
Re
vi

ew
s 

an
d 

Co
m

m
en

ta
ry

  n
 R

ev
ie

w

8� radiology.rsna.org  n  Radiology: Volume 269: Number 1—October 2013

Quantitative Imaging in Cancer 
Evolution and Ecology1 

Robert A. Gatenby, MD
Olya Grove, PhD
Robert J. Gillies, PhD

Cancer therapy, even when highly targeted, typically fails 
because of the remarkable capacity of malignant cells to 
evolve effective adaptations. These evolutionary dynamics 
are both a cause and a consequence of cancer system het-
erogeneity at many scales, ranging from genetic properties 
of individual cells to large-scale imaging features. Tumors 
of the same organ and cell type can have remarkably di-
verse appearances in different patients. Furthermore, 
even within a single tumor, marked variations in imaging 
features, such as necrosis or contrast enhancement, are 
common. Similar spatial variations recently have been re-
ported in genetic profiles. Radiologic heterogeneity within 
tumors is usually governed by variations in blood flow, 
whereas genetic heterogeneity is typically ascribed to ran-
dom mutations. However, evolution within tumors, as in 
all living systems, is subject to Darwinian principles; thus, 
it is governed by predictable and reproducible interactions 
between environmental selection forces and cell pheno-
type (not genotype). This link between regional variations 
in environmental properties and cellular adaptive strat-
egies may permit clinical imaging to be used to assess and 
monitor intratumoral evolution in individual patients. This 
approach is enabled by new methods that extract, report, 
and analyze quantitative, reproducible, and mineable clin-
ical imaging data. However, most current quantitative 
metrics lack spatialness, expressing quantitative radio-
logic features as a single value for a region of interest en-
compassing the whole tumor. In contrast, spatially explicit 
image analysis recognizes that tumors are heterogeneous 
but not well mixed and defines regionally distinct habitats, 
some of which appear to harbor tumor populations that 
are more aggressive and less treatable than others. By 
identifying regional variations in key environmental selec-
tion forces and evidence of cellular adaptation, clinical 
imaging can enable us to define intratumoral Darwinian 
dynamics before and during therapy. Advances in image 
analysis will place clinical imaging in an increasingly cen-
tral role in the development of evolution-based patient-
specific cancer therapy.
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only objective reproducible metrics 
for imaging features but also a the-
oretical construct that bridges those 
scales (Fig 1).

To promote the development and 
implementation of quantitative imag-
ing methods, protocols, and software 
tools, the National Cancer Institute 
has established the Quantitative Imag-
ing Network. One goal of this program 
is to identify reproducible quantifiable 
imaging features of tumors that will 
permit data mining and explicit exam-
ination of links between the imaging 
findings and the underlying molecular 
and cellular characteristics of the tu-
mors. In the quest for more person-
alized cancer treatments, these quan-
titative radiologic features potentially 
represent nondestructive temporally 
and spatially variable predictive and 
prognostic biomarkers that readily can 
be obtained in each patient before, 
during, and after therapy.

Quantitative imaging requires com-
putational technologies that can be 
used to reliably extract mineable data 
from radiographic images. This feature 
information can then be correlated 
with molecular and cellular properties 
by using bioinformatics methods. Most 
existing methods are agnostic and fo-
cus on statistical descriptions of ex-
isting data, without presupposing the 
existence of specific relationships. 
Although this is a valid approach, a 
more profound understanding of quan-
titative imaging information may be 
obtained with a theoretical hypothesis-
driven framework. Such models use 
links between observable tumor char-
acteristics and microenvironmental 
selection factors to make testable pre-
dictions about emergent phenotypes. 
One such theoretical framework is the 

in an effort to understand their clini-
cal and biologic implications (1,2). In 
parallel, technical advances now permit 
extensive molecular characterization 
of tumor cells in individual patients. 
This has led to increasing emphasis on 
personalized cancer therapy, in which 
treatment is based on the presence of 
specific molecular targets (3). However, 
recent studies (4,5) have shown that 
multiple genetic subpopulations coex-
ist within cancers, reflecting extensive 
intratumoral somatic evolution. This 
heterogeneity is a clear barrier to ther-
apy based on molecular targets, since 
the identified targets do not always rep-
resent the entire population of tumor 
cells in a patient (6,7). It is ironic that 
cancer, a disease extensively and pri-
marily analyzed genetically, is also the 
most genetically flexible of all diseases 
and, therefore, least amenable to such 
an approach.

Genetic variations in tumors are 
typically ascribed to a mutator pheno-
type that generates new clones, some 
of which expand into large populations 
(8). However, although identification 
of genotypes is of substantial interest, 
it is insufficient for complete charac-
terization of tumor dynamics because 
evolution is governed by the interac-
tions of environmental selection forces 
with the phenotypic, not genotypic, 
properties of populations as shown, 
for example, by evolutionary conver-
gence to identical phenotypes among 
cave fish even when they are from dif-
ferent species (9–11). This connection 
between tissue selection forces and 
cellular properties has the potential to 
provide a strong bridge between medi-
cal imaging and the cellular and molec-
ular properties of cancers.

We postulate that differences 
within tumors at different spatial 
scales (ie, at the radiologic, cellular, 
and molecular [genetic] levels) are 
related. Tumor characteristics ob-
servable at clinical imaging reflect 
molecular-, cellular-, and tissue-level 
dynamics; thus, they may be useful in 
understanding the underlying evolving 
biology in individual patients. A chal-
lenge is that such mapping across spa-
tial and temporal scales requires not 

Cancers are heterogeneous across 
a wide range of temporal and spa-
tial scales. Morphologic hetero-

geneity between and within cancers is 
readily apparent in clinical imaging, and 
subjective descriptors of these differ-
ences, such as necrotic, spiculated, and 
enhancing, are common in the radiology 
lexicon. In the past several years, radi-
ology research has increasingly focused 
on quantifying these imaging variations 

Essentials

nn Marked heterogeneity in genetic 
properties of different cells in the 
same tumor is typical and 
reflects ongoing intratumoral 
evolution.

nn Evolution within tumors is gov-
erned by Darwinian dynamics, 
with identifiable environmental 
selection forces that interact with 
phenotypic (not genotypic) prop-
erties of tumor cells in a predict-
able and reproducible manner; 
clinical imaging is uniquely suited 
to measure temporal and spatial 
heterogeneity within tumors that 
is both a cause and a conse-
quence of this evolution.

nn Subjective radiologic descriptors 
of cancers are inadequate to cap-
ture this heterogeneity and must 
be replaced by quantitative met-
rics that enable statistical com-
parisons between features de-
scribing intratumoral 
heterogeneity and clinical out-
comes and molecular properties.

nn Spatially explicit mapping of 
tumor regions, for example by 
superimposing multiple imaging 
sequences, may permit patient-
specific characterization of intra-
tumoral evolution and ecology, 
leading to patient- and tumor-
specific therapies.

nn We summarize current informa-
tion on quantitative analysis of 
radiologic images and propose 
future quantitative imaging must 
become spatially explicit to iden-
tify intratumoral habitats before 
and during therapy.
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stored in databases in an objective, re-
producible, and mineable form (Figs 1, 2).  
Once transformed into a quantitative 
form, radiologic tumor properties can 
be linked to underlying genetic alter-
ations (the field is called radiogenom-
ics) (19–21) and to medical outcomes 
(22–27). Researchers are currently 
working to develop both a standard-
ized lexicon to describe tumor features 
(28,29) and a standard method to con-
vert these descriptors into quantitative 
mineable data (30,31) (Fig 3).

Several recent articles underscore 
the potential power of feature analysis. 
After manually extracting more than 
100 CT image features, Segal and 
colleagues found that a subset of 14 
features predicted 80% of the gene 
expression pattern in patients with he-
patocellular carcinoma (21). A similar 
extraction of features from contrast 

models for spatially explicit image 
analysis as an exciting potential avenue 
of investigation.

Quantitative Imaging and Radiomics

In patients with cancer, quantitative 
measurements are commonly limited 
to measurement of tumor size with 
one-dimensional (Response Evaluation 
Criteria in Solid Tumors [or RECIST]) 
or two-dimensional (World Health Or-
ganization) long-axis measurements 
(16). These measures do not reflect 
the complexity of tumor morphology or 
behavior, and in many cases, changes 
in these measures are not predictive of 
therapeutic benefit (17). In contrast, 
radiomics (18) is a high-throughput 
process in which a large number of 
shape, edge, and texture imaging fea-
tures are extracted, quantified, and 

developing paradigm of cancer as an 
ecologic and evolutionary process.

For decades, landscape ecologists 
have studied the effects of heterogene-
ity in physical features on interactions 
between populations of organisms and 
their environments, often by using ob-
servation and quantification of images 
at various scales (12–14). We propose 
that analytic models of this type can 
easily be applied to radiologic studies 
of cancer to uncover underlying molec-
ular, cellular, and microenvironmental 
drivers of tumor behavior and specifi-
cally, tumor adaptations and responses 
to therapy (15).

In this article, we review recent 
developments in quantitative imaging 
metrics and discuss how they correlate 
with underlying genetic data and clinical 
outcomes. We then introduce the con-
cept of using ecology and evolutionary 

Figure 1

Figure 1:  (a) Computed tomographic (CT) scan of right upper lobe lung cancer in a 50-year-old woman. (b) Isoattenuation map 
shows regional heterogeneity at the tissue scale (measured in centimeters). (c, d) Whole-slide digital images (original magnification, 
33) of a histologic slice of the same tumor at the mesoscopic scale (measured in millimeters) (c) coupled with a masked image of 
regional morphologic differences showing spatial heterogeneity (d). (e) Subsegment of the whole slide image shows the microscopic 
scale (measured in micrometers) (original magnification, 350). (f) Pattern recognition masked image shows regional heterogeneity. In 
a, the CT image of non–small cell lung cancer can be analyzed to display gradients of attenuation, which reveals heterogeneous and 
spatially distinct environments (b). Histologic images in the same patient (c, e) reveal heterogeneities in tissue structure and density on 
the same scale as seen in the CT images. These images can be analyzed at much higher definition to identify differences in morphol-
ogies of individual cells (3), and these analyses reveal clusters of cells with similar morphologic features (d, f). An important goal of 
radiomics is to bridge radiologic data with cellular and molecular characteristics observed microscopically.
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tumors by using regional enhancement 
patterns on dynamic contrast-enhanced 
MR images were reviewed recently (35).  
One such technique that is used to 
measure heterogeneity of contrast en-
hancement uses the Factor Analysis 
of Medical Image Sequences (or FA-
MIS) algorithm, which divides tumors 
into regions based on their patterns 
of enhancement (36). Factor Analysis 
of Medical Image Sequences–based 
analyses yielded better prognostic in-
formation when compared with region 
of interest–based methods in numer-
ous cancer types (19–21,37–39), and 
they were a precursor to the Food and 
Drug Administration–approved three-
time-point method (40). A number 
of additional promising methods have 
been developed. Rose and colleagues 
showed that a structured fractal-based 
approach to texture analysis improved 
differentiation between low- and 
high-grade brain cancers by orders 
of magnitude (41). Ahmed and col-
leagues used gray level co-occurrence 
matrix analyses of dynamic contrast-
enhanced images to distinguish benign 
from malignant breast masses with 
high diagnostic accuracy (area under 
the receiver operating characteristic 
curve, 0.92) (26). Others have shown 
that Minkowski functional structured 
methods that convolve images with dif-
ferently kernelled masks can be used 
to distinguish subtle differences in con-
trast enhancement patterns and can 
enable significant differentiation be-
tween treatment groups (42).

It is not surprising that analyses of 
heterogeneity in enhancement patterns 
can improve diagnosis and prognosis, 
as this heterogeneity is fundamentally 
based on perfusion deficits, which gen-
erate significant microenvironmental 
selection pressures. However, texture 
analysis is not limited to enhancement 
patterns. For example, measures of 
heterogeneity in diffusion-weighted 
MR images can reveal differences in 
cellular density in tumors, which can 
be matched to histologic findings (43). 
Measures of heterogeneity in T1- and 
T2-weighted images can be used to 
distinguish benign from malignant soft-
tissue masses (23). CT-based texture 

heavily on novel machine learning algo-
rithms, can more completely cover the 
range of quantitative features that can 
describe tumor heterogeneity, such as 
texture, shape, or margin gradients or, 
importantly, different environments, or 
niches, within the tumors.

Generally speaking, texture in a bio-
medical image is quantified by identify-
ing repeating patterns. Texture analyses 
fall into two broad categories based on 
the concepts of first- and second-order 
spatial statistics. First-order statistics 
are computed by using individual pixel 
values, and no relationships between 
neighboring pixels are assumed or evalu-
ated. Texture analysis methods based on 
first-order statistics usually involve calcu-
lating cumulative statistics of pixel values 
and their histograms across the region of 
interest. Second-order statistics, on the 
other hand, are used to evaluate the like-
lihood of observing spatially correlated 
pixels (34). Hence, second-order texture 
analyses focus on the detection and quan-
tification of nonrandom distributions of 
pixels throughout the region of interest.

The technical developments that 
permit second-order texture analysis in 

agent–enhanced magnetic resonance 
(MR) images of glioblastoma was used 
to predict immunohistochemically iden-
tified protein expression patterns (22). 
Other radiomic features, such as tex-
ture, can be used to predict response 
to therapy in patients with renal cancer 
(32) and prognosis in those with meta-
static colon cancer (33).

These pioneering studies were rela-
tively small because the image analysis 
was performed manually, and the stud-
ies were consequently underpowered. 
Thus, recent work in radiomics has 
focused on technical developments that 
permit automated extraction of image 
features with the potential for high 
throughput. Such methods, which rely 

Figure 2

Figure 2:  Contrast-enhanced CT scans show non–small cell lung cancer (left) and corresponding cluster 
map (right). Subregions within the tumor are identified by clustering pixels based on the attenuation of pixels 
and their cumulative standard deviation across the region. While the entire region of interest of the tumor, 
lacking the spatial information, yields a weighted mean attenuation of 859.5 HU with a large and skewed 
standard deviation of 243.64 HU, the identified subregions have vastly different statistics. Mean attenuation 
was 438.9 HU 6 45 in the blue subregion, 210.91 HU 6 79 in the yellow subregion, and 1077.6 HU 6 18 
in the red subregion.

Figure 3

Figure 3:  Chart shows the five processes in 
radiomics.
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of the adaptive strategy is predictable 
since the environmental conditions are 
more or less known. Thus, standard 
medical images can be used to infer 
specific emergent phenotypes and, with 
ongoing research, these phenotypes 
can be associated with underlying ge-
netic changes.

This area of investigation will likely 
be challenging. As noted earlier, the 
most obvious spatially heterogeneous 
imaging feature in tumors is perfusion 
heterogeneity on contrast-enhanced CT 
or MR images. It generally has been as-
sumed that the links between contrast 
enhancement, blood flow, perfusion, and 
tumor cell characteristics are straight-
forward. That is, tumor regions with 
decreased blood flow will exhibit low 
perfusion, low cell density, and high ne-
crosis. In reality, however, the dynamics 
are actually much more complex. As 
shown in Figure 4, when using multi-
ple superimposed sequences from MR 
imaging of malignant gliomas, regions 
of tumor that are poorly perfused on 
contrast-enhanced T1-weighted images 
may exhibit areas of low or high water 
content on T2-weighted images and low 
or high diffusion on diffusion-weighted 
images. Thus, high or low cell densities 
can coexist in poorly perfused volumes, 
creating perfusion-diffusion mismatches. 
Regions with poor perfusion with high 
cell density are of particular clinical in-
terest because they represent a cell pop-
ulation that is apparently adapted to mi-
croenvironmental conditions associated 
with poor perfusion. The associated 
hypoxia, acidosis, and nutrient depriva-
tion select for cells that are resistant to 
apoptosis and thus are likely to be resis-
tant to therapy (46,47).

Furthermore, other selection forces 
not related to perfusion are likely to 
be present within tumors. For exam-
ple, evolutionary models suggest that 
cancer cells, even in stable micro-
environments, tend to speciate into 
“engineers” that maximize tumor cell 
growth by promoting angiogenesis and 
“pioneers” that proliferate by invading 
normal issue and co-opting the blood 
supply. These invasive tumor pheno-
types can exist only at the tumor edge, 
where movement into a normal tissue 

a narrow standard deviation, whereas 
the mean attenuation over the entire 
region of interest is a weighted average 
of the values across all subregions, with 
a correspondingly large and skewed 
distribution. We contend that these 
subregions represent distinct habitats 
within the tumor, each with a distinct 
set of environmental selection forces.

These observations, along with the 
recent identification of regional varia-
tions in the genetic properties of tumor 
cells, indicate the need to abandon the 
conceptual model of cancers as bound-
ed organlike structures. Rather than a 
single self-organized system, cancers 
represent a patchwork of habitats, 
each with a unique set of environmen-
tal selection forces and cellular evolu-
tion strategies. For example, regions of 
the tumor that are poorly perfused can 
be populated by only those cells that 
are well adapted to low-oxygen, low-
glucose, and high-acid environmental 
conditions. Such adaptive responses 
to regional heterogeneity result in mi-
croenvironmental selection and hence, 
emergence of genetic variations within 
tumors. The concept of adaptive re-
sponse is an important departure from 
the traditional view that genetic hetero-
geneity is the product of increased ran-
dom mutations, which implies that mo-
lecular heterogeneity is fundamentally 
unpredictable and, therefore, chaotic. 
The Darwinian model proposes that 
genetic heterogeneity is the result of a 
predictable and reproducible selection 
of successful adaptive strategies to local 
microenvironmental conditions.

Current cross-sectional imaging 
modalities can be used to identify re-
gional variations in selection forces by 
using contrast-enhanced, cell density–
based, or metabolic features. Clinical 
imaging can also be used to identify 
evidence of cellular adaptation. For ex-
ample, if a region of low perfusion on 
a contrast-enhanced study is necrotic, 
then an adaptive population is absent 
or minimal. However, if the poorly per-
fused area is cellular, then there is pre-
sumptive evidence of an adapted pro-
liferating population. While the specific 
genetic properties of this population 
cannot be determined, the phenotype 

features have been shown to be highly 
significant independent predictors of 
survival in patients with non–small cell 
lung cancer (24).

Texture analyses can also be ap-
plied to positron emission tomographic 
(PET) data, where they can provide 
information about metabolic heteroge-
neity (25,26). In a recent study, Nair  
and colleagues identified 14 quantitative 
PET imaging features that correlated 
with gene expression (19). This led to 
an association of metagene clusters to 
imaging features and yielded prognos-
tic models with hazard ratios near 6. In 
a study of esophageal cancer, in which 
38 quantitative features describing fluo-
rodeoxyglucose uptake were extracted, 
measures of metabolic heterogeneity at 
baseline enabled prediction of response 
with significantly higher sensitivity than 
any whole region of interest standard-
ized uptake value measurement (22). It 
is also notable that these extensive tex-
ture-based features are generally more 
reproducible than simple measures of 
the standardized uptake value (27), 
which can be highly variable in a clini-
cal setting (44).

Spatially Explicit Analysis of Tumor 
Heterogeneity

Although radiomic analyses have shown 
high prognostic power, they are not in-
herently spatially explicit. Quantitative 
border, shape, and texture features are 
typically generated over a region of inter-
est that comprises the entire tumor (45). 
This approach implicitly assumes that tu-
mors are heterogeneous but well mixed. 
However, spatially explicit subregions of 
cancers are readily apparent on contrast-
enhanced MR or CT images, as perfusion 
can vary markedly within the tumor, even 
over short distances, with changes in tu-
mor cell density and necrosis.

An example is shown in Figure 2, 
which shows a contrast-enhanced CT 
scan of non–small cell lung cancer. 
Note that there are many subregions 
within this tumor that can be identified 
with attenuation gradient (attenuation 
per centimeter) edge detection algo-
rithms. Each subregion has a charac-
teristic quantitative attenuation, with 
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with the mean signal value. By using just 
two sequences, a contrast-enhanced T1 
sequence and a fluid-attenuated inver-
sion-recovery sequence, we can define 
four habitats: high or low postgadolini-
um T1 divided into high or low fluid-at-
tenuated inversion recovery. When these 
voxel habitats are projected into the tu-
mor volume, we find they cluster into 
spatially distinct regions. These habitats 
can be evaluated both in terms of their 
relative contributions to the total tumor 
volume and in terms of their interactions 
with each other, based on the imaging 
characteristics at the interfaces between 
regions. Similar spatially explicit analysis 
can be performed with CT scans (Fig 5).

Analysis of spatial patterns in 
cross-sectional images will ultimately re-
quire methods that bridge spatial scales 
from microns to millimeters. One possi-
ble method is a general class of numeric 
tools that is already widely used in ter-
restrial and marine ecology research to 
link species occurrence or abundance 
with environmental parameters. Species 
distribution models (48–51) are used to 
gain ecologic and evolutionary insights 
and to predict distributions of species or 
morphs across landscapes, sometimes 
extrapolating in space and time. They 
can easily be used to link the environ-
mental selection forces in MR imaging-
defined habitats to the evolutionary dy-
namics of cancer cells.

Summary

Imaging can have an enormous role in 
the development and implementation of 
patient-specific therapies in cancer. The 
achievement of this goal will require new 
methods that expand and ultimately re-
place the current subjective qualitative 
assessments of tumor characteristics. 
The need for quantitative imaging has 
been clearly recognized by the National 
Cancer Institute and has resulted in for-
mation of the Quantitative Imaging Net-
work. A critical objective of this imaging 
consortium is to use objective, repro-
ducible, and quantitative feature metrics 
extracted from clinical images to develop 
patient-specific imaging-based prog-
nostic models and personalized cancer 
therapies.

rise to local-regional phenotypic adap-
tations. Phenotypic alterations can re-
sult from epigenetic, genetic, or chro-
mosomal rearrangements, and these in 
turn will affect prognosis and response 
to therapy. Changes in habitats or the 
relative abundance of specific ecologic 
communities over time and in response 
to therapy may be a valuable metric with 
which to measure treatment efficacy and 
emergence of resistant populations.

Emerging Strategies for Tumor Habitat 
Characterization

A method for converting images to spa-
tially explicit tumor habitats is shown in 
Figure 4. Here, three-dimensional MR 
imaging data sets from a glioblastoma 
are segmented. Each voxel in the tumor 
is defined by a scale that includes its 
image intensity in different sequences. 
In this case, the imaging sets are from 
(a) a contrast-enhanced T1 sequence, 
(b) a fast spin-echo T2 sequence, and 
(c) a fluid-attenuated inversion-recov-
ery (or FLAIR) sequence. Voxels in 
each sequence can be defined as high 
or low based on their value compared 

microenvironment can be rewarded by 
increased proliferation. This evolution-
ary dynamic may contribute to distinct 
differences between the tumor edges 
and the tumor cores, which frequently 
can be seen at analysis of cross-sec-
tional images (Fig 5).

Interpretation of the subsegmenta-
tion of tumors will require computa-
tional models to understand and predict 
the complex nonlinear dynamics that 
lead to heterogeneous combinations 
of radiographic features. We have ex-
ploited ecologic methods and models to 
investigate regional variations in cancer 
environmental and cellular properties 
that lead to specific imaging character-
istics. Conceptually, this approach as-
sumes that regional variations in tumors 
can be viewed as a coalition of distinct 
ecologic communities or habitats of cells 
in which the environment is governed, 
at least to first order, by variations in 
vascular density and blood flow. The 
environmental conditions that result 
from alterations in blood flow, such as 
hypoxia, acidosis, immune response, 
growth factors, and glucose, represent 
evolutionary selection forces that give 

Figure 4

Figure 4:  Left: Contrast-enhanced T1 image from subject TCGA-02-0034 in The Cancer Genome 
Atlas–Glioblastoma Multiforme repository of MR volumes of glioblastoma multiforme cases. Right: Spatial 
distribution of MR imaging–defined habitats within the tumor. The blue region (low T1 postgadolinium, low 
fluid-attenuated inversion recovery) is particularly notable because it presumably represents a habitat with 
low blood flow but high cell density, indicating a population presumably adapted to hypoxic acidic conditions.
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It is increasingly clear that tumors 
are not homogeneous organlike systems. 
Rather, they contain regional coalitions 
of ecologic communities that consist of 
evolving cancer, stroma, and immune 
cell populations. The clinical conse-
quence of such niche variations is that 
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cancer imaging will likely focus on spa-
tially explicit analysis of tumor regions.
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forces and can, at least in principle, 

Figure 5

Figure 5:  (a) CT images obtained with conventional entropy filtering in two patients with non–small cell 
lung cancer with no apparent textural differences show similar entropy values across all sections. (b) Contour 
plots obtained after the CT scans were convolved with the entropy filter. Further subdividing each section in 
the tumor stack into tumor edge and core regions (dotted black contour) reveals varying textural behavior 
across sections. Two distinct patterns have emerged, and preliminary analysis shows that the change of 
mean entropy value between core and edge regions correlates negatively with survival.
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