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Abstract

Purpose—To determine the effect of radiation dose and iterative reconstruction (IR) on noise, 

contrast, resolution, and observer-based detectability of subtle hypoattenuating liver lesions and to 

estimate the dose reduction potential of the IR algorithm in question.

Materials and Methods—This prospective, single-center, HIPAA-compliant study was 

approved by the institutional review board. A dual-source computed tomography (CT) system was 

used to reconstruct CT projection data from 21 patients into six radiation dose levels (12.5%, 25%, 

37.5%, 50%, 75%, and 100%) on the basis of two CT acquisitions. A series of virtual liver lesions 

(five per patient, 105 total, lesion-to-liver prereconstruction contrast of −15 HU, 12-mm diameter) 

were inserted into the raw CT projection data and images were reconstructed with filtered back 

projection (FBP) (B31f kernel) and sinogram-affirmed IR (SAFIRE) (I31f-5 kernel). Image noise 

(pixel standard deviation), lesion contrast (after reconstruction), lesion boundary sharpness 

(average normalized gradient at lesion boundary), and contrast-to-noise ratio (CNR) were 
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compared. Next, a two-alternative forced choice perception experiment was performed (16 readers 

[six radiologists, 10 medical physicists]). A linear mixed-effects statistical model was used to 

compare detection accuracy between FBP and SAFIRE and to estimate the radiation dose 

reduction potential of SAFIRE.

Results—Compared with FBP, SAFIRE reduced noise by a mean of 53% ± 5, lesion contrast by 

12% ± 4, and lesion sharpness by 13% ± 10 but increased CNR by 89% ± 19. Detection accuracy 

was 2% higher on average with SAFIRE than with FBP (P = .03), which translated into an 

estimated radiation dose reduction potential (±95% confidence interval) of 16% ± 13.

Conclusion—SAFIRE increases detectability at a given radiation dose (approximately 2% 

increase in detection accuracy) and allows for imaging at reduced radiation dose (16% ± 13), 

while maintaining low-contrast detectability of subtle hypoattenuating focal liver lesions. This 

estimated dose reduction is somewhat smaller than that suggested by past studies.

Iterative reconstruction (IR) algorithms in multidetector computed tomography (CT) have 

been shown to improve image quality compared with the traditional filtered back projection 

(FBP) algorithms (1–12) and may allow for imaging at reduced radiation doses without 

compromising image quality. The sinogram-affirmed IR (SAFIRE) algorithm (Siemens 

Medical Solutions, Forchheim, Germany) has been available for several years and studied 

extensively in the context of phantoms (1,4,6,12–15), simulations (16,17), and clinical data 

(7,9,18–26). These studies have concluded that SAFIRE has significant (25%–75%) 

radiation dose savings potential but were limited in one or more of the following ways.

First, by ethical necessity most clinical studies have considered only two radiation dose 

levels (21–26), making it difficult to understand the full functional relationship between 

radiation dose and image quality (for a specific task) based on only two data points. For 

example, a common study design is a noninferiority-based comparison between FBP at full 

radiation dose and IR at some arbitrarily chosen reduced radiation dose. With such data, it is 

difficult to estimate the potential radiation dose reduction from the iterative algorithm with 

any amount of precision, and it is impossible to estimate the performance of the algorithm 

for radiation dose levels that were not explicitly tested.

Second, many studies have not used objective measures of image performance (eg, 

sensitivity, specificity, detection accuracy) as figures of merit. For example, the clinical 

studies have typically been based on subjective visual scoring of quality (7,21,22,24,26) and 

the phantom studies have been based on the measurement of physical image characteristics 

such as noise and/or resolution (1,6,13,15). Under the formalism established by International 

Commission on Radiation Units and Measurements report 54 (27), image quality is defined 

as the effectiveness by which an image can be used for its intended task. Thus, when 

comparing two reconstruction algorithms, it is important to base this comparison on how 

well images from each reconstruction can objectively be used for a clinically relevant task 

(eg, detection of subtle lesions). This is especially true when comparing algorithms that may 

have varying noise texture, contrast, and resolution properties because detectability is 

affected by all these factors simultaneously (4,28). In other words, what is most important is 

not how much noise is reduced by an IR algorithm but how much the detectability is 

increased.
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Third, the phantom and simulation studies have relied on data that are fundamentally 

oversimplified compared with patient data. For example, Xu et al (16) performed an 

excellent simulation study in which raw CT projection data of virtual anthropomorphic 

phantoms (with subtle lesions) were simulated and images were reconstructed by using FBP 

and SAFIRE algorithms from Siemens. Objective detectability was assessed by using a 

mathematical observer model. The major limitation of such a study is that the virtual 

phantoms used were essentially uniform within a given organ. This leads to simulated data 

that do not contain the level of heterogeneity and complexity encountered in clinical work. It 

has been shown that owing to nonlinear regularization techniques, IR algorithms behave 

differently in uniform regions compared with regions with variable anatomic features and 

textures (11,29–32). Thus, it is questionable whether the results from studies based on 

uniform phantoms can translate to how an IR algorithm would perform with real clinical 

data.

The purpose of this study was to determine the effect of radiation dose and reconstruction 

algorithm (FBP vs SAFIRE) on noise, contrast, and observer-based detectability of subtle 

hypoattenuating liver lesions. The aforementioned limitations of previous studies (too few 

dose levels, poor metrics of image quality, and/or over-simplified phantom and/or simulation 

data) were overcome by using so-called hybrid images (ie, real CT images infused with 

virtual lesions) along with a dose-splitting technique that enables imaging of the same 

patient at up to six radiation dose levels with just two CT acquisitions. With this paradigm, 

we aimed to objectively and directly estimate how radiation dose and reconstruction 

algorithm affect detectability, thus enabling a realistic estimate of the radiation dose 

reduction potential of SAFIRE for the given clinical task.

Materials and Methods

This study was financially supported by Siemens Medical Solutions USA (Malvern, Pa). 

The authors had complete control of the data and information submitted for publication. 

This prospective, single-center, Health Insurance Portability and Accountability Act–

compliant study was approved by the institutional review board of Duke University.

Image Acquisition

Twenty-one patients (mean age ± standard deviation, 60 years ± 11; median age, 62 years; 

age range, 44–80 years), including 10 men (mean age, 66 years ± 10; median age, 64 years; 

age range, 49–80 years) and 11 women (mean age, 56 years ± 9; median age, 53 years; age 

range, 44–69 years), with clinical indication for metastatic colorectal cancer were 

prospectively enrolled on the basis of known or suspected liver metastases as indicated at 

previous multidetector CT (n = 15) or ultrasonographic (n = 5) examinations or increased 

carcino-embryonic antigen tumor marker levels (>5 ng/mL) (n = 6). Exclusion criteria 

included a clinical history of intolerance to iodinated contrast material or renal failure 

defined as serum creatinine level greater than 2.0 mg/mL (177 μmol/L). No patient met the 

exclusion criteria in our study. The mean patient effective diameter—measured digitally on 

the midabdomen of the scout radiograph and calculated according to American Association 

of Physicists in Medicine report 204 (33)—was 27.6 cm ± 4.7 (median, 27.8 cm; range, 

Solomon et al. Page 3

Radiology. Author manuscript; available in PMC 2017 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20.3–39.1 cm). Note that this range of patient sizes does not include the largest patients 

typically encountered clinically.

Each patient underwent two successive CT acquisitions (scan 1, full dose; and scan 2, half 

dose) by using modified versions of our institution’s standard contrast material–enhanced 

abdominal protocol with a dual-source CT scanner (Somatom Flash, Siemens Medical 

Solutions) (Table 1). On this dual-source scanner, it is possible to set each x-ray tube (tube A 

and tube B) to have the same tube potentials (in kilovolts) but different tube currents (in 

milliamperes), allowing for simultaneous acquisition of data from the same patient at 

multiple radiation dose levels. It is further possible to reconstruct images on the basis of 

either data from each individual tube or combined data from both tubes. Thus, a single CT 

acquisition results in CT images at three radiation dose levels (tube A, tube B, and tubes A 

and B). With two CT acquisitions, a total of six radiation dose levels were achieved per 

patient. Each of the two CT acquisitions split the baseline tube current 75% to tube A and 

25% to tube B, resulting in images representing 100% (scan 1, tubes A and B), 75% (scan 1, 

tube A), 50% (scan 2, tubes A and B), 37.5% (scan 2, tube A), 25% (scan 1, tube B), and 

12.5% (scan 2, tube B) radiation dose relative to our standard clinical radiation dose for an 

abdominal protocol. The scan range in scan 2 was limited to include only the liver, thus 

minimizing the overall radiation burden of scan 2 in terms of the dose-length product. It was 

estimated that this second scan increased the total radiation burden to the patient by about 

15% relative to a standard of care diagnostic examination when accounting for scan 

coverage. In terms of volume CT dose index and size-specific dose estimate, the 100% dose 

level corresponded to a mean of 10.3 mGy ± 3.1 and 13.0 mGy ± 2.5, respectively 

(variability due to the use of tube current modulation).

All scans were obtained in a single breath hold during the hepatic parenchymal (portal 

venous dominant) phase (70 seconds after the start of contrast material injection). Scan 1 

was obtained in the craniocaudal direction, whereas scan 2 was obtained immediately after 

in the opposite direction to minimize contrast material timing differences between the two 

acquisitions. The bolus of contrast material consisted of 150 mL with an iodine 

concentration of 300 mg iodine per milliliter (iopamidol [Isovue 300; Bracco Diagnostics, 

Princeton, NJ]) and was administered with an 18–20-gauge cannula inserted into an 

antecubital fossa vein by using a dual-chamber mechanical power injector (Empower; E-Z-

Em, Lake Success, NY) at a flow rate of 3 mL/sec.

The raw projection data were exported from the scanner console onto an external hard drive. 

After inserting virtual lesions into the projection data (described in the next section), images 

were reconstructed with FBP (B31f kernel) and SAFIRE-5 (I31f kernel) by using an offline 

reconstruction system (ReconCT, Siemens Medical Solutions). Note that the vendor’s 

implementation of FBP (so-called weighted FBP) has already been shown to be superior to 

the classic FBP algorithm (34,35). This implementation will be referred to as FBP 

throughout. Twelve CT datasets were reconstructed per patient (six radiation dose levels × 

two reconstruction algorithms).

Solomon et al. Page 4

Radiology. Author manuscript; available in PMC 2017 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Virtual Lesion Insertion

In practice it is extremely difficult to find clinical cases of subtle lesions that are near the 

threshold of detectability. However, it is exactly these cases that one would expect to be 

most sensitive to changing radiation dose and reconstruction algorithm. For this reason, in 

this study we used a method of inserting subtle virtual lesions into the real CT images, 

resulting in so-called hybrid images. This made it possible to investigate the effect of 

radiation dose and reconstruction algorithm on the detection of very subtle lesions in a 

controlled and targeted manner.

On the basis of a previously published method for generating realistic virtual liver lesions 

(36), a custom software tool (LesionTool; Duke University, Durham, NC) (Fig 1) was used 

to generate a series of liver lesion models having fixed inherent (ie, prereconstruction) 

contrast of −15 HU with variable size and shape (average radius, 6 mm ± 1). Note that 

although typical clinical liver lesions tend to have higher contrast compared with those used 

in this study—average of approximately −35 HU on the basis of limited available data (37)

—this contrast level was chosen to target lesions that were near the threshold of detectability 

and to assess the performance of the IR algorithm under the most challenging conditions. 

Several phantom-based studies have likewise targeted lesions with contrasts in the range of 

−12 to −40 HU (38,39). Five lesions were generated per patient, resulting in 105 total 

lesions. Suitable insertion locations were identified as small regions within the liver (just big 

enough to fit the lesion) but void of obvious features (eg, blood vessels or real lesions). 

Some lesions were inserted in close proximity to blood vessels or other normal anatomic 

features; however, they were not superimposed on top of those features. Virtual lesions were 

not inserted near real lesions. The lesion models were voxelized to match the targeted CT 

resolution and exported as solitary three-dimensional image volumes. These image volumes 

were fed into a projection-based lesion insertion routine (36,40) developed as a plug-in to 

the ReconCT software package (Siemens Medical Solutions). This routine used ReconCT’s 

underlying forward projector to create synthetic projection images of the lesions. These 

synthetic projections were added (ie, superimposed) onto the real patient projection data. 

Because the underlying geometry of the CT system is known exactly by ReconCT, this 

method enabled the synthesis of realistic projection data without artifacts. The altered 

projection data were then reconstructed by using the manufacturer’s standard reconstruction 

methods. Because the lesions were inserted before reconstruction, any nonlinear effects from 

the reconstruction algorithm were faithfully represented in how the final lesion was rendered 

in the reconstructed image space. Similar projection-based lesion insertion techniques have 

been shown to produce realistic results (41). Corresponding images with and without lesions 

were reconstructed with both FBP and SAFIRE. From these image volumes, 40-mm regions 

of interest (ROIs) were extracted around the lesion locations from both the lesion-present 

and lesion-absent images.

Noise, Contrast, and Resolution

A series of physical measurements were made on the image ROIs, including noise 

magnitude, contrast, contrast-to-noise ratio (CNR), and resolution (ie, lesion sharpness). For 

the measurements below, sub-ROIs were defined having the shape of the inserted lesion and 

being contained within the inserted lesion as illustrated in Figure 2. Noise magnitude was 
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taken as the standard deviation of pixel values within this sub-ROI region from the lesion-

absent image. Contrast was estimated by first computing a difference image, Idiff, between 

the lesion-present and lesion-absent images. The contrast was taken as the mean pixel value 

of Idiff within the aforementioned sub-ROI region. CNR was computed as the ratio between 

the noise magnitude and the contrast. Finally, the resolution was assessed by computing the 

average relative gradient magnitude, |∇|, for pixels in Idiff near the boundary of the lesion 

(see Fig 2). |∇| is defined as the change in pixel value (normalized by the maximum pixel 

value in the image) per millimeter. A high gradient implies a sharp transition between the 

lesion and the background, and a low gradient implies a blurry boundary.

Detectability

In addition to the signal-present ROIs used earlier, a series of 20 lesion-absent ROIs were 

identified in different locations (compared with the lesion insertion locations) for each 

patient. On the basis of this ensemble of lesion-present and lesion-absent ROIs, a two-

alternative forced choice (2AFC) detection experiment was performed to assess the effect of 

radiation dose and reconstruction algorithm on detection accuracy (Fig 3). Sixteen readers 

(six radiologists, 10 medical physicists) participated. For each radiation dose and 

reconstruction condition, readers were shown 105 trials (ie, image pairs) in randomized 

order for a total of 1260 2AFC trials per reader. For each trial, the reader was shown two 

images, one with the lesion and one without. Their task was to select the image most likely 

to contain the lesion. The reader outcomes (detection or nondetection) were recorded for 

each trial. In addition, to minimize any memory effect of seeing the same lesion as rendered 

in different radiation dose and/or reconstruction conditions, images were flipped and rotated 

randomly before being shown to the observers.

Statistical Analysis

Noise, contrast, and CNR were compared pairwise between FBP and SAFIRE by using 

linear regression analysis. The slope and corresponding 95% confidence interval (CI) of the 

regression line were used to assess the effect of SAFIRE on a given quantity (slope > 1 

implies the quantity is greater in SAFIRE images, slope = 1 implies the quantity is similar, 

and slope < 1 implies it is greater in FBP images). The coefficient of determination (R2) was 

used as a goodness-of-fit metric.

The binary 2AFC reader outcomes (ie, detection or nondetection) were statistically analyzed 

by fitting a generalized linear mixed effects regression model (binomial distribution with a 

probit link function). The probability of detection (ie, detection accuracy) was modeled as 

follows:

where Yi,j,k,n is the reader outcome (1 for detection, 0 for nondetection) for the ith 

reconstruction algorithm (i = 1 corresponds to FBP, i = 2 corresponds to SAFIRE), jth reader 

(j = 1,…,16), kth dose level (k = 1,…,6), and nth lesion (n = 1,…,105). Here Φ(x) is the 

standard normal cumulative distribution function, μ a baseline intercept term (representing 

FBP at 1% radiation dose), α a radiation dose term, ln(Dk) the natural logarithm of the kth 
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radiation dose level, β a reconstruction algorithm term, Si a binary dummy variable encoding 

the reconstruction algorithm (FBP corresponds to S1= 0, SAFIRE corresponds to S2 = 1), Rj 

a random effect to account for reader variability, Ln a random effect to account for variable 

inherent conspicuity across the ensemble of lesions, and ε an error term. All random terms 

were assumed to have zero mean normal distributions with standard deviations of σR, σL, 

and σε, respectively. Model terms with P < .05 were considered indicative of a statistically 

significant difference. This model was chosen due to the theoretical relationship between 

radiation dose and an observer’s detectability index (exponentially related) and the 

relationship between detectability index and detection accuracy (related by Φ[x]) (10,42). 

The log of radiation dose was taken to linearize the data with respect to radiation dose, thus 

better satisfying the model assumptions. This analysis used the Statistics and Machine 

Learning Tool-box in MATLAB (fitglme () function).

This model was used to compare the mean detection accuracy (averaged across all readers 

and lesions) between FBP and SAFIRE and to estimate the radiation dose reduction 

potential of SAFIRE, defined as the reduced radiation dose at which SAFIRE had equivalent 

average detection accuracy compared with FBP at 100% reference radiation dose. Given the 

statistical model parameters, the relative radiation dose reduction potential of SAFIRE, ΔD, 

was analytically computed as follows:

where DF is the reference FBP radiation dose and DS the reduced radiation dose at which 

SAFIRE had equivalent detection accuracy. This equation can be derived directly from the 

statistical model by setting ĀF(DF) = ĀS(DS), solving for DS, and then substituting DS into 

the definition of relative radiation dose reduction given above. Here ĀF and ĀS are the 

modeled detection accuracy from FBP and SAFIRE, respectively, averaged across readers 

and lesions. The standard error of ΔD, σΔD, was computed by propagating the standard 

errors of α and β (as output from the statistical model) through the above equation (ignoring 

high-order terms) and 95% CIs of ΔD were computed as ΔD ± 1.96σΔD.

Results

A montage of the ROI images is shown in Figure 4. On average (across all radiation dose 

levels), SAFIRE reduced the noise by 53% ± 5, reduced contrast by 12% ± 4 (1–2 HU), 

increased CNR by 89% ± 19, and reduced lesion sharpness by 13% ± 10 compared with 

FBP. The linear regression lines of SAFIRE versus FBP had slopes of 0.46 (95% CI: 0.45, 

0.47), 0.88 (95% CI: 0.86, 0.89), 1.82 (95% CI: 1.78, 1.86), and 0.64 (95% CI: 0.62, 0.66) 

for noise, contrast, CNR, and lesion sharpness, respectively. R2 was 0.90, 0.95, 0.93, and 

0.86, respectively (Fig 5).

Results from the 2AFC detection experiments are given in Table E1 (online), and the output 

of the statistical model is given in Table 2. Detection accuracy increased with increasing 

dose (P < .001) and with use of SAFIRE (2% increase on average, P = .03). The effect of 

radiation dose on detection accuracy was relatively mild at high radiation doses (2% 
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decrease in detection accuracy between 100% and 75% radiation dose) and more drastic at 

lower radiation doses (5% decrease in detection accuracy between 25% and 12.5% radiation 

dose). There was also considerable variability in the data owing to readers and lesions, with 

standard deviations of these effects being comparable to the magnitude of the fixed effects in 

the statistical model (Table 2). Compared with the reference 100% clinical radiation dose 

with FBP, SAFIRE had equivalent performance at 84% radiation dose, which implies a dose 

reduction potential (ΔD) (±95% CI) of 16% ± 13, as illustrated in Figure 6.

Discussion

Our data provide further evidence that SAFIRE could facilitate imaging of subtle 

hypoattenuating focal liver lesions at lower radiation doses. However, the magnitude of this 

radiation dose reduction potential (approximately 16%) is smaller than that suggested by 

previous investigators (1,9,16) and is mitigated by reduced contrast and resolution for low-

contrast detection tasks. To our knowledge, this is the first study to explicitly measure 

detectability of subtle lesions on patient images in an objective fashion by using human 

readers over a wide range of radiation dose levels. Previous studies have relied on phantom-

based measures, mathematical observer models, or subjective scoring of image quality. A 

major advantage of the methodology used in this study is that the functional relationship 

between radiation dose and detection accuracy of human readers was ascertained, allowing 

for a granular estimation of the magnitude of radiation dose reduction potential from 

SAFIRE along with an understanding of how sensitive the detection task was to changing 

radiation dose. Note that in this study, as with any human reader-based study, there was 

considerable interreader variability. There was also considerable interlesion variability (ie, 

some lesions were more difficult to detect than others), as evidenced by the random terms of 

the statistical model. The analysis of the data was primarily focused on determining the 

radiation dose reduction potential of SAFIRE for the “average” reader, further averaged 

across an ensemble of lesions. Due to the aforementioned interreader variability, it is 

possible that individual readers would respond differently to changing radiation dose and 

reconstruction algorithm conditions. Future work could explore this variability further.

The data show that reducing the radiation dose (with everything else held constant) will have 

a negative effect on detectability. This implies that to achieve a certain level of detection 

accuracy for subtle lesions, a minimum dose is required. Also of note is that the functional 

relationship between radiation dose and detection accuracy shows a relatively high slope at 

low radiation doses (12.5%–37.5%) but a rather shallow slope at high radiation doses (75%–

100%), meaning that detection accuracy is most sensitive to changing radiation dose at lower 

radiation dose levels. This functional relationship follows what would be predicted by the 

physics and/or statistics of CT imaging along with statistical signal detection theory and is 

not a novel result of this study but is an important point to re-emphasize for those attempting 

radiation dose optimization. It was only possible to demonstrate this functional relationship 

due to the CT scanner’s ability to acquire data from the same patient at different radiation 

dose levels within a very narrow time window.

The observed effect of SAFIRE on physical image properties is mostly consistent with 

previous studies showing a sizeable noise reduction from SAFIRE (1,4,6,7,9,12–18,21–
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26,43). Of note, however, is the fact that, in this study, we also observed a reduction in lesion 

contrast and resolution from SAFIRE. Phantom studies from Solomon et al (11) have 

demonstrated that a similar reconstruction algorithm from the same vendor (Advanced 

Modeled Iterative Reconstruction–ADMIRE, Siemens Medical Solutions) has highly 

variable spatial resolution as a function of contrast. For example, ADMIRE had poorer 

resolution than FBP for very low contrast features but better resolution for high contrast 

features (11). In general, poorer resolution can result in a loss of contrast. Thus, it is not 

surprising that SAFIRE seems to exhibit similar behavior. Similar results have also been 

reported for iterative algorithms from other vendors (44).

This also highlights the strength of using objective task-based image quality metrics when 

comparing different reconstruction algorithms that potentially have different noise, contrast, 

and resolution properties. Radiation dose reduction claims on the basis of noise or CNR 

alone should be received with skepticism. For example, in this study, SAFIRE reduced noise 

by 52% on average and the data showed that one could image at 87% reduced radiation dose 

with SAFIRE to achieve similar noise to FBP at full radiation dose. However, on the basis of 

the 2AFC detection experiment, SAFIRE at 85% reduced radiation dose had approximately 

13% lower detection accuracy than FBP at full radiation dose. Similarly, one can image at 

75% reduced radiation dose and achieve similar CNR to that with FBP at full radiation dose. 

However, that would lead to a reduction in the detection accuracy by approximately 8%.

In this study, the virtual lesions were purposefully designed to be near the threshold of 

detectability to isolate (as much as possible) the effect of the reconstruction algorithm on 

detectability. Alternatively, the comparison of lesions that are easily detectable on both FBP 

and IR images provides very little information about the benefits of the IR algorithm. As a 

result, the lesions in this study were probably subtler than those typically encountered in 

clinical practice. In addition, in the calculation of the dose reduction potential, it was 

assumed that the goal was to maintain constant detectability of these subtle lesions. 

However, it is conceivable that one may be willing to somewhat sacrifice detectability of 

very subtle lesions to reduce radiation dose for most patients who have more conspicuous 

lesions or no lesions at all. This should be an active area of discussion within the imaging 

community moving forward.

A few limitations of our study merit acknowledgment. First, a limited number of patients (n 
= 21) were used. There were two reasons for this limitation: (a) Only a limited number of 

patients were successfully recruited for the study, and (b) there is a practical limit to the 

number of 2AFC trials that can be shown to readers in a given session before their 

performance suffers (ie, reader fatigue). In this study, readers completed more than 1200 

trials in a single session. Second, the 2AFC paradigm reduces the complex process of image 

interpretation down to making a binary decision of lesion present or lesion absent, aiming to 

test the perceived conspicuity of the lesions in small ROIs. The expertise of a radiologist is 

centered on making a clinical diagnosis given the full image data and other information 

about the patient. This is a much broader task compared with assessing if a lesion is present 

in a small ROI image. Thus, the detectability results from this study represent a relatively 

simple case compared with clinical reality. Nevertheless, these types of experiments do offer 

valuable information about how easily a subtle lesion might be perceived in a more typical 
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clinical scenario and how different reconstruction algorithms render the same lesion 

differently. In addition, the study used a number of imaging physicists who are not explicitly 

trained in clinical interpretation of CT images. Nonetheless, for the same reasons mentioned 

earlier (ie, the simplified nature of the detection task at hand), we do not believe this is a 

significant limitation of the study because imaging physicists are accustomed to performing 

low-contrast detection tasks as part of routine imaging physics testing. Finally, despite 

efforts to minimize contrast timing differences, it is still possible that the contrast 

enhancement of the liver parenchyma was somewhat different between the two consecutive 

scans. However, because the lesions of interest in this study were inserted virtually, any 

difference in background liver enhancement would have little to no effect on the results of 

this study.

In conclusion, the SAFIRE algorithm reduces image noise but also reduces contrast and 

resolution of subtle hypoattenuating liver lesions compared with FBP. The net effect is that 

SAFIRE increases detectability by approximately 2% at a given radiation dose and is able to 

offer equivalent detectability at approximately 16% ± 13 reduced radiation dose. This 

estimated dose reduction is somewhat smaller than past studies have suggested.
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Refer to Web version on PubMed Central for supplementary material.
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Advances in Knowledge

• Detection accuracy decreased with decreasing radiation dose (P < .001); this 

effect was relatively mild at high radiation doses (2% decrease in detection 

accuracy between 100% and 75% radiation dose) and more pronounced at 

lower radiation doses (5% decrease in detection accuracy between 25% and 

12.5% radiation dose).

• The sinogram-affirmed iterative reconstruction (SAFIRE) algorithm at a full 

radiation dose increased detectability of subtle hypoattenuating liver lesions 

compared with filtered back projection (FBP) at a full radiation dose (P = .

03); furthermore, the SAFIRE algorithm at 16% reduced radiation dose (95% 

confidence interval: ±13%) had equal detectability to FBP at a full radiation 

dose.

• The SAFIRE algorithm reduced image noise by 53% ± 5 but also decreased 

lesion contrast by 12% ± 4 and resulted in subtle hypoattenuating liver lesions 

with boundaries that were 13% ± 10 blurrier compared with FBP.
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Implication for Patient Care

• SAFIRE could be used as an effective way to reduce radiation dose by 16% 

± 13 and maintain detectability of subtle hypoattenuating liver lesions at 

multidetector CT.
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Figure 1. 
Graphical user interface of LesionTool software package. (a) Tool allows user to create 

lesion models either by random generation or by fitting to segmented real lesions. (b) Tool 

can also be used to insert lesion models into CT data or to export lesion models for 

projection-based lesion insertion, as was done for this study.
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Figure 2. 
(a, b) Examples of lesion-present (a) and lesion-absent (b) ROI at same location. (c) 
Difference of these images, Idiff, shows how lesion itself is rendered by reconstruction 

algorithm. For each lesion in study, noise, contrast, and CNR were measured by using sub-

ROIs (within lesion location), as shown. The resolution sub-ROI consisted of the band 

between the black and white lines, representing the boundary region of the lesion.
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Figure 3. 
Graphical user interface of 2AFC experiment shows, A, image with lesion and, B, image 

without lesion. For this experiment, the reader was asked to choose which image is most 

likely to contain the lesion. Reader outcomes (ie, detection or nondetection) were recorded 

for each trial and the ensemble of outcomes across all combinations of radiation dose level 

(n = 6), reconstruction algorithm (n = 2), reader (n = 16), and lesion (n = 105) were input 

into a generalized linear mixed effects statistical model to examine how these factors 

affected detection accuracy.
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Figure 4. 
Montages of ROI images used as basis of comparing FBP with SAFIRE. A, C, Montages of 

CT images show lesions within natural background. B, D, Montages show lesions 

themselves with background subtracted, which represents how lesion appears after being 

transferred through reconstruction algorithm. Images were obtained from 12.5% radiation 

dose level scans.
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Figure 5. 
(a–d) Fan chart plots show noise (a), contrast (b), CNR (c), and average relative gradient 

magnitude (d) as a function of radiation dose. Dots represent individual lesions (blue = FBP, 

red = SAFIRE), shaded regions represent percentiles of data from 15% (darkest) to 85% 

(lightest), and solid lines represent medians. (e–h) Corresponding linear regression plots 

show how those factors compare between FBP and SAFIRE images. Data points (blue 

circles) are shown with their regression lines (red line) and diagonal (y=x, dotted line).
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Figure 6. 
Results of 2AFC detection experiment show detection accuracy as a function of radiation 

dose for FBP and SAFIRE. Small markers represent individual readers, large circles are 

average across readers, and thick solid lines represent detection accuracy averaged across 

readers and lesions as function of dose, Āi(D), as predicted by statistical model. Equation for 

Āi (D) is shown. Dashed line represents radiation dose reduction potential of SAFIRE.
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Table 1

Scan Settings for the Abdominal Protocol

Parameter Data

Scanner model Somatom Flash

Scan mode Helical, dual source

Detector configuration (mm) 128 × 0.6*

Beam width (mm) 38.4

Pitch 0.8

Rotation time (sec) 0.33

Tube current modulation CareDose4D (average setting)

Quality reference effective milliampere second Scan 1: tube A =150, tube B = 50; scan 2: tube A = 75, tube B = 25

Tube potential (kV) 120

Section thickness (mm) 5

Reconstruction algorithm FBP, SAFIRE-5

Reconstruction kernel B31f, I31f

*
Note that the flying focal spot was used to achieve a 128-section configuration. The scanner has 64 physical detector rows.
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