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Purpose: To identify quantitative imaging biomarkers at fluorine 18 
(18F) positron emission tomography (PET) for predicting 
distant metastasis in patients with early-stage non–small 
cell lung cancer (NSCLC).

Materials and 
Methods:

In this institutional review board–approved HIPAA-compli-
ant retrospective study, the pretreatment 18F fluorodeoxy-
glucose PET images in 101 patients treated with stereo-
tactic ablative radiation therapy from 2005 to 2013 were 
analyzed. Data for 70 patients who were treated before 
2011 were used for discovery purposes, while data from 
the remaining 31 patients were used for independent vali-
dation. Quantitative PET imaging characteristics including 
statistical, histogram-related, morphologic, and texture 
features were analyzed, from which 35 nonredundant and 
robust features were further evaluated. Cox proportional 
hazards regression model coupled with the least absolute 
shrinkage and selection operator was used to predict dis-
tant metastasis. Whether histologic type provided com-
plementary value to imaging by combining both in a single 
prognostic model was also assessed.

Results: The optimal prognostic model included two image features 
that allowed quantification of intratumor heterogeneity and 
peak standardized uptake value. In the independent valida-
tion cohort, this model showed a concordance index of 0.71, 
which was higher than those of the maximum standardized 
uptake value and tumor volume, with concordance indexes 
of 0.67 and 0.64, respectively. The prognostic model also 
allowed separation of groups with low and high risk for 
developing distant metastasis (hazard ratio, 4.8; P = .0498, 
log-rank test), which compared favorably with maximum 
standardized uptake value and tumor volume (hazard ratio, 
1.5 and 2.0, respectively; P = .73 and 0.54, log-rank test, 
respectively). When combined with histologic types, the 
prognostic power was further improved (hazard ratio, 6.9; 
P = .0289, log-rank test; and concordance index, 0.80).

Conclusion: PET imaging characteristics associated with distant me-
tastasis that could potentially help practitioners to tailor 
appropriate therapy for individual patients with early-
stage NSCLC were identified.

q RSNA, 2016
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reviewed records and images of pa-
tients with lung cancer (n = 449) who 
were treated with SABR at our insti-
tution from September 2005 through 
December 2013. Inclusion criteria were 
biopsy-confirmed primary NSCLC, 
stage I according to the sixth edition 
of the American Joint Committee on 
Cancer staging manual, with a mini-
mum of 3 months of imaging follow-up 
(n = 197). A majority (. 80%) of pa-
tients were not eligible for surgery due 
to comorbidities such as advanced age, 
poor performance status, chronic ob-
structive pulmonary disease, coronary 
artery disease, pulmonary hyperten-
sion, liver cirrhosis, and poor lung func-
tion; some patients (, 20%) declined 
surgery. Exclusion criteria were treat-
ment with concurrent chemotherapy 
before a diagnosis of distant metastasis 
(n = 16), synchronous tumors (n = 10), 
diagnosis with new primary NSCLCs 
after SABR (n = 5), and previous treat-
ment for NSCLC (n = 31). On the bases 
of the inclusion and exclusion criteria, 
135 patients were selected. Of those, 
101 patients with pretreatment PET 
images available were included in this 
retrospective study.

Patient characteristics are sum-
marized in Table 1. There was no 

useful prognostic indicators of survival 
in patients with NSCLC (4–6). Authors 
of multiple studies (7–9) have demon-
strated that metabolic tumor volume 
is a prognostic factor in patients with 
NSCLC. However, despite intensive in-
vestigation of these and other imaging 
metrics, the predictive value of these 
metrics to allow accurate discrimina-
tion between different risk groups ap-
pears to be limited. More sophisticated 
tools that improve on existing imaging 
metrics are needed.

Radiomics has emerged as a prom-
ising approach to discovering quanti-
tative imaging biomarkers in patients 
with cancer (10). The rationale is that, 
by extracting a large number of puta-
tive imaging features, we could obtain 
a more comprehensive characterization 
of the underlying tumor phenotypes, 
which may ultimately correlate with 
clinical outcomes. This approach has 
been used to predict overall survival in 
patients with lung cancer with widely 
available imaging data such as CT 
(11,12) or FDG PET (13,14).

We hypothesize that automated 
analysis of quantitative imaging fea-
tures coupled with appropriate statis-
tical modeling may lead to improved 
prognostic value compared with that of 
conventional imaging metrics. Here, we 
adopt a quantitative radiomic approach 
to extract imaging features from pre-
treatment FDG PET scans. The purpose 
of this study was to identify quantitative 
imaging biomarkers from FDG PET for 
predicting distant metastasis in patients 
with early-stage NSCLC.

Materials and Methods

Patient Population
Under approval from the institutional 
review board, we retrospectively 
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Advances in Knowledge

nn The proposed median imaging 
signature was 0.83 (interquartile 
range, 0.69–1.15) for patients 
without distant metastasis, and 
was 1.29 (interquartile range, 
0.80–1.80) for patients with dis-
tant metastasis (P = .02, Wil-
coxon test).

nn In an independent validation 
cohort, the PET radiomic signa-
ture achieved a concordance 
index of 0.71 in predicting dis-
tant metastasis, with a significant 
separation between high-risk and 
low-risk patients (hazard ratio, 
4.8; P = .0498; log-rank test).

nn When combined with histologic 
information, the prognostic 
power was further improved, 
with a concordance index of 0.80 
in the validation cohort (hazard 
ratio, 6.9; P = .0289, log-rank 
test).

Implication for Patient Care

nn Imaging signatures based on fluo-
rine 18 fluorodeoxyglucose PET 
could potentially be used to iden-
tify early-stage lung cancer 
patients who might benefit from 
adjuvant systemic therapy.

Non–small cell lung cancer 
(NSCLC) is the leading cause of 
cancer-related death worldwide. 

Stereotactic ablative radiation therapy 
(SABR), also known as stereotactic 
body radiation therapy, achieves excel-
lent local control rates in patients with 
early-stage NSCLC (1). The dominant 
pattern of treatment failure in patients 
treated with SABR is distant metastasis 
(2). Therefore, there is a critical need 
to identify patients who are more likely 
to develop metastatic disease and who 
thus might benefit from additional ther-
apy. This is pertinent with both surgical 
and SABR treatment, but more so with 
SABR, because lymph nodes are rarely 
evaluated pathologically before or after 
radiation.

Imaging with fluorine 18 (18F) 
fluorodeoxyglucose (FDG) positron 
emission tomography (PET) is a well-
established tool in staging NSCLC, 
because it allows detection of dis-
tant metastases and regional lymph 
nodes involved (3). Conventional 
PET imaging metrics such as peak 
standardized uptake value (SUVpeak), 
maximum SUV (SUVmax), and total le-
sion glycolysis have been shown to be 
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metastasis rate, 16%). Wilcoxon rank-
sum and x2 tests were used to assess 
the differences between the two co-
horts. The clinical end points evaluated 
in this study, including distant metasta-
sis rate and time to distant metastasis, 
tended to have a similar distribution in 
both cohorts.

Treatment
Patients were treated with SABR within 
a week of treatment-planning PET/
computed tomography (CT) scans. Ra-
diation doses ranged from 25 Gy in a 
single fraction to 60 Gy divided into 
five fractions. The majority of patients 
(65%) received doses greater than the 
biologically effective dose of 100 Gy.

PET/CT Imaging
For NSCLC treated with SABR at our 
institution, patients routinely undergo 
PET/CT as part of initial staging and 
during radiation treatment simulation. 
Regarding the imaging protocol, after 
a 4–8-hour fast, patients were injected 
with 370–666 MBq of FDG, and imag-
ing was performed 45–60 minutes later 
with a PET/CT scanner (GE Discovery; 
GE Medical Systems, Milwaukee, Wis, 
or Somatom; Siemens Healthcare, Er-
langen, Germany). CT images were col-
lected in the helical acquisition mode. 
In the same scanning locations and 
generally in seven bed positions, PET 
data were acquired in two-dimensional 
mode, with 3–5 minutes of acquisition 
time per bed position. The PET im-
ages were then reconstructed with an 
ordered set expectation maximization 
algorithm, with the CT data for atten-
uation correction. The complete PET/
CT examination required approximately 
1.5 hour, including patient setup, tracer 
uptake, and image acquisition. Most of 
the original PET image spatial resolu-
tion was 2.34 3 2.34 3 3.27 mm3, with 
in-plane resolution of 1.68–5.47 mm 
and thickness of 2.03–4 mm.

Image Feature Extraction
We calculated a total of 70 quantitative 
features from each patient’s PET image 
to characterize intratumor heteroge-
neity and complexity. Our hypothesis 
was that these quantitative imaging 

follow up with all patients with NSCLC 
at regular intervals (usually every 3 
months) after treatment. This process 
lasts indefinitely until patient death, un-
less they are lost to follow-up.

We divided the overall population 
into two independent cohorts. The first 
cohort, consisting of approximately 
two-thirds of the population, included 
patients imaged before the end of 2011 
and was used for discovery or training 
purposes (n = 70). The second cohort 
included patients imaged between 2012 
and 2013 and was used for validation 
purposes (n = 31). We chose the partic-
ular time frame to ensure a sufficiently 
large population size to build reliable 
prognostic models, and at the same 
time, achieved an equal distribution of 
events between the two cohorts (distant 

statistically significant difference in age 
between the men and women (P = .079, 
Wilcoxon test). In the study cohort, 16 
(15.8%) patients had distant metasta-
sis during follow-up: adenocarcinoma 
(n = 9), squamous cell carcinoma (n = 
3), and unknown histologic type (n = 
4). These 16 patients had metastases 
to the thorax (n = 11), bone (n = 5), 
visceral organs (n = 4), and brain (n = 
2). Note that some patients presented 
with multiple metastatic sites. Among 
them, metastatic disease was confirmed 
on the basis of biopsy results in seven 
patients and with PET imaging only in 
eight patients because of poor health 
condition and inability to undergo bi-
opsy, and brain metastasis in one pa-
tient was confirmed with magnetic res-
onance imaging. At our institution, we 

Table 1

Demographic Data 

Characteristic Overall (n = 101) Discovery (n = 70) Validation (n = 31) P Value

Age (y)* 75 (42–92) 77 (42–92) 71 (47–89) .09
Sex .46
  Female 56 (55) 41 (59) 15 (48)
  Male 45 (45) 29 (41) 16 (52)
Age*
  Men (y) 71 (55–89) 72 (55–89) 69 (59–89) .43
  Women (y) 78 (42–92) 78 (42–92) 74 (47–87) .19
Overall stage ..99
  IA 70 (69) 48 (69) 22 (71)
  IB 31 (31) 22 (31) 9 (29)
TNM stage .50
  T1 72 (71) 48 (69) 24 (77)
  T2a 29 (29) 22 (31) 7 (23)
Histologic result .05
  Adeno 60 (59) 37 (53) 23 (74)
  Squamous 30 (30) 25 (36) 5 (16)
  Unknown 11 (11) 8 (11) 3 (10)
Follow-up (mo)* 17 (2–80) 22.5 (2–80) 14 (2–29) .02
Survival (mo)* 20 (3–80) 23 (3–80) 17 (6–40) .04
Distant metastasis ..99
  No 85 (84) 59 (84) 26 (84)
  Yes 16 (16) 11 (16) 5 (16)
Overall survival .01
  No 37 (37) 32 (46) 5 (16)
  Yes 64 (63) 38 (54) 26 (84)
Time to distant metastasis (mo)* 8 (1–30) 8 (3–15) 9 (1–30) .73

Note.—Unless otherwise indicated, data are number of patients, with percentage in parentheses. Statistical comparison 
between two cohorts was computed with χ2 (categorical variables) or Wilcoxon rank sum test (continuous variables). TNM = 
tumor, node, and metastasis.
* Data in parentheses are the range.
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Prediction of Distant Metastasis
The Cox proportional hazards model 
(21) was used to build survival models to 
predict freedom from distant metastasis 
on the basis of the discovery cohort. In 
general, a Cox regression model is used 
to estimate the hazard or risk of a cer-
tain outcome or event (in this study, dis-
tant metastasis) for each patient. Ideally, 
all patients who had distant metastasis 
are associated a higher risk according 
to a perfect prediction model. Given the 
disparate follow-up times for different 
patients, a Cox survival model (as op-
posed to binary classification) is appro-
priate, because it takes into account the 
presence or absence of distant metasta-
sis and the time to event. Since imaging 
and histologic evaluation measure the 
same biologic entity but at very different 
spatial scales, we assessed whether his-
tologic type (adenocarcinoma vs squa-
mous cell carcinoma) provided comple-
mentary value to imaging signatures by 
combining the two in a single prognostic 
model. To divide the patients into high- 
versus low-risk groups, we determined 
the optimal threshold value on the basis 
of the discovery cohort, which is defined 
as the cutoff point with the most signifi-
cant split (smallest P value from the log-
rank test) (22). The Cox survival model 
was built by using the survival package 
in R (23).

Performance Evaluation and Statistical 
Analysis
We validated the prediction model in 
an independent validation cohort. The 
concordance index was used to assess 
the prognostic capability of the im-
aging signature (concordance index, 
0–1). A concordance index of 1 indi-
cates perfect prediction, and random 
guess gives a concordance index of 0.5. 
Kaplan-Meier analysis was used to es-
timate the probability of freedom from 
distant metastasis. The aforementioned 
optimal cutoff point from the discovery 
cohort was used to divide patients into 
high- or low-risk groups in the valida-
tion cohort. The statistical significance 
of concordance indexes and whether 
one concordance index was higher 
than another were assessed by means 
of bootstrapping. We used a bootstrap 

the reproducibility and stability of 
each imaging feature, given the un-
certainty associated with tumor de-
lineation. In particular, we derived 
two sets of imaging features on the 
basis of two sets of tumor contours 
based on a manual delineation by an 
experienced radiation oncologist and 
automatic segmentation with a fuzzy 
c-means algorithm (18). We kept only 
the most stable imaging features with 
an intraclass correlation coefficient 
greater than 0.8. Then we removed 
redundant imaging features with a 
linear correlation coefficient greater 
than 0.95. Finally, we applied the 
least absolute shrinkage and selection 
operator algorithm (19) jointly with 
the Cox survival model described 
in the next section, to implement a 
nested feature selection scheme in 
the discovery cohort. Ten-fold cross-
validation was applied to minimize 
the potential selection bias, and the 
most frequently selected imaging fea-
tures (with a cutoff of 0.05) were cho-
sen to fit the final prediction model. 
The feature selection procedure was 
performed by using a statistical soft-
ware package (glmnet package in R; R 
Foundation for Statistical Computing, 
Vienna, Austria [20]).

features may reveal subtle character-
istics of the tumor that are otherwise 
not detectable (ie, by human eyes) and 
these imaging features provide a more 
comprehensive characterization of the 
underlying tumor phenotypes and may 
better predict clinical outcomes. The 
feature pool included two morpho-
logic features, six statistical features, 
five histogram-related features, and 
57 texture features, which are sum-
marized in Table 2. In this work, we 
investigated three types of texture fea-
tures on the basis of gray-level co-oc-
currence matrices (15), wavelet de-
compositions (16), and Laws features 
(17). To characterize tumors meaning-
fully, all texture features were further 
processed to be rotationally invariant 
(without preference to any particular 
spatial direction). The calculation of 
all imaging features was implemented 
with software (MATLAB; MathWorks, 
Natick, Mass).

Feature Selection
Because of the large number of im-
age features and relatively small co-
hort size, we performed feature se-
lection in three stages to minimize 
multiple hypothesis testing and avoid 
model over-fitting. First, we tested 

Table 2

Quantitative PET Image Characteristics for the Primary Tumor

Type Details No.

Morphology Volume, sphericity 2
Statistical Mean, max, standard deviation, uniformity, entropy, energy 6
Histogram SUV defined with highly active metabolic tumor volume of 1–5 mL,  

  with interval of 1 mL
5

GLCM Compute co-occurrence matrices with offset of 1 for all 13 directions;  
 � average co-occurrence matrices throughout 13 directions; compute three  

features, including homogeneity, cluster shade, and correlation.

3

Wavelet Apply one-level discrete wavelet decomposition; group the decomposed  
 � image into four rotational invariant groups: group 1 with HHH; group 2 with 

LLL; group 3 with LHH, HLH, HHL; and group 4 with LLH, LHL, HLL; process the 
group-wise averaged images with three statistical features (ie, mean, max and 
entropy) and three features. 

24

Laws family Apply each Laws filter consistently for all three directions, including Gaussian,  
 � gradient, LOG, Gabor, and wave filters; process the filtered image with three  

statistical features (ie, mean, max, and entropy) and three GLCM features.

30

Note.—H = high-pass filter, L = low-pass filter (eg, HHH = high-pass filter in three directions, LHL = one high-pass filter and 
two low-pass filters in three dimensions). GLCM = gray-level co-occurence matrix.
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, .0001) and a hazard ratio of 4.8 (P 
= .0498, log-rank test). These results 
compared favorably (P , .0001) with 
conventional imaging metrics, where 
tumor volume had a concordance index 
of 0.64 (P , .0001) and a hazard ratio 
of 2.0 (P = .54, log-rank test), and SU-
Vmax had a concordance index of 0.67 
(P , .0001) and a hazard ratio of 1.5 
(P = .73, log-rank test). For the whole 
population (n = 101), the proposed me-
dian imaging signature was 0.83 (inter-
quartile range, 0.69–1.15) for patients 
without distant metastasis and 1.29 
(interquartile range, 0.80–1.80) for pa-
tients with distant metastasis (P = .02, 
Wilcoxon test). The imaging features 
were normalized with z-scores. Neither 
tumor volume nor SUVmax was prognos-
tic in the validation cohort, although 
SUVmax was prognostic in the discovery 
cohort (see Figs E1 and E2 [online]).

Finally, we combined the previously 
obtained radiomic signature with histo-
logic type to build a prognostic model 
based on patients with known histologic 
results (adenocarcinoma vs squamous 
cell carcinoma). The combined ra-
diomic-histologic signature was defined 
as 2.4 3 SUVpeak2mL + 4.2 3 GCS – 3.9 
3 HT, where GCS is the Gauss cluster 
shade and HT is the histologic type, with 
adenocarcinoma coded as 1 and squa-
mous cell carcinoma coded as 0. Figure 3  
shows the Kaplan-Meier curves for the 
composite model, which showed a signif-
icant separation between the high- and 
low-risk groups in both the discovery 
and validation cohorts. Also, the concor-
dance index was increased to 0.80, indi-
cating an improved predictive capability. 
A significant improvement (P , .0001) 
in predicting freedom from distant me-
tastasis was seen when histologic in-
formation was added compared with a 
prognostic model based solely on imag-
ing features. The concordance index ob-
tained by using histologic type alone was 
merely 0.51 (P = .77). The prognostic 
capacity of the aforementioned models 
is summarized in Table 3.

Discussion

In this study, we identified prognostic 
PET imaging signatures in patients with 

and the other feature was the SUV 
corresponding to the top active 2 mL 
in the tumor volume (SUVpeak2mL). On 
the basis of the discovery cohort, the 
radiomic prognostic signature was de-
fined as 2.1 3 SUVpeak2mL + 3.6 3 GCS, 
where GCS is the Gauss cluster shade. 
Figure 1 shows two representative pa-
tients with and without distant metas-
tasis whose tumors had similar SUVmax 
and tumor volume values, but had dif-
ferent radiomic signatures in terms of 
SUVpeak2mL and Gauss cluster shade.

Figure 2 shows the Kaplan-Meier 
curves for predicting the risk of dis-
tant metastasis by using the proposed 
radiomic signature. In the discovery co-
hort, the radiomic signature achieved a 
concordance index of 0.73 (P , .0001) 
and a hazard ratio of 5.4 (P = .0019, 
log-rank test) for separating patients 
at low risk from those at high risk of 
distant metastasis. When tested in the 
independent validation cohort, the ra-
diomic signature remained prognostic, 
with a concordance index of 0.71 (P 

method with 50 subsamples and 100 
repetitions from (a) original survival 
data and (b) permuted survival data or 
survival data in comparison, and then 
the concordance index distributions 
of a and b were analyzed by using the 
Wilcoxon signed-rank test. The statis-
tical analysis was performed by using 
the R software.

Results

After removing highly correlated fea-
tures (correlation coefficient . 0.95) 
and assessing their reproducibility (in-
traclass correlation coefficient . 0.8), 
35 robust imaging features remained 
(see Table E1 [online]). On the basis 
of the discovery cohort, we used the 
optimal prognostic model to identify 
two radiomic features that allowed 
quantification of tumor texture and 
peak SUV. In particular, the texture 
feature was the cluster shade of the 
Gaussian filtered image within the Laws 
feature group (Gauss cluster shade),  

Figure 1

Figure 1:  PET images in two patients with lung cancer whose tumors had similar SUV
max

 and tumor volume 
but different radiomic signatures. DM = distant metastasis. Arrows = tumor.
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beyond what was already known about 
the patient (eg, stage).

To the best of our knowledge, we 
are the first researchers to report on the 
investigation of quantitative FDG PET 
image features (ie, radiomics) for pre-
dicting distant metastasis in early-stage 
NSCLC after SABR. Authors of other 
recent studies (24,25) have addressed 

early-stage NSCLC. Another strength 
of our study was that we focused on pa-
tients with early-stage NSCLC only and 
identified predictors that stratify pa-
tients of similar clinical stages, whereas 
authors of many previous studies in-
cluded patients of mixed stages and 
did not address specifically whether the 
predictors add important information 

early-stage NSCLC by using a quanti-
tative radiomic approach. The imaging 
signature significantly improved the 
prognostic value compared with that of 
conventional imaging metrics. In addi-
tion, we found that combining imaging 
and histologic information yielded fur-
ther improvement in predicting the risk 
of distant metastasis in patients with 

Figure 2

Figure 2:  Kaplan-Meier curves of freedom from distant metastasis with proposed radiomic signature in (a) discovery cohort (n = 70) 
(b) and validation cohort (n = 31). Cutoff between patients at high and low risk was determined on the basis of discovery cohort and 
was fixed for validation cohort.

Figure 3

Figure 3:  Kaplan-Meier curves of freedom from distant metastasis with combined radiomic-histologic signature in (a) discovery co-
hort (n = 62) (b) and validation cohort (n = 27). Cutoff between patients at high and low risk was determined on the basis of discovery 
cohort and was fixed for validation cohort.
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features. Authors of several previous 
articles (35,36) have investigated this 
issue, and, here, we addressed these 
concerns in two ways. First, we found 
that most of the patients from both 
the discovery and validation cohorts 
had a sufficient number of tumor vox-
els (.100 voxels) reconstructed on the 
original PET image. Moreover, the tu-
mor voxel numbers of both cohorts are 
not significantly different (P = .34), with 
a median size in the discovery cohort 
of 412 voxels and in the validation co-
hort, 493 voxels. Next, we exhaustively 
tested the statistical difference of all the 
selected texture features between the 
large tumor group ( median tumor 
volume) and the small tumor group (, 
median tumor volume). Only four of 25 
texture features (wavelet group 1 mean 
and entropy, wavelet group 2 mean, 
and Laws gradient cluster shade) were 
significantly different between the two 
groups, and more importantly, the tex-
ture feature (ie, Gauss cluster shade) 
that was finally chosen was relatively 
stable for both groups.

Our study had several limitations. 
This was a retrospective study with a 
relatively small cohort. The median fol-
low-up time of 17 months is relatively 
short, considering that distant failures 
may occur up to several years after 
treatment. A technical limitation was 
respiratory motion during the three-di-
mensional PET acquisition, which may 
have led to distortion (mainly elonga-
tion and blurring) of the true metabolic 
activity, especially for tumors in the 
lower lobes of the lung. Respiratory-
gated and four-dimensional PET acqui-
sition (37) may help improve the quan-
titative accuracy of PET imaging.

For future studies, the prognostic 
models must be evaluated in large pro-
spective cohorts with longer follow-up 
times. Considering the inherent vari-
ability in image acquisition protocol and 
reconstruction parameters, extensive 
multisite clinical validation is required 
before our radiomic signature can be 
translated into clinical practice. While 
glucose metabolic activity reflected on 
FDG PET images captures an impor-
tant aspect of the underlying tumor 
biology, there may be other factors 

one of the radiomic signatures (Laws 
feature) allowed quantification of re-
gional heterogeneity of the PET image. 
Whether these macroscopic imaging 
features have clear underlying biologic 
relevance must be investigated further.

Our prognostic model combining 
histologic and imaging features (Table 
3) suggests that, given similar ra-
diomic signatures at PET, lung adeno-
carcinoma (coded as 0) tends to have a 
greater risk for distant metastasis than 
does squamous cell carcinoma (coded 
as 1). These results are consistent 
with those of a recent study (34) in 
which authors showed that, although 
lung squamous cell carcinomas tend 
to be more metabolically active with 
a higher SUV at FDG PET (generally 
a poor prognostic indicator), adeno-
carcinoma actually may have a higher 
metastatic potential than squamous 
cell carcinoma. On the other hand, the 
optimal imaging predictors of distant 
metastasis may be histologically spe-
cific. Therefore, in future prospective 
studies, developing a model of squa-
mous cell carcinoma and adenocarci-
noma separately may have greater clin-
ical prognostic strength.

Given the tumor stage, certain con-
cerns would arise regarding the stability 
and suitability of the proposed texture 

CT-based imaging features in locally ad-
vanced NSCLC. The patient population 
from our study (ie, early-stage NSCLC) 
is growing with the results of the na-
tional lung cancer screening trial (26) 
and recent financial support for screen-
ing programs by the Centers for Medi-
care and Medicaid Services (Decision 
Memo CAG-00439N, www.cms.gov). 
These results could have implications 
for patients who ultimately receive 
surgery or SABR, but are particularly 
pertinent for the patients who undergo 
SABR. Compared with patients who 
receive surgery, patients who undergo 
SABR are at greater risk of regional 
and distant metastasis, and many do 
not undergo lymph node evaluation at 
the time of treatment. Therefore, it will 
become increasingly important to iden-
tify patients who may benefit from adju-
vant treatment, given risk of recurrence 
and increased life expectancy.

Intratumor heterogeneity has been 
suggested to correlate with worse pa-
tient outcome (27–33) and to manifest 
on multiple spatial scales (eg, at mo-
lecular or genetic, cellular, and tissue 
levels). In this study, the extraction of 
advanced PET imaging features allowed 
us to assess intratumor heterogeneity 
quantitatively on a macroscopic tissue 
scale. For predicting distant metastasis, 

Table 3

Comparison of Three Prognostic Models for Predicting Distant Metastasis 

Model and Covariate Coefficient P Value Concordance Index* P Value Hazard Ratio

Univariate analysis of  
  conventional predictors

  SUVmax . . . . . . 0.67 (0.22, 0.94) ,.0001 1.5
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Multivariate analysis of  

  radiomic signatures
0.71 (0.50, 0.92) ,.0001 4.8

  SUVpeak2mL 2.1 .014
  Gauss cluster shade 3.6 .026
Multivariate analysis of radiomic  

 � signatures combined with 
histologic type

0.80 (0.54, 1.00) ,.0001 6.9

  SUVpeak2mL 2.4 .024
  Gauss cluster shade 4.2 .039
  Histologic type 23.9 .047

* Data in parentheses are 95% confidence intervals.
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such as the tumor microenvironment 
that also can influence clinical outcome 
(38). Combining FDG PET with other 
imaging modalities such as CT and with 
genomic signatures (39,40) may further 
improve the predictive value.

In conclusion, we have built models 
for predicting the risk of distant metas-
tasis in early-stage NSCLC by combin-
ing quantitative PET imaging features 
and histologic information. These prog-
nostic models must be validated further 
in prospective large cohorts. If success-
ful, the proposed techniques may aid in 
identifying patients with NSCLC who 
would benefit from adjuvant therapy.
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