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Purpose: To identify prognostic imaging biomarkers in non–small 
cell lung cancer (NSCLC) by means of a radiogenomics 
strategy that integrates gene expression and medical im-
ages in patients for whom survival outcomes are not avail-
able by leveraging survival data in public gene expression 
data sets.

Materials and 
Methods:

A radiogenomics strategy for associating image features 
with clusters of coexpressed genes (metagenes) was de-
fined. First, a radiogenomics correlation map is created 
for a pairwise association between image features and 
metagenes. Next, predictive models of metagenes are built 
in terms of image features by using sparse linear regres-
sion. Similarly, predictive models of image features are 
built in terms of metagenes. Finally, the prognostic signif-
icance of the predicted image features are evaluated in a 
public gene expression data set with survival outcomes. 
This radiogenomics strategy was applied to a cohort of 
26 patients with NSCLC for whom gene expression and 
180 image features from computed tomography (CT) and 
positron emission tomography (PET)/CT were available.

Results: There were 243 statistically significant pairwise correla-
tions between image features and metagenes of NSCLC. 
Metagenes were predicted in terms of image features with 
an accuracy of 59%–83%. One hundred fourteen of 180 
CT image features and the PET standardized uptake value 
were predicted in terms of metagenes with an accuracy 
of 65%–86%. When the predicted image features were 
mapped to a public gene expression data set with survival 
outcomes, tumor size, edge shape, and sharpness ranked 
highest for prognostic significance.

Conclusion: This radiogenomics strategy for identifying imaging bio-
markers may enable a more rapid evaluation of novel im-
aging modalities, thereby accelerating their translation to 
personalized medicine.

q RSNA, 2012

Supplemental material: http://radiology.rsna.org/lookup 
/suppl/doi:10.1148/radiol.12111607/-/DC1

1 From the Departments of Radiology (O.G., A.N.L., A.Q., 
D.L.R., S.N., S.K.P.), Electrical Engineering (J.X.), and 
Cardiothoracic Surgery (C.D.H., Y.X.), Stanford University 
School of Medicine, 1201 Welch Rd, Stanford, CA 94305; 
and Veterans Affairs Palo Alto Healthcare System, Palo Alto, 
Calif (C.D.H.). Received August 5, 2011; revision requested 
September 30; revision received November 26; accepted 
December 29; final version accepted February 21, 2012. 
Supported by Information Sciences in Imaging at Stanford, 
the Center for Cancer Systems Biology at Stanford, and 
GE Healthcare. O.G. is a fellow of the Fund for Scientific Re-
search Flanders (FWO-Vlaanderen); an Honorary Fulbright 
Scholar of the Commission for Educational Exchange 
between the United States of America, Belgium, and 
Luxembourg; and a Henri Benedictus Fellow of the King 
Baudouin Foundation and the Belgian American Educational 
Foundation. Address correspondence to S.K.P. (e-mail: 
sylvia.plevritis@stanford.edu).

q RSNA, 2012

Note: This copy is for your personal non-commercial use only. To order presentation-ready  
copies for distribution to your colleagues or clients, contact us at www.rsna.org/rsnarights.



388	 radiology.rsna.org  n  Radiology: Volume 264: Number 2—August 2012

COMPUTER APPLICATIONS: Prognostic Imaging Biomarkers in Non–Small Cell Lung Cancer	 Gevaert et al

abundantly available in public databases 
with clinical outcomes (11,12). To iden-
tify prognostic imaging biomarkers, we 
propose a radiogenomics strategy that 
integrates gene expression and medical 
images of patients for whom survival 
outcomes are not available by leveraging 
survival data in public gene expression 
data sets.

Materials and Methods

Image and Microarray Data Collection
With institutional review board ap-
proval, we studied data in 26 patients 
with NSCLC who underwent preopera-
tive CT and fluorine 18 fluorodeoxyglu-
cose (FDG) PET/CT between April 7, 
2008, and May 21, 2010, and who had 
archived frozen tissue available for gene 
expression analysis (Table E1 [online]). 
We gathered preoperative thin-section 
CT and FDG PET/CT images, and a rep-
resentative cross section of the excised 

biomarkers. Rapid advances in imaging 
technologies permit better anatomic res-
olution and provide noninvasive measure-
ments of functional and physiologic tis-
sue- and lesion-specific properties. Yet the 
ability to determine the clinical significance 
of newly identified image features relies 
on clinical studies that can be costly and 
require long-term follow-up periods. We 
propose a novel radiogenomics strategy 
that may identify new imaging biomarkers 
when long-term clinical outcomes are not 
immediately available. Our approach re-
lies on first acquiring paired gene expres-
sion data and medical images at diagnosis 
from a study cohort, then leveraging the 
public gene expression data that contain 
clinical outcomes from a closely matched 
population (Fig 1a). A critical step in this 
approach involves predicting the image 
features in the study cohort in terms of 
gene signatures. We evaluate the prognos-
tic significance of these gene signatures in 
public data sets for which gene expression 
and survival data are available. Predicting 
image features from gene signatures may 
not only enable immediate translational 
potential but may also suggest potential 
molecular mechanisms that may give rise 
to imaging phenotypes.

As a proof-of-concept, we applied 
our radiogenomics strategy to a human 
study cohort of patients with NSCLC in 
whom we retrospectively acquired med-
ical images (CT and PET/CT images) 
and gene expression microarray data. 
We focused on NSCLC because it is the 
leading cause of cancer death, with an 
overall 5-year survival rate of 16% that 
has not changed appreciably over the 
past 15 years (8). Also, imaging has an 
important role in the management of 
NSCLC and will likely have an increased 
clinical role, on the basis of the results of 
the National Lung Screening Trial (9,10). 
Moreover, gene expression of NSCLC is 

Personalized medicine aims to tailor 
medical care to the individual by 
characterizing molecular heteroge-

neity. Advances in high-throughput mo-
lecular technologies promise to produce 
biomarkers that will drive the future of 
patient-specific medical care (1–3). How-
ever, a limitation of these approaches is 
the need to acquire tissue through inva-
sive biopsy. In such biopsies, samples 
are often obtained from only a portion 
of a generally heterogeneous lesion and 
cannot completely represent the le-
sion’s anatomic, functional, and physi-
ologic properties, particularly its size, 
location, and morphology. Yet many of 
these lesion-specific features are ac-
quired in routine imaging examinations 
and are known to be highly informative 
in diagnosis, clinical staging, and treat-
ment planning. Despite the importance 
of these image features, only a handful 
of studies (4–7) have generated a radi-
ogenomics map that integrates the ge-
nomic and image data.

Our work extends the use of radi-
ogenomics mapping to address the grow-
ing demand for prognostic image-based 

Implication for Patient Care

nn Prognostically significant patient-
specific molecular signatures may 
be predicted noninvasively from 
image features, further advancing 
the role of imaging in personal-
ized medicine.

Advances in Knowledge

nn Fifty-six high-quality metagenes 
captured from non–small cell 
lung cancer (NSCLC) gene ex-
pression microarrays can be pre-
dicted by CT image features with 
a mean accuracy of 72% (range, 
59%–83%).

nn Ten semantic, 104 computation-
ally derived CT image features, 
and the PET/CT standardized 
uptake value of NSCLC can be 
predicted by using the 56 high-
quality metagenes, with an accu-
racy or area under the receiver 
operating characteristic curve of 
between 65% and 86%.

nn A prognostic signature of image 
biomarkers, composed of im-
aging features that are expressed 
in terms of their predictive gene 
expression signature, was identi-
fied by leveraging publicly avail-
able microarray data with sur-
vival outcomes.
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Figure 1

Figure 1:  Creation of radiogenomics map for non-
small cell lung cancer (NSCLC). (a) Strategy for cre-
ation and use of the radiogenomics map in NSCLC. 
Step 1 integrates the computed tomographic (CT) 
and positron emission tomographic (PET)/CT image 
and the gene microarray data from our study cohort. 
Step 2 maps the metagenes to publicly available 
microarray data with survival. Step 3 links image 
features expressed in terms of metagenes to public 
gene expression data. The dashes in this link high-
light its indirectness, because by leveraging public 
gene expression data, we are able to associate the 
image features in the study cohort with survival, 
even without survival data in the study cohort. (b) 
Hierarchical clustering of radiogenomics correlations 
map with metagenes (in rows) and image features 
(in columns). Black squares = 243 significant asso-
ciations between an image feature and a metagene 
with q , 5%. (c) Association between metagene 12 
and the image feature for the internal air broncho-
gram; (i) gene expression of genes in metagene 
12; (ii) metagene 12 expression; (iii) presence of 
an internal air bronchogram, where ∗ = squamous 
lung carcinoma cases; and (iv) sample CT images 
of a lesion with (top) an internal air bronchogram 
present versus (bottom) a lesion with an internal air 
bronchogram absent. For gene expression, red = 
overexpression and green = underexpression; for 
image features, blue = absence of the feature and 
yellow = presence of the feature.

lesion was used for microarray analysis. 
Image and gene expression data were 
gathered as described in Appendix E1 
(online). Briefly, CT and FDG PET/CT 
images were deidentified, and image fea-
tures were extracted manually by a radi-
ologist using a controlled vocabulary and 
computationally by using predefined ana-
lytical software tools to characterize the 
lesion’s properties. This resulted in 153 
computational image features, 26 seman-
tic image features, and a PET standard-
ized uptake value (SUV) for each patient’s 
tumor. Figure E1 (online) shows a single 
representative CT cross section of each 
of the 26 nodules included in this study, 
Table E2 (online) lists all of the semantic 
annotations applied to each tumor, and 
Table E8 (online) provides a description 
of the computational features.

From the same patients, we retrieved 
frozen tissue and extracted the RNA, 
which was analyzed with gene expression 
microarrays (Illumina HT-12). The gene 
expression data were first clustered on 
the basis of coexpression, and 56 clusters 
were selected for subsequent analysis be-
cause their cluster homogeneity was con-
served in external data (Gene Expression 
Omnibus accession number, GSE8894) 
(13). Each of the clusters was represented 
by its metagene, which was defined as the 
first principal component of the cluster 
(Fig E2 [online]).

Creating the Radiogenomics Correlation 
Map
Initially, we established a radiogenomics 
correlation map for pairwise associations 
between metagenes with image features, 

using Significance Analysis of Microar-
rays (SAM) in R (version 1.28), with 
the false discovery rate (FDR) for mul-
tiple hypothesis testing correction (14). 
We used the two-class-unpaired and 
the continuous-response types of SAM 
for the binary- and continuous-valued 
image features, respectively. The SAM 
“D threshold” was set at 0.3, and 1000 
permutations were used to estimate the 
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overexpression, which is consistent with 
the reported observations that activating 
KRAS mutations are exclusively associ-
ated with adenocarcinoma (18) and that 
Ras pathway activation is characteristic 
of adenocarcinoma (19) (Fig 1c). Such 
analyses of the radiogenomics map en-
able the synthesis of hypotheses that 
relate image phenotypes with genotype.

Predictive Models of Metagenes in Terms 
of Image Features
We found that image features predicted 
all 56 metagenes with a mean accuracy 
of 72% (range, 59%–83%; Table E4 [on-
line]). In particular, metagene 43, which 
is enriched with genes in the hypoxia 
pathway (20,21), had the presence or 
absence of internal air bronchograms 
at CT as its top-ranking predictive se-
mantic feature. When we tried to pre-
dict the 56 metagenes by using only the 
top 25 image features selected in an 
additional leave-one-out cross validation, 
we found that all metagenes were pre-
dicted with an average accuracy of 71% 
(range, 56%–85%). In other words, the 
metagenes could be predicted from 25 
image features with reasonable accu-
racy. We also investigated whether ei-
ther semantic or computational image 
features alone were sufficient to predict 
the metagenes with similar accuracy. In-
terestingly, the semantic features alone 
predicted 21 of the 56 metagenes (mean 
accuracy, 74%; range, 61%–83%); how-
ever, the computational features pre-
dicted all 56 metagenes (mean accuracy, 
71%; range, 56%–83%). This finding 
suggests that, in our study cohort, se-
mantic annotations were not needed for 
predicting the metagenes if the compu-
tational image features were available 
(Table E4 [online]).

Predictive Models of Image Features in 
Terms of Metagenes
We found that 115 of 153 image fea-
tures were predicted from the meta-
genes with an accuracy of 65% or 
greater. These image features consist-
ed of PET SUV, 10 semantic features, 
and 104 computational features (Fig 
2b and Table E5 [online]). The top 10 
predicted computational image feature 
models had an average accuracy of 85% 

analysis to cases of adenocarcinoma (n 
= 63), because they constituted a larger 
fraction of our study cohort. First, we 
mapped each predicted image feature 
to the Lee et al data to assess its prog-
nostic significance separately. Next, 
we applied Cox proportional hazards 
modeling and Kaplan-Meier survival 
analysis to investigate the prognostic 
significance of predicted image features 
(survival R package, version 2.35–8). 
Kaplan-Meier curves were evaluated by 
splitting the predictor at its median to 
identify a good versus poor prognostic 
group. We used Cox proportional haz-
ards modeling to determine whether 
the predicted image features added in-
dependent information in the presence 
of the clinical covariates, namely: age, 
sex, smoking, nodal stage, and tumor 
size. Finally, we built a multivariate 
survival model based on the predicted 
image features by using generalized lin-
ear regression models with lasso regu-
larization (glmnet package in R, version 
1.5.1) and evaluated its performance 
with 10-fold cross validation. We in-
cluded the clinical covariates to deter-
mine whether the predicted image fea-
tures provided independent prognostic 
value.

Results

Radiogenomics Correlation Map of NSCLC
Figure 1b shows a NSCLC radiogenom-
ics correlation map of 243 statistically 
significant pairwise associations be-
tween metagenes with CT image fea-
tures and PET SUV (Table E3 [online]). 
Several provocative associations were 
identified. For example, the presence 
or absence of the internal air broncho-
gram feature at CT was associated with 
metagene 12 (Fig 1c). The correspond-
ing gene cluster contains genes that are 
specifically overexpressed in NSCLC, 
including KRAS (16,17). This particu-
lar association suggests that the pres-
ence of an internal air bronchogram is 
related to the overexpression of KRAS 
and its targets. Interestingly, none of the 
six patients with squamous carcinoma 
in our study cohort had internal air 
bronchograms, and none showed KRAS 

FDR. A q value filter of 0.05 or less was 
used to identify statistically significant as-
sociations between metagenes and image 
features.

Creating the Radiogenomics Predictive 
Models
We built a predictive model of the meta-
genes in terms of the image features, 
using generalized linear regression with 
lasso regularization (glmnet package in 
R, version 1.5.1) (15). The regularization 
parameter was set such that at least 80% 
of the deviance is captured by the model. 
Similarly, we predicted each image fea-
ture in terms of the metagenes. Depend-
ing on the type of image feature, the 
response variable was set as binomial, 
multinomial, or Gaussian. The resulting 
predictive models of image features ex-
pressed in terms of metagenes can be 
regarded as surrogates for image fea-
tures, and we define them as “predicted 
image features” (Fig 2a). We used leave-
one-out cross validation to assess the 
model’s performance. The performance 
metric of the predicted semantic image 
features was the AUC. The performance 
metric for the predicted computational 
image features, which were continuously 
valued, was termed “accuracy” and was 
defined as 1 minus the error, where the 
error was defined as the average absolute 
error divided by the numeric range of the 
feature. Predictions with at least 65% 
AUC or 65% accuracy were selected for 
subsequent analysis.

Leveraging Public Gene Expression Data 
Sets for Identifying Image Biomarkers
Despite the lack of survival outcomes in 
our study cohort, we identified candi-
date prognostic imaging biomarkers by 
mapping the predicted image features 
to public availability of gene expression 
data sets with clinical outcomes across 
hundreds of patients (Fig 1a). In partic-
ular, we used the NSCLC gene expres-
sion data set by Lee et al (13) because 
it was a relevantly large study (n = 138), 
it contains clinical outcomes, and it has 
has a histologic composition of NSCLC 
that is similar to that in our study co-
hort. Because prognostic signatures for 
adenocarcinoma and squamous car-
cinoma differ, we limited our survival 
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upregulation of KRAS-driven lung tu-
mors (23) and suggests that the pres-
ence of internal air bronchograms may 
be a biomarker of high Ras and low 
hypoxia pathway activity.

To validate our approach for pre-
dicting image features with a gene 
signature, we focused on the accuracy 
of predicting image features that de-
scribe the tumor’s dimensions, because 

2d). The associated gene clusters that 
were upregulated in the presence of 
an internal air bronchogram were en-
riched with Ras targets and confirmed 
our earlier univariate association of 
this feature (19,22); the downregulated 
gene clusters were enriched in hypoxia-
related pathways (20,21). This finding 
is consistent with the observation that 
inactivation of HIF2alpha is related to 

(84%–86%) and were predominately 
associated with lesion size, edge shape, 
and edge sharpness.

The most accurately predicted se-
mantic feature was the presence or ab-
sence of the internal air bronchogram 
at CT (AUC = 86%, Fig 2c). This fea-
ture was predicted by using 10 meta-
genes, seven of which captured 95% of 
the weight in the linear regression (Fig 

Figure 2

Figure 2:  Multivariate modeling of image features in terms of metagenes. (a) Strategy for multivariate modeling of image features in 
terms of metagenes. Each image feature is modeled as a linear combination of metagenes, using L1 regularization to induce sparsity 
in the number of metagenes that are selected. I

1
 = the first image feature of k image features in total; M

j
 = jth metagene; f

i
 = linear 

regression for the ith image feature; a = regularization parameter; W
j
 (not shown) = weight for each metagene M

1
, M

2
, to

 
M

n
; and W 

= matrix with all weights. (b) Semantic features predicted by metagenes with an area under the receiver operating characteristic curve 
(AUC) of 65% or greater, based on leave-one-out cross-validation analysis. (c) Multivariate metagene prediction model for the presence 
versus absence of internal air bronchogram at CT. The top seven metagenes, representing 95% of the weight of the multivariate 
model, are shown; the top three metagenes are upregulated when an air bronchogram is present, and the bottom four metagenes are 
downregulated. The downregulated metagenes are enriched in hypoxia-related pathways; the upregulated metagenes contain a Ras 
signature and genes upregulated by Ras. (d) Receiver operating characteristic curve for the predicted presence versus absence of 
internal air bronchogram at CT, when expressed in terms of metagenes. (e) Multivariate model for internal air bronchogram correspond-
ing to c. For gene expression, red = overexpression and green = underexpression; for image features, blue = absence of the feature 
and yellow = presence of the feature. CI = confidence interval.
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features remained prognostically signif-
icant (Table) in a multivariate analysis 
that included clinical covariates such as 
age, nodal stage, and tumor size (28).

Multivariate survival analysis of pre-
dicted image features.—We computed a 
multivariate model of the predicted im-
age features that significantly correlated 
with 4-year RFS (log-rank P = .00166 
[Fig 5a) in the Lee et al (13) adeno-
carcinoma data. The top-ranked image 
features were edge sharpness, length of 
the major axis of the lesion, and lesion 
texture (Table E7 [online]). The multi-
variate model was also predictive of RFS 
when clinical covariates were included 
(Cox P = .0017; hazard ratio, 3.88; 95% 
CI: 1.7, 9.1). Because predicted tumor 
size was in this model, we repeated the 
analysis without all predicted tumor 
size features, and found that the model 
was still predictive of RFS (log-rank P 
= .0257 [Fig 5b]). Even when the clin-
ical variables were included, a combi-
nation of predicted image features was 
independently significant (Cox P = .020; 
hazard ratio, = 1.79; 95% CI: 1.1, 2.9). 
Top-ranking predicted image features 
included computational features that 
describe the lesion texture and edge 
sharpness and a semantic image feature 
that describes the presence or absence 
of entering airways (Table E7 [online]). 
When we repeated this analysis using 
only semantic features, the resulting 

size [Fig 4a]), a finding consistent with 
the literature (28). In addition, several 
semantic image features were prognosti-
cally significant, including the presence 
of satellite nodules in the primary tumor 
lobe, lobulated margins, and pleural at-
tachment (Fig 4b and Table). We also 
found that edge sharpness was corre-
lated with RFS (hazard ratio, 0.35; 95% 
CI: 0.13, 0.91 [Fig 4c]); in particular, 
blurry versus sharp edges were asso-
ciated with poor versus good survival. 
In addition, the presence of an internal 
air bronchogram, which we previously 
associated with KRAS, was associated 
with poor RFS (hazard ratio, 3.1; 95% 
CI: 1.5, 6.6 [Fig 4d]). This is consistent 
with the reported association between 
upregulation of KRAS and poor sur-
vival (29,30). However, this appears to 
contrast with the studies that correlate 
the presence of an internal air broncho-
gram, in stage 1 tumors with pleural re-
traction, with good prognosis (31). Yet 
a recent study found a nonsignificant 
correlation between the presence of an 
air bronchogram and RFS, suggesting 
that larger studies that can adjust for 
confounding factors are needed (32). 
Consistent with our observations, Travis 
et al (33) reported a positive correlation 
between the presence of KRAS muta-
tions and the presence of an internal 
air bronchogram. Overall, many image 

the actual tumor size was available in 
the Lee et al (13) data set. In partic-
ular, we focused on the gene signa-
tures that predict the three computed 
CT image features: minor axis, major 
axis, and lesion size. We found that 
all three predicted image features 
were statistically significantly corre-
lated with actual tumor size (Fig 3a).  
Moreover, this significance was also 
correlated with the accuracy of each 
predictive model (Fig 3b). Interest-
ingly, the upregulated genes for large 
predicted tumor sizes were associated 
with extracellular matrix remodeling 
(P , .0001) (24) and the epithelial-to-
mesenchymal transition (25–27).

Identification of Image Biomarkers by 
Leveraging Public Gene Expression Data
Univariate survival analysis of predicted 
image features.—We found 26 and 22 
predicted image features that were sig-
nificantly associated with recurrence-
free survival (RFS) (log-rank P and Cox 
P , .05 [Fig 4, Table) and overall sur-
vival (Table E6 [online]), respectively, at 
4 years from diagnosis, in a univariate 
survival analysis of the Lee et al (13) ad-
enocarcinoma data. Among the 26 pre-
dicted image features associated with 
RFS were all three image features that 
characterize tumor dimensions on CT 
(ie, minor axis, major axis, and lesion 

Figure 3

Figure 3:  Validation ofQ14 the predicted image features related to computed lesion size at CT. (a) Graph shows the correlation 
of the predicted image feature “lesion size” and the actual lesion size in the Lee et al (13) data (P < .0001). (b) Graph shows 
comparison of the accuracy of the predicted image features lesion size, minor axis, and major axis with their correlation with actual 
tumor size in the Lee et al data.
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even when clinical covariates that are 
known to be prognostically significant 
were considered. This last analysis 
may prove to be valuable because many 
emerging and evolving imaging technol-
ogies change during the time required 
to establish a clinical end point.

A strength in our radiogenom-
ics strategy is the use of a large set 
of computer-derived image features in 
addition to semantic features. We ex-
tracted computational features from CT 
that describe tumor shape, edge shape, 
and edge variability. Interestingly, we 
showed that the computational image 
features were necessary and sufficient 
for accurate modeling of metagenes 

features and PET SUV can be predicted 
from a linear combination of the meta-
genes with similar accuracy. For exam-
ple, we provided a gene signature for 
image-based tumor size that implicates 
processes in extracellular modeling and 
the epithelial-to-mesenchymal transi-
tion. This particular result suggests that 
from cross-sectional observations of tu-
mors, we may be able to identify mo-
lecular characteristics of a single tumor 
as if it were observed longitudinally 
with increasing size. Finally, we showed 
that a linear combination of predicted 
image features was prognostically sig-
nificant in a publicly available gene ex-
pression data set of NSCLC outcomes, 

model was also significantly correlated 
with RFS (log-rank P = .0251 [Fig 5c]), 
and the top-ranking semantic features 
included the presence or absence of en-
tering airways, lobulated margins, and 
pleural retraction (Table E7 [online]).

Discussion

While there has been much recent ac-
tivity in developing quantitative imaging 
biomarkers of disease, linking these 
biomarkers to clinical outcomes such 
as progression-free and overall survival 
and response to treatment is prob-
lematic because of the length of time 
required to obtain these outcomes in 
study cohorts. Here, we demonstrate 
a radiogenomics strategy for rapidly 
identifying prognostically significant 
image biomarkers that requires only 
the paired acquisition of image and 
gene expression data and the existence 
of a large public gene expression data 
set where survival outcomes are avail-
able. We demonstrated that once the 
image features can be predicted from 
metagenes, the clinical significance of 
the predicted image features can be ex-
plored by mining existing public gene 
expression microarray databases that 
contain clinical outcomes. As a proof-
of-concept, our radiogenomics strategy 
identified image features that are known 
to be prognostically significant without 
relying on paired observations of image 
features and survival outcomes.

We applied our radiogenomics 
strategy in a cohort of 26 patients 
with NSCLC for whom we had medical 
images (CT and PET/CT images) and 
gene expression microarray data. Ini-
tially, we identified several statistically 
significant correlations between gene 
expression profiles of NSCLC and im-
aging phenotypes at CT and PET/CT. 
Similar to Segal et al (4), who studied 
the radiogenomics of hepatocellular 
carcinoma, we demonstrated that the 
metagenes of NSCLC can be predicted 
from a linear combination of a small set 
of image features with a reasonable ac-
curacy to warrant further investigation 
in a larger study that includes an inde-
pendent validation data set. Moreover, 
we demonstrated that many CT image 

Figure 4

Figure 4:  Univariate survival analysis for four predicted image features evaluated in the Lee et al (13) 
data for RFS. Predicted image features are expressed in terms of a multivariate gene expression signature. 
(a) Survival curves for predicted lesion size at CT, with top right image showing that a small CT lesion is 
associated with good prognosis (green curve) and bottom right image showing that a large CT lesion is asso-
ciated with poor prognosis (red curve). (b) Survival curves for predicted presence versus absence of pleural 
attachment at CT. (c) Survival curves based on predicted edge sharpness composite 1, with top right image 
showing that high edge sharpness is associated with good prognosis (red curve) and bottom right image 
showing that low edge sharpness is associated with poor prognosis (green curve). (d) Survival curves based 
on predicted presence versus absence of internal air bronchogram.
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of reproducible semantic and computed 
image features further permits images 
to be minable like genomic data (34). 
Over the longer term, a minable image 

available database for associating com-
putationally derived image features 
with clinical outcomes (11). Moreover, 
the creation of a lexicon and ontology 

and predicting survival outcomes. This 
finding alone suggests that the imaging 
community may greatly benefit from 
the creation of a large-scale publicly 

Predicted Image Features That Are Significantly Related to RFS in the Data Set of Lee et al

Image Feature

Univariate Survival Analysis Multivariate Survival Analysis*

Cox P Value Hazard Ratio
95% CI for  
Hazard Ratio Cox P Value Hazard Ratio

95% CI for  
Hazard Ratio

Significant Clinical  
Variables

Poor prognosis image features
  Texture-Gabor-9 .011 2.56 1.22, 5.37 .002 3.70 1.59, 8.63 N stage, tumor  

  size
  Texture-Gabor-10 .001 3.29 1.54, 7.02 .003 3.40 1.53, 7.57 N stage, tumor  

  size
  Edge sharpness-WB3 .009 2.62 1.25, 5.50 .002 4.19 1.70, 10.35 N stage
  Internal air bronchogram† .002 3.11 1.46, 6.62 .020 2.85 1.18, 6.92 N stage, tumor  

  size
  Satellite nodules in primary  
    tumor lobe†

.048 2.05 0.99, 4.23 .009 3.07 1.32, 7.11 N stage, tumor  
  size

  Lobulated margin† .028 2.24 1.07, 4.68 .179 1.70 0.78, 3.7 N stage, tumor  
  size

  Pleural attachment† .034 2.16 1.05, 4.47 .019 2.96 1.20, 7.31 N stage
  Edge shape-RDSmean .022 2.32 1.11, 4.85 .036 2.37 1.06, 5.29 N stage, tumor  

  size
  Histogram-kurtosis .016 2.43 1.16, 5.09 .008 3.20 1.36, 7.53 N stage, tumor  

  size
  Edge sharpness-Smin .008 2.66 1.27, 5.58 .014 2.85 1.23, 6.59 N stage, tumor  

  size
  Lesion size .017 2.40 1.15, 5.02 .016 2.96 1.23, 7.12 N stage
  Major axis .001 3.61 1.66, 7.88 .002 3.66 1.61, 8.32 N stage
  Minor axis ,.001 3.79 1.74, 8.26 ,.001 5.36 2.14, 13.38 N stage
  Edge shape-Min3R .012 2.51 1.20, 5.26 .032 2.46 1.08, 5.60 N stage
  Edge shape-Mean2R .018 2.38 1.14, 4.98 .016 2.72 1.21, 6.13 N stage, tumor  

  size
Good prognosis image features
  Histogram-B7 .030 0.45 0.22, 0.95 .075 0.49 0.23, 1.07 N stage, tumor  

  size
  Edge sharpness-WB13 .037 0.47 0.23, 0.97 .053 0.42 0.17, 1.01 N stage,
  Edge sharpness-WB19 .035 0.47 0.23, 0.96 .125 0.52 0.23, 1.20 N stage, tumor  

  size
  Edge sharpness-SB29 .009 0.38 0.18, 0.81 .050 0.44 0.20, 1.00 N stage
  Entering airway† .005 0.36 0.17, 0.75 .023 0.36 0.15, 0.87 N stage
  Histogram-min .002 0.31 0.15, 0.66 .013 0.34 0.15, 0.80 N stage
  Edge sharpness-Wmax .039 0.47 0.22, 0.98 .029 0.41 0.18, 0.91 N stage, tumor  

  size
  Edge sharpness-Wstd .028 0.45 0.21, 0.93 .015 0.36 0.16, 0.82 N stage, tumor  

  size
  Edge sharpness-Composite1 .002 0.32 0.15, 0.68 .003 0.25 0.10, 0.63 N stage
  Edge sharpness-Composite2 .002 0.31 0.15, 0.66 .005 0.28 0.11, 0.69 N stage
  Edge shape-Max3R .019 0.42 0.20, 0.88 .143 0.53 0.23, 1.24 N stage

Note.—The univariate results refer to evaluating a predicted image feature without other clinical covariates. The multivariate results show the results of the univariate analysis after correcting for 
clinical covariates available in the Lee et al (13) data set. N stage refers to nodal stage.

* Single image feature plus clinical covariates.
† Semantic feature.
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