 
approaches, WGCNA has been shown 
to be more robust because it considers 
both correlation and topologic informa-
tion (44). First, the RNA sequencing data 
for 114 tumor-adjacent parenchymal tis-
sue samples in TCGA were preprocessed 
to remove the genes with 80% or more 
missing or zero expression values. Then, 
the RNA sequencing data for the top 
5000 genes with the largest variance were 
normalized to identify gene modules by 
using the WGCNA R package (detailed 
configuration in Appendix E1 [online]). 
Each module was summarized by its first 
principal component of the scaled (stan-
dardized) module expression profiles, as 
the module eigengene explains the max-
imum amount of variation of the module 
expression levels.

Construction of a Radiogenomic Map for 
Tumor-adjacent Parenchymal Tissue
Using TCGA data of the 24 samples 
that had tumor-adjacent parenchymal 
RNA sequencing and dynamic contrast-
enhanced MR imaging data, we created 
a radiogenomic association map that 
links parenchymal imaging features with 
gene modules that were both extracted 
from tumor-adjacent tissue. The Pear-
son linear correlation was computed to 
assess the association between each im-
aging feature and each gene module. On 
the basis of this map, we pinpointed the 
tumor-adjacent parenchymal gene mod-
ule associated with the image feature 
that showed prognostic significance in 
the imaging biomarker discovery cohort, 
adjusting for multiple hypothesis testing 
(45). The list of genes within the identi-
fied gene module was put into the Kyoto 
Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis (46) to find the 
significantly enriched molecular pathways 
and to explore the biologic meaning of 
the parenchymal imaging feature.

Construction of a Tumor Gene Expression 
Signature for the Parenchymal Image 
Feature
On the basis of the assumption that the 
tumor is the driving force behind the 

(.0.7). For correlated feature pairs, only 
the one with higher prognostic power in 
the univariate analysis was retained. Sec-
ond, a multivariate Cox regression model 
was fitted with uncorrelated features to 
determine which image features were in-
dependently associated with RFS.

Three previously reported image 
features were extracted to characterize 
the tumor, including gross volume (40), 
functional tumor volume (FTV) (16), and 
SER (41–43). We first investigated the 
linear correlation (Pearson) between the 
three tumor features and uncorrelated 
parenchymal features. Then, a multivari-
ate analysis was performed to determine 
whether parenchymal image features 
were independently associated with RFS 
in addition to tumor features. P , .05 
was considered to indicate a statisti-
cally significant difference in multivariate 
analysis.

Identification of Gene Modules for Tumor-
adjacent Parenchymal Tissue
To reduce gene data dimensionality 
and obtain more reliable results, we 
used an established technique called 
weighted gene coexpression network 

(36) that measure the textural hetero-
geneity based on the gray-level co-occur-
rence matrix. The name of each image 
feature, as well as its formulation, is list-
ed in Table 2. To minimize variations due 
to different acquisition protocols in dif-
ferent cohorts, we applied a series of im-
age processing algorithms before feature 
extraction, including removal of shading 
artifacts (38), normalization of the MR 
imaging data (39), and resampling im-
ages to an isotropic spatial resolution of 
0.8 mm (see details in Appendix E1 [on-
line]). All image processing and feature 
extraction processes were performed in 
MATLAB (MathWorks, Natick, Mass).

Assessment of the Prognostic Value 
of Parenchymal Image Features and 
Independence from Tumor Features
In the imaging biomarker discovery co-
hort, each image feature was individually 
evaluated for its association with RFS. 
We then performed a two-step analysis 
to identify the image feature that had 
the strongest independent association 
with RFS. First, we identified the feature 
pairs that had a strong linear relationship 
based on Pearson correlation coefficients 

Table 2

Details of 10 Quantitative Image Features Extracted from Tumor-adjacent Parenchyma 
from Dynamic Contrast-enhanced MR Imaging

Type, No., and Name Interpretation

Volume (n = 3)
  1. SER 0.5Prop > , 2. SER 1.0Prop > ,  

and 3. SER 1.5Prop >

Measure the relative enhanced volume of tumor-adjacent 
region on the basis of the selected threshold. Different SER 
threshold values correspond to the different kinetic type of 
contrast enhancement, with 0.5 as persistent, 1.0 as plateau, 
and 1.5 as washout.

Enhancing signal value (n = 2)

  1. 1%SER , 2.
 

100%SER Mean value of the SER of tumor-adjacent parenchyma in top 1% 
and all (100%) voxels.

Texture (GLCM, n = 5)
  1. Dissimilarity, 2. Energy, 3. Entropy, 

4. Homogeneity, and 5. Information 
measure of correlation

Measure the spatial heterogeneity of intensity value of the SER 
map within the tumor-adjacent region with five independent 
Haralick features.

Notes.—SER is defined as 
early postcontrast precontrast

late postcontrast precontrast

SER
I I

I I

−
=

− ; GLCM = gray-level co-occurrence matrix. Relative 

volume is defined as cutoff

all
100%

V

V
> • . A detailed formulation of each GLCM texture feature

can be found at (37), and information measure of correlation refers to the second one.
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and tumor gene expression data avail-
able in TCGA, we first identified the 
top 100 genes most correlated with the 
parenchymal image feature that showed 

imaging features by using gene expres-
sion data within the tumor. On the ba-
sis of findings in 126 patients with dy-
namic contrast-enhanced MR imaging 

aberrant gene expression and abnormal 
imaging appearance in the surrounding 
tissue, we built a multigene signature 
to find associations with parenchymal 

Figure 2

Figure 2:  Images for the prognostic imaging biomarker discovery cohort (n = 60). (a) Graph shows prognostic performance for each of 10 quantitative tumor-adja-
cent parenchymal features from dynamic contrast-enhanced MR imaging. (b) Kaplan-Meier curves of RFS with the significantly prognostic (FDR , 0.1) quantitative 
imaging feature (information measure of correlation). (c) Pearson correlation matrix for 10 tumor-adjacent parenchymal imaging features, where four of them are 
uncorrelated. (d) Pearson correlation matrix for four uncorrelated tumor-adjacent parenchymal features and three tumor imaging features.
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prognostic significance in the imaging 
biomarker discovery cohort. Then, a 
linear regression model nested with the 
backward feature selection was imple-
mented to build the gene signature, 
where repeated 10-fold cross validation 
was applied to reduce potential selection 
bias and model overfitting (see details in 
Appendix E1 [online]). The tumor genes 
that constitute the signature were inves-
tigated with KEGG pathway enrichment 
analysis to confirm the previously iden-
tified pathways that are enriched in pa-
renchymal tissue. Results were further 
compared with the enriched molecular 
pathways identified by using data for the 
TCGA testing cohort (subgroup 4).

Validation of the Prognostic Value of 
the Gene Signature for the Parenchymal 
Image Feature
Using the tumor gene expression–based 
signature for the parenchymal image 
feature, we tested its prognostic capa-
bility by assessing association with over-
all survival and RFS in two independent 
cohorts, including the separate TCGA 
testing cohort (subgroup 4) and another 
breast cancer cohort from the Gene Ex-
pression Omnibus (GSE 1456). Because 
some genes in the signature were miss-
ing for GSE 1456, we adopted a differ-
ent validation strategy: On the basis of 
the measured genes in the signature, we 
applied hierarchic clustering to divide 
the whole population into subgroups, 
we labeled the subgroups as high risk 
or low risk on the basis of patterns of 
overlapped genes in TCGA cohort, and 
we then investigated whether these two 
subgroups had significantly different 
prognoses. For hierarchic clustering, 
the Ward method (47) and Euclidean 
distance were selected, and gap statis-
tics (48) were used to determine the 
cluster number.

Statistical Analysis
The Cox proportional hazards model 
was used to build survival models as-
sociated with either overall survival or 
RFS. Kaplan-Meier analysis was used 
to estimate survival probability. On the 
basis of data in the discovery cohort, 
we determined the optimal threshold 
value, which was defined as the cutoff 

point with the smallest log-rank P value. 
The concordance index (c-index) or the 
Harrell C statistic was used to assess 
prognostic accuracy. The hazard ratio 
(HR) was used to measure the degree 
of survival differences for the stratified 
groups on the Kaplan-Meier plots. For 
the c-index and HRs, 95% confidence 
intervals (CIs) were also assessed. Data 
in patients alive at 10 years were cen-
sored at that time to alleviate confound-
ing by comorbidities. The log-rank test 
and concordance index were used to 
assess prognostic performance. To ad-
just for multiple statistical testing, the 
Benjamini-Hochberg method (45) was 
used to control the false-discovery rate 
(FDR) in the univariate analysis. An 
FDR of less than 0.1 was considered to 
be statistically significant. The hypergeo-
metric test was used to assess whether 
the genes of interest within a particular 
pathway were significantly overrepre-
sented compared with those in random 
sampling. All statistical analyses were 
performed in R (R Foundation for Sta-
tistical Computing, Vienna, Austria).

Results

Prognostic Evaluation of Tumor-adjacent 
Parenchymal Image Features
The prognostic accuracy of 10 parenchy-
mal image features in association with 

RFS in the imaging discovery cohort is 
shown in Figure 2a. After adjustment 
for multiple hypothesis testing, only one 
image feature that measured heteroge-
neity of enhancement pattern achieved 
the predefined significance level (FDR , 
0.1). A higher value of this correlation 
measure represents a higher degree of 
heterogeneity of enhancement. We fur-
ther defined an optimal cutoff value of 
0.57 for this image feature, which max-
imized the survival differences between 
subgroups in Kaplan-Meier analysis (Fig 
2b) (log-rank P = .024, HR = 2.60, 95% 
CI: 1.43, 6.15). The Pearson correlation 
matrix of 10 image features is shown in 
Figure 2c. The output of the multivar-
iate Cox model with four uncorrelated 
features is shown in Table E2 (online), 
where the information measure of cor-
relation remained as having the stron-
gest independent association with RFS 
(P = .009).

Parenchymal Features Provided 
Independent Prognostic Information to 
Tumor Features
There was little correlation between 
the three tumor image features and 
four uncorrelated parenchymal fea-
tures (Pearson correlation , 0.50), 
as shown in Figure 2d. The multivar-
iate analysis of uncorrelated image 
features from tumor and parenchyma 

Table 3

Univariate and Multivariate Analysis of Imaging Features Extracted from Tumor and 
Tumor-adjacent Parenchyma

Location and Imaging Feature

Univariate Analysis Multivariate Analysis

Concordance Index Wald P Value Coefficient Wald P Value

Tumor
  Volume* 0.70 (0.60, 0.80) ,.0001 …. …
  FTV 0.73 (0.63, 0.82) ,.0001 0.40 .030
  SER 0.53 (0.40, 0.65) .69 0.07 .813
Parenchyma
  Correlation 0.64 (0.54, 0.74) .006 1.14 .007

  SER 1.5Prop > 0.62 (0.50, 0.72) .037 20.33 .370

  1%SER 0.56 (0.44, 0.67) .34 21.24 .004

  Energy 0.54 (0.42, 0.66) .56 20.52 .613

Note.—Data in parentheses are 95% CIs.

* Volume was not included in the multivariate analysis because of its high correlation with FTV and lower univariate performance 
than FTV.
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73 tumor genes in the signature, the 
TNF signaling pathway again appeared 
as the most enriched pathway (hyper-
geometric P = .007). Notably, the tu-
mor genes were located upstream in 
the TNF signaling cascade, while genes 
from tumor-adjacent parenchyma were 
located downstream (Fig E1 [online]). 
Finally, on the basis of the predicted 
image feature using the 73-gene signa-
ture, we identified the significantly as-
sociated tumor genes (FDR , 0.1) in 
the independent TCGA testing cohort 
(subgroup 4, n = 879) and mapped 
them in the TNF signaling pathway (Fig 
E1 [online]). The number of tumor 
genes within this pathway remained 
overrepresented (hypergeometric P = 
.018).

Prognostic Relevance of the Tumor-
adjacent Parenchymal Image Feature
As shown in Figure 4, for the indepen-
dent TCGA testing cohort (subgroup 
4), the predicted imaging feature us-
ing the 73-gene signature significantly 
stratified patients into two groups in 

Molecular Correlates of the Tumor-
adjacent Parenchymal Image Feature
The complete list of genes within the 
pinpointed greenyellow module is 
shown in Table 4. Using KEGG path-
way enrichment analysis, we identified 
the tumor necrosis factor (TNF) sig-
naling pathway as the most enriched 
pathway (hypergeometric P , .0001). 
Genes were mapped back to the TNF 
pathway and were related to six bi-
ologic processes, including leukocyte 
recruitment, inflammatory cytokines, 
intracellular signaling, cell adhesion, 
transcription factors, and synthesis 
of inflammatory mediators (Fig E1 
[online]).

A 73-gene signature based on the 
tumor profiles in TCGA (n = 126) was 
built to assess associations with the tu-
mor-adjacent parenchymal image fea-
ture (gray-level co-occurrence matrix 
information measure of correlation) 
and showed an R2 of 0.873 and an ad-
justed R2 of 0.38 (Fig E2 [online]). The 
complete gene signature is shown in 
Table 4 and Table E3 (online). For the 

are reported in Table 3, where the 
information measure of correlation 
remained as independently associated 
with RFS (P = .007). Therefore, all 
subsequent radiogenomic analysis was 
focused on the information measure 
of correlation extracted from tumor-
adjacent parenchyma.

Radiogenomic Map Linking Molecular and 
Imaging Phenotypes of Tumor-adjacent 
Parenchymal Tissue
On the basis of all available tumor-ad-
jacent parenchymal samples (n = 114) 
in the TCGA cohort, we discovered 
15 gene modules using WGCNA. We 
correlated each of these modules with 
each of the 10 parenchymal imaging 
features and created a radiogenomic 
map showing the pairwise associa-
tion between gene modules and image 
features (Fig 3). After controlling for 
FDR, only one gene module (labeled 
as greenyellow) was significantly as-
sociated with the previously identified 
prognostic image feature, with a corre-
lation coefficient of 0.55 (FDR = 0.08).

Figure 3

Figure 3:  Images for the radiogenomic discovery cohort. (a) Radiogenomic 
map of correlation between gene modules and quantitative imaging features, 
both extracted from the tumor-adjacent parenchymal tissue. (b) Dendrogram 
shows the hierarchic clustering of gene modules and the prognostic imaging 
feature (information measure of correlation).
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parenchyma have been associated with 
breast cancer outcomes such as treat-
ment response, local recurrence, and 
survival (17,18,22,23,25,26,52), but 
their biologic underpinning is poorly 
understood. We aimed to elucidate the 
molecular basis of quantitative imaging 
characteristics of tumor-adjacent pa-
renchyma by integrating spatially con-
gruent imaging and gene expression 
data. Furthermore, we constructed a 
73-gene signature of the parenchymal 
imaging feature and confirmed its prog-
nostic value for RFS and overall survival 
in two large independent breast cancer 

Discussion

The enhancement pattern of breast 
parenchyma at dynamic contrast-
enhanced MR imaging has recently 
been shown to be a promising imaging 
marker for the risk of developing breast 
cancer. Since the initial report on its 
potential diagnostic value (50), breast 
parenchymal enhancement has been in-
tegrated into routine clinical breast MR 
imaging reports according to the Breast 
Imaging Reporting and Data System 
(51). In addition to this potential role 
in diagnosis, imaging characteristics of 

terms of RFS (log-rank P = .029; HR = 
1.54 [95% CI: 1.03, 2.29]) and over-
all survival (log-rank P = .042; HR = 
1.51 [95% CI: 1.02, 2.28]). In another 
independent cohort (GSE 1456), the 
patients were divided into two sub-
groups according to hierarchic cluster-
ing based on the expression of 63 over-
lapped genes (see gene list in Table 4), 
as shown in Figure 5, and this strat-
ification was significant (log-rank P = 
.00058, HR = 2.84, and 95% CI: 1.53, 
5.29 for RFS and log-rank P = .0026, 
HR = 2.92, and 95% CI: 1.40, 6.08 for 
overall survival).

Table 4

Biologic Annotation for the 64 Genes from the Tumor-adjacent Parenchymal Gene Module (Greenyellow) and the 73 Genes in the 
Signature for the Parenchymal Image Feature

Process Category of Cancer 
Hallmarks 64 Genes in the Parenchymal Gene Module 73 Genes in the Signature

DNA damage CSF3, SELE, IL6, FOSB, NR4A1, SERPINE1, ATF3, FOS, JUNB,  
CYR61, DUSP1, BTG2

UROD

Immune IL6, SOCS3, PTGS2, IL1B, SERPINE1, CCL2, IL8, OSM, LIF, CCL4,  
RGS16, IL13, CD69, CDKN1A, PIM1, HBEGF, MAFF, BTG2,  
GPR183

IFI30

Metabolic SERPINE1, CH25H, STC1, BTG2 DDIT4, TIMM8B, NDUFB1, UROD, SLC25A3, ECHS1, ERP29,  
PGAM1, ALDH2, GNE, GSTZ1

Pathway IL6, EGR3, IL1B, SERPINE1, ATF3, CCL2, ZFP36, JUNB, CYR61,  
CD69, GADD45B, STC1, CDKN1A, PIM1, DUSP1, MAFF,  
CTGF, BTG2

DDIT4

Proliferation ATF3, FOS, LIF, KLF4, SLC2A3, RGS16, CDKN1A, HBEGF,  
PLK3, BTG2

DDIT4, SLC25A3, PSIP1, IFI30, GM2A

Signaling IL6, NR4A3, FOSB, NR4A1, SOCS3, PTGS2, FOSL1, EGR3,  
IL1B, SERPINE1, ATF3, CCL2, FOS, EGR2, ZFP36, LIF,  
EGR1, CCL4, JUNB, KLF4, SLC2A3, NR4A2, RGS16,  
CYR61, IL13, CD69, GADD45B, STC1, CDKN1A, KLF2,  
PIM1, HBEGF, DUSP1, SIK1, IER2, ADAMTS1, MAFF, BTG2, 
GPR183

DDIT4, MTHFR, MAP2 K6, IFI30

Development IL6, SERPINE1, IL8, CYR61, GADD45B, STC1, CDKN1A, HBEGF,  
CTGF

ECHS1, SGCB, ALDH2

Others C2CD4B, CCL3 L1, ADAMTS4, CCL4 L2, LOC100302650, AG2,  
CCL3, RND1, ODF3 L1, SLC2A14, CSRNP1, EGR4, FILIP1 L,  
RNF122, SLC25A25, DUSP10, C8orf77, SNORA39

GAS2 L2*, LOC285501*, LOC728758*, AGTRAP, SLC24A6, 
KIAA2026, SEPT12, C11orf59, TOM1 L2, VTI1B, AWAT2*, 
GCHFR, HMGN4, OTUB2, SNAPC3, ZDHHC13, GPR150, KLHL23, 
TRMT11, PIN4, ITCH, WBSCR16, KIAA1908*, CCDC91, ZNF34, 
HIST1H2AM, LOC100134868*, IDI2*, HIST1H2BG, LOC650368*, 
MATK, SIL1, RNF181, DCAF12, C14orf169, HIST1H3D, ZNF146, 
LOC285419*, ZNF192, TAF3, HACE1, UPF2, FAM102B,  
COMMD1, HIST2H3D, PHF23, ZNF585B, DNAJC24, ROMO1, 
FAM109A, LOC127841*, GNPDA2, HYI, ZNF567, C12orf45, 
ZNF527

Note.—The process category of cancer hallmarks was used as previously defined (49).

* Indicate one of 10 nonoverlapped genes from the 73-gene signature during validation in the GSE 1456.
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compared with the other two cohorts, 
which might influence the outcome data. 
Our identification of molecular processes 
that were significantly associated with pa-
renchymal imaging features is hypothesis 
generating. Further mechanistic evidence 
is essential to confirm these results and 
pinpoint molecular switches that drive 
the imaging phenotype reported here.

We focused on molecular analysis 
at the transcriptome level. In future, 
incorporating other types of “-omics” 
data, such as genetic mutation and copy 
number variation, could provide a more 
complete picture of the molecular charac-
teristics (59). Although we demonstrated 
associations with prognosis in two large 
independent cohorts using a gene expres-
sion signature of the imaging feature, fu-
ture study should directly validate results 
using large cohorts of patients with both 
imaging and survival data available.

In conclusion, we demonstrate an 
association between the imaging and 
molecular phenotypes of tumor-adja-
cent parenchyma and clinical outcomes 
in breast cancer. These results shed im-
portant light on the underlying biology 
behind prognostic imaging markers, 
which may ultimately inform prevention 
and treatment strategies.

Acknowledgment: The authors thank The Can-
cer Imaging Archive for providing the breast 
cancer cases enrolled in TCGA study.

maximum standardized uptake value at 
fluorine 18 fluorodeoxyglucose positron 
emission tomography in non–small cell 
lung cancer (68). A second distinction 
is that prior radiogenomic studies have 
focused image analysis on the tumor, 
while we specifically analyzed the tumor-
adjacent parenchymal tissue.

This study discovered that the TNF 
signaling pathway is associated with 
the tumor-adjacent parenchymal im-
age feature that is associated with poor 
breast cancer prognosis. TNF promotes 
inflammation and invasive growth of tu-
mor cells (69,70). Along with activated 
macrophages, the major source of TNF 
production, tumor cells, including B-cell 
lymphoma and breast cancers, can also 
express TNF (69). TNF has been im-
plicated in many oncogenic processes, 
including epithelial-mesenchymal tran-
sition (71,72), proliferation (73), angio-
genesis (74), invasion, and metastasis 
(75–77).

Limitations of this study included its 
retrospective nature and the small size 
of the radiogenomic discovery cohort. 
While including the large, multi-institu-
tion TCGA cohort enhanced statistical 
power and external validity, it also intro-
duced uncertainty because of the diver-
sity of imaging acquisition protocols in 
TCGA. Another limitation is the relatively 
short follow-up time for TCGA cohort 

cohorts that included more than 1000 
patients.

Prognostic biomarkers are critically 
needed to optimize breast cancer care. 
Various studies have evaluated gene ex-
pression signatures to predict breast 
cancer prognosis (53,54). This molecular 
approach is limited by its cost, require-
ment for invasive surgery or biopsy, and 
potential for sampling bias caused by 
the intratumor heterogeneity of breast 
cancer (55,56). Moreover, there is no 
clinically prognostic gene signature test 
for estrogen receptor–negative tumors, 
which account for about one-third of all 
breast cancers (57). By contrast, imag-
ing represents a unique opportunity for 
noninvasive interrogation of the entire 
tumor as well as its surrounding tissues, 
and it can potentially provide useful 
complementary information to molecu-
lar analysis.

Our radiogenomic study differs from 
previous radiogenomic work in two as-
pects. First, previous studies have fo-
cused on finding imaging correlates of 
molecular features (36,58–67) such as 
the OncotypeDx 21-gene recurrence 
score. We reversed the study design, 
aiming to reveal the molecular path-
ways associated with specific imaging 
markers. One recent study used this 
approach to show that epithelial-mes-
enchymal transition is associated with 

Figure 4

Figure 4:  Kaplan-Meier curves of (a) RFS and (b) overall survival for the independent TCGA testing cohort (subgroup 4).
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