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 Purpose: To investigate the potential of spectral computed tomogra-
phy (CT) (popularly referred to as multicolor CT), used 
in combination with a gold high-density lipoprotein nano-
particle contrast agent (Au-HDL), for characterization of 
macrophage burden, calcifi cation, and stenosis of athero-
sclerotic plaques.

 Materials and 
Methods: 

The local animal care committee approved all animal ex-
periments. A preclinical spectral CT system in which inci-
dent x-rays are divided into six different energy bins was 
used for multicolor imaging. Au-HDL, an iodine-based 
contrast agent, and calcium phosphate were imaged in 
a variety of phantoms. Apolipoprotein E knockout (apo 
E–KO) mice were used as the model for atherosclerosis. 
Gold nanoparticles targeted to atherosclerosis (Au-HDL) 
were intravenously injected at a dose of 500 mg per kilo-
gram of body weight. Iodine-based contrast material was 
injected 24 hours later, after which the mice were imaged. 
Wild-type mice were used as controls. Macrophage tar-
geting by Au-HDL was further evaluated by using trans-
mission electron microscopy and confocal microscopy of 
aorta sections.

 Results: Multicolor CT enabled differentiation of Au-HDL, iodine-
based contrast material, and calcium phosphate in the 
phantoms. Accumulations of Au-HDL were detected in 
the aortas of the apo E–KO mice, while the iodine-based 
contrast agent and the calcium-rich tissue could also be 
detected and thus facilitated visualization of the vasculature 
and bones (skeleton), respectively, during a single scanning 
examination. Microscopy revealed Au-HDL to be primarily 
localized in the macrophages on the aorta sections; hence, 
the multicolor CT images provided information about the 
macrophage burden.

 Conclusion: Spectral CT used with carefully chosen contrast agents may 
yield valuable information about atherosclerotic plaque 
composition.

 q  RSNA, 2010

Supplemental material:  http://radiology.rsna.org/lookup
/suppl/doi:10.1148/radiol.10092473/-/DC1 
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for Philips Medical Systems (D.P.C., 
T.S., R.E.G., V.F., E.A.F., W.J.M.M., 
Z.A.F.) had full control of the inclusion 
of any data and information that might 
have represented a confl ict of interest 
for those authors who are employees 
of or consultants for Philips Medical 
Systems (E.R., A.T., J.P.S., R.P.). Two 
authors (Z.A.F., E.A.F.) hold a patent 
on the Au-HDL evaluated in this study. 

 Experiment Materials 
 Lipids were purchased from Avanti Polar 
Lipids (Alabaster, Ala) and were used as 
received. Iopamidol (Isovue) was obtained 
from Bracco Diagnostics (Princeton, NJ). 
The iodine-containing emulsions (Fenestra 
VC;) were supplied by Advanced Re-
search Technologies (Montreal, Quebec, 
Canada). 

 Nanoparticle Synthesis and 
Characterization 
 Au-HDL was synthesized by using a 
method similar to that reported previ-
ously ( 22 ); the technique is described in 
detail in Appendix E1 (online). 

 D.P.C. (8 years of experience) syn-
thesized and characterized the Au-HDL. 

( 16 ) to identify the type of tissue or ma-
terial being scanned by using the char-
acteristic energy-dependent attenuation 
of x-rays ( Fig 1a  ) ( 17 ). Although several 
methods can be used to interrogate the 
energy-dependant attenuation of the 
x-rays of materials ( 18 ), this report is 
focused on energy-resolved photon-
counting CT, or spectral CT. This tech-
nique involves the use of the x-ray spec-
trum from a single x-ray tube voltage 
with a special detector that allocates in-
cident x-rays into six energy bins ( 19 ). 
The information from these energy bins 
enables the identifi cation of materials 
by decomposing the total attenuation 
of the material into the various physi-
cal contributions for each pixel ( 20 ). 
Feuerlein et al used this technique to 
improve imaging of the lumen, calcifi ed 
plaque, and stent material in an artery 
phantom ( 21 ). 

 In 2008, we reported a targeted 
gold nanoparticle CT contrast agent 
based on high-density lipoprotein that 
is specifi c for macrophages ( 22 ). This 
gold high-density lipoprotein nanopar-
ticle contrast agent (Au-HDL) ( Fig 1b ) 
was used to identify the macrophage-
rich plaques in aortas excised from 
apolipoprotein E knockout (apo E–KO) 
mice by using a micro-CT scanner ( 22 ). 
The purpose of this study was to in-
vestigate the potential of spectral CT 
(popularly referred to as multicolor CT), 
used in combination with Au-HDL, for 
characterization of the macrophage bur-
den, calcifi cation, and stenosis of ath-
erosclerotic plaques from a single scan-
ning examination. 

 Materials and Methods 

 Philips Healthcare (Hamburg, Germany) 
supported this study by providing access 
to the experimental CT scanner and per-
forming image processing. The authors 
who are not employees of or consultants 

             Ruptures of atherosclerotic plaques 
are the cause of about 70% of heart 
attacks ( 1 ). It is widely recognized 

that the risk of atherosclerotic plaque 
rupture and consequent adverse car-
diovascular events is primarily related 
to the composition of the plaques ( 2 ). 
One of the main factors associated with 
an elevated risk of plaque rupture is a 
high macrophage content ( 3,4 ). As a 
result, much work has been devoted to 
developing contrast material–enhanced 
imaging methods for determining the 
macrophage content of plaques ( 5–8 ). 
Although magnetic resonance (MR) imag-
ing and fl uorine 18 fl uorodeoxyglucose 
positron emission tomography (PET) 
are useful for imaging arteries such as 
the aorta and carotid arteries, and other 
peripheral vessels, the associated long 
image acquisition times combined with 
the motion in the chest make imaging 
of the coronary arteries with these tech-
niques very challenging ( 7 ). Computed 
tomography (CT) is a competitive tech-
nique for imaging the coronary arteries 
because multidetector CT scanners can 
be used to acquire high-spatial-resolution 
images of the entire heart within 5 sec-
onds ( 9 ). Consequently, CT used with 
iodine-based contrast material is now 
a highly regarded clinical technique 
for detecting stenosis ( 10,11 ), plaque 
buildup ( 12,13 ), and calcifi cation in 
the coronary arteries ( 14,15 ). 

 Recently, efforts have been made to 
derive more information from CT scans 

 Implication for Patient Care 

 Characterization and determina- n

tion of the vulnerability of plaque 
in the coronary arteries may be 
possible with further develop-
ment of the spectral CT imaging 
system. 

 Advances in Knowledge 

 Multicolor CT can distinguish  n

between the attenuation due to a 
gold nanoparticle contrast agent 
(Au-HDL), an iodine-based con-
trast agent, and calcium-rich 
material. 

 Multicolor CT can identify  n

areas of Au-HDL accumulation 
in the arteries of atherosclerotic 
mice. 

 Au-HDL accumulation occurs pri- n

marily in the macrophages of 
atherosclerotic tissue and hence 
potentially represents areas of 
plaque that is vulnerable to 
rupture. 

  Published online before print  
 10.1148/radiol.10092473 
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 TEM = transmission electron microscopy 
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performed two consecutive decompo-
sitions. In each case, the conventional 
two-dimensional photo-Compton analy-
sis of Alvarez and Macovski ( 26 ) was 
extended by one contrast material only—
either iodine or gold—to a three-dimen-
sional analysis. This was necessary be-
cause of the otherwise increased noise 
in the combined four-dimensional basis 
material decomposition. Merging the 
data from the six energy bins yielded 
conventional CT images. A.T. and E.R. 
(10 and 5 years of experience, respec-
tively) performed scanning and image 
processing. 

 Phantom Preparation 
 Four phantoms were prepared for the 
studies described in this report. These 
phantoms contained Au-HDL, iodinated 
contrast agents, and calcium phosphate 
to simulate calcifi ed tissue in either 
water or meat. The four phantoms 
were a concentration series in water, 
a concentration series in meat, an 
Au-HDL and iopamidol–blended con-
centration series in water, and an ar-
tery phantom. We prepared the con-
centration series in water by diluting 
the stock solutions with phosphate-
buffered saline. We prepared the con-
centration series in meat by mixing 
volumes of the stock solutions with 

were mounted on a direct-drive rotating 
gantry. Spectral CT scanning was per-
formed at 50  m A and 130 keV by using 
six energy bins. The energy thresholds 
in the detector electronics of the 1024 
individual detector pixels were adjusted 
to incident energies of 25, 34, 51, 80, 
91, and 110 keV, which yielded the high-
est sensitivity for simultaneous imaging 
of iodine (k-edge energy, 33.2 keV) 
and gold (k-edge energy, 80.7 keV). 

 Water, meat, and blended phantoms 
were imaged by using a geometric mag-
nification factor of two, which resulted 
in an in-plane resolution of 0.25 mm 
(600  3  600 pixel image matrix), while 
the artery phantom and the apo E–KO 
mice (Jackson Laboratory, Bar Harbor, 
Me) were imaged by using a geomet-
ric magnifi cation factor of six, which 
resulted in an in-plane resolution of 
about 0.1 mm (400  3  400 pixel image 
matrix). We preprocessed the mea-
sured six-bin photon-counting raw 
data to correct for a variety of detec-
tor imperfections, such as dead time 
and gain variations, as described pre-
viously ( 20 ). Afterward, the measured 
data were decomposed into mate-
rial equivalents by using a maximum 
likelihood approach, as previously 
described ( 19 ). For simultaneous im-
aging of two contrast materials, we 

The phosphate concentration was deter-
mined by using the method of Rouser 
et al ( 23 ). The protein concentration 
was determined by using the method of 
Markwell et al ( 24 ), with adjustment for 
the light absorbance of the gold cores. 
Negative-stain TEM was performed by 
using a Hitachi H-7650 transmission 
electron microscope (Hitachi High Tech-
nologies, Pleasanton, Calif). Samples were 
prepared for TEM by using the method 
of Forte and Nordhausen ( 25 ). The gold 
content was determined by means of in-
ductively coupled plasma mass spectrom-
etry (Cantest, Burnaby, British Columbia, 
Canada). 

 Spectral CT Scanner 
 The spectral CT scanner (Philips Health-
care) we used is an experimental research 
instrument that has been pre viously 
described in detail ( 20 ). In brief, the 
scanner is equipped with a single-line, 
energy-sensitive photon-counting detector 
(Gamma Medica-Ideas, Northridge, Calif) 
with 3-mm-thick cadmium telluride sen-
sor material. The x-ray source is a KEVEX 
PXS10–65 W microfocus tube (Ther-
mo Scientifi c, Scotts Valley, Calif). The 
exit window for the x-ray tube is made 
from beryllium. Scanning was per-
formed with a 2-mm-thick aluminum 
fi lter. The x-ray source and detector 

 Figure 1 

  

  Figure 1:   (a)  Graph shows energy dependence of x-ray 
attenuation of water due to Compton scatter and photoelec-
tric effect, as compared with attenuation of k-edge material 
(ie, gold).  (b)  Schematic illustration of macrophage-targeted 
gold core nanoparticle Au-HDL.  HDL  = high-density 
lipoprotein.  (c)  Characterization of Au-HDL on negative-stain 
transmission electron microscopy (TEM) image.   
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images owing to their high effective 
atomic number. Tissue attenuates  largely 
via the Compton effect and appears 
primarily on the Compton effect images 
( Fig 2c) . As seen on these images, the 
gold, iodine, and photoelectric images 
correctly depicted the locations where 
gold, iodine, and calcium were pres-
ent, and the gold and iodine images 
had an increasing linear signal as the 
contrast agent concentration increased 
(Figs E1, E2 [online]). The plastic of 
the tube holder, the tubes, and the 
water from the solutions were picked 
up on the Compton image. There was 
some cross talk from the calcium phos-
phate signal onto the gold and iodine 
images; however, this is not expected 
to be problematic, because in any bio-
logic setting, there would not be gold or 
iodine accumulation in the same region 
as calcium-rich tissue and the cross 
talk could be subtracted by comparison 
with the calcium image. There was also 
a small amount of cross talk from the 
highest concentrations of gold onto the 
iodine image, and vice versa. Similar re-
sults were obtained when we prepared 
a range of contrast agent concentra-
tions in a ground meat matrix (Fig E3 
[online]). 

 To test the ability to determine the 
concentration of substances under con-
founding conditions with spectral CT, we 
constructed a phantom composed of 
mixtures of Au-HDL and iodinated con-
trast material. As seen in Figure E4,  A  
(online), there was roughly the same 
attenuation in each tube on the con-
ventional CT image. The gold, iodine, 
photoelectric, and Compton images are 
displayed in Figure E4,  B  (online), in 
which the ability to identify both the 
location and the relative concentrations 
of the contrast agents by using the spec-
tral CT system is apparent. Even under 
these confounding conditions, use of the 
spectral CT system enabled calculations 
of the concentrations of gold and iodine 
with reasonable accuracy (Fig E4,  C  
[online]). 

 Spectral CT of Atherosclerotic 
Artery Phantom 
 We constructed a phantom of an ar-
tery to provide further evidence that 

 Results 

 Nanoparticle Characterization 
 Negative-stain TEM images ( Fig 1c ) 
showed Au-HDL to be composed of 
gold cores (dark spots) individually in-
corporated into coatings (light rims). 
The gold cores had a mean diameter of 
3.1 nm  6  0.5 (standard deviation), and 
the mean overall diameter of the whole 
nanoparticle was 7.2 nm  6  0.7. Analy-
sis of the protein, phosphorous, and gold 
content and the nanoparticle size data 
revealed that the phospholipid-to-gold 
ratio was very close to theoretic values 
and that there were, on average, 1.3 
protein molecules per particle, match-
ing the expected values for high-density 
lipoproteins of this size ( 31 ). 

 Spectral CT of Contrast Agent Solutions 
 To examine the ability to distinguish 
gold, iodine, and calcifi ed tissue with 
spectral CT, we fi rst constructed a phan-
tom composed of a concentration series 
of Au-HDL, an iodinated contrast agent, 
and calcium phosphate powder to simu-
late calcium-rich tissue ( Fig 2a  ). When 
the phantom was scanned with spectral 
CT, the energy bins were tuned to 
25–34 keV, 34–51 keV, 51–80 keV, 
80–91 keV, 91–110 keV, and 110–130 keV 
( Fig 2b) . These images were adjusted 
so that the plastic of the phantom holder 
yielded a similar gray level on each 
energy bin image. The k edge of gold 
was 80.7 keV ( 32 ), which was clearly 
picked up on the images; the vials were 
brighter on the 80–91-keV bin image 
than on the 51–80-keV bin image. In the 
case of iodine, the k edge was 33.2 keV 
( 32 ), which resulted in similar attenua-
tion on the 25–34-keV and 34–51-keV 
bin images and a steady decline as the 
energy increased further. The attenua-
tion in the calcium phosphate vial could 
be seen to decline very swiftly with in-
creasing energy. 

 From the raw data of these energy 
bin images, we computed and recon-
structed four images showing the atten-
uation due to gold, iodine, the photo-
electric effect, and the Compton effect 
( 20 ). Bone and calcium-rich matter 
were prominent on the photoelectric 

raw ground beef. The arterial phan-
tom was constructed inside a 1.5-mL 
centrifuge tube with nontreated meat, 
meat treated with Au-HDL and calcium 
phosphate (contained in a plastic pack-
age) around the periphery, and io-
pamidol fi lling the remaining volume of 
the tube bore. 

 Animal Experiments 
 We used an apo E–KO mouse model 
of atherosclerosis in these experiments 
( 27 ). These mice had been on the 
Western high-fat, high-cholesterol diet 
for an average of 10 months and were 
1 year old at the time of the experiments. 
Age-matched wild-type mice (Jackson 
Laboratory) (fed on a regular chow 
diet) were used as controls. All of the 
mice were male and were housed and 
maintained in a purpose-designed facility. 
The local animal care and use commit-
tee approved all experiments. D.P.C. 
(4 years of experience) handled the mice. 

 The animals were injected, via the 
tail vein, with Au-HDL at a dose of 500 
mg of gold per kilogram of body weight. 
They were sacrifi ced 24 hours later and 
frozen before being examined with CT 
scanning. Some of the mice were in-
jected with 150  m l of an iodinated emul-
sion (Fenestra VC) ( 28 ) at 24 hours, 
5 minutes before they were sacrifi ced. 
The mouse groups were as follows: apo 
E–KO mice injected with Au-HDL ( n  = 2), 
apo E–KO mice injected with Au-HDL 
and the iodine-based contrast agent 
( n  = 3), and wild-type mice (controls) 
injected with Au-HDL ( n  = 3). 

 Tissue TEM and Confocal Microscopy 
 The aortas of two apo E–KO mice in-
jected with Au-HDL 24 hours earlier 
were excised, and 5-mm-long sections 
were cut from the arch, at the renal 
arteries and the bifurcation. Sections 
were prepared for TEM imaging by us-
ing standard methods ( 29 ). One author 
(R.E.G., 39 years experience) prepared 
and analyzed the TEM sections. Another 
author (D.P.C., 4 years experience) pre-
pared sections for confocal microscopy 
by using previously reported methods 
( 30 ). Further details regarding these 
experiments are provided in Appendix 
E1 (online). 
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high attenuation in the lumen was due 
to the iodinated contrast agent, whereas 
the high attenuation in the plaque was 
due to Au-HDL accumulation ( Fig 4,  E  ). 
Furthermore, the bones of the mice 
were clearly identifi ed on the calcium 
images, with little cross talk with the 
gold and iodine images. With this ex-
periment, we showed that it is possible 
to image gold- and iodine-based con-
trast agents, as well as calcifi ed tissue, 
simultaneously by using spectral CT in a 
mouse. The online movies show all sec-
tions of the mouse depicted in Figure 
4,  D  and  E . 

 Au-HDL Localization in Aorta 
 The cellular localization of Au-HDL 
in the aorta was investigated by using 
TEM and confocal microscopy. On TEM 
images, we found Au-HDL to be largely 
localized in macrophages (Fig E6,  A – C  
[online]), whereas areas of hypointen-
sity in other cell types and regions of 

as the arch, the region near the renal 
arteries, and the bifurcation ( Fig 4,  A   ). 
When the gold images were examined, 
it was clear that the high attenuation in 
the aortas was due to accumulation of 
Au-HDL in the arteries of these mice 
( Fig 4,  B,   C  ). In comparison, images in 
the wild-type mice injected with Au-HDL 
showed much lower attenuation in the 
aorta regions, with little signal on the 
gold images (Fig E5 [online]). 

 In an additional experiment, we 
injected three apo E–KO mice with 
Au-HDL and then 24 hours later with 
an iodinated emulsion contrast agent 
(Fenestra VC) for imaging of small ani-
mal vasculature. In this setting, the en-
ergy bin data were processed into gold, 
iodine, calcium, and tissue images. As 
seen in  Figure 4,  D  , high attenuation 
was seen in the lumen of the aorta and 
in the plaque surrounding the aorta on 
the conventional CT images. Examination 
of the spectral images revealed that the 

spectral CT can be used to distinguish 
gold, iodine, and calcifi ed tissue ( Fig 3a  ). 
Spectral CT could be used to correctly 
resolve the signals from the different 
materials in the fi eld of view ( Fig 3b, 3c ) 
in this setting also. 

 Spectral CT of apo E–KO Mice 
 We used the apo E–KO mouse model of 
atherosclerosis to test the combination 
of spectral CT and Au-HDL for mac-
rophage imaging in a biologic setting; 
Au-HDL has previously been shown to 
be macrophage specifi c ( 22 ). First, we 
injected two apo E–KO mice with 
Au-HDL; then we sacrifi ced and froze 
the mice 24 hours after injection, prior 
to scanning. The energy bin data were 
decomposed into gold, tissue, and cal-
cium images. On the conventional CT 
images of the aorta in these mice, areas 
of high attenuation were observed in 
regions known to accumulate substan-
tial atherosclerotic plaques ( 27 ), such 

 Figure 2 

  
  Figure 2:  CT images of phantom containing various concentrations of Au-HDL, an iodinated contrast agent, and calcium phosphate powder, 
 Ca 

3
 (PO 

4
 ) 
2
 ,  to simulate calcium-rich tissue.  (a)  Labeled conventional CT image;  (b)  spectral CT energy bin images; and  (c)  gold, iodine, photo-

electric, and Compton images derived from energy bins are shown.   
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is often acquired a long time (eg, 24–48 
hours) later ( 33 ). This makes coregis-
tering of the different images acquired 
challenging, and especially so when the 
area to be imaged comprises the coro-
nary arteries—structures of constant 
movement. Spectral CT offers the abil-
ity to identify the locations of contrast 
agent accumulation during a single 
scanning examination, eliminating the 
need for preinjection scanning. On the 
other hand, fl uorine 18 fl uorodeoxyglu-
cose (FDG) PET does not require a pre-
injection image because the contrast on 
the image is present only because of the 
injected contrast agent. However, FDG 
PET of the coronary arteries is chal-
lenging owing to the high uptake of FDG 
by the myocardium, which obscures the 
identifi cation of the coronary arteries. 
Moreover, the temporal and spatial res-
olution of MR imaging and PET are poor 
for coronary artery imaging ( 7 ). 

 The scanning time of the described 
spectral CT system needs to be im-
proved. One must bear in mind that 
state-of-the-art clinical scanners have 
multiple (ie, 64–320) detector rows ( 18 ), 
and the preclinical system used in this 

tions such as mixtures of the gold- and 
iodine-based contrast agents. We also 
demonstrated the capability of the 
spectral CT system in the detection of 
Au-HDL that accumulated in the aortas 
of apo E–KO mice. The cells that these 
nanoparticles gathered in were mac-
rophages, as determined by using TEM 
and confocal microscopy—a result that 
is in agreement with previous experi-
ment fi ndings ( 22 ). The spectral CT 
results, therefore, seem to refl ect the 
macrophage content of the plaque, and 
they point to the possibility for CT 
molecular imaging of macrophage bur-
den in arteries. As became clear from 
our investigations, iodinated contrast 
agents and calcifi ed structures also 
can be simultaneously visualized. This 
method could offer the potential to 
simultaneously acquire information on 
stenosis, calcifi cation, and infl ammation—
three valuable parameters of plaque 
characterization. 

 One of the drawbacks of many forms 
of molecular imaging, such as iron oxide– 
and gadolinium-enhanced MR imaging, 
is the requirement to perform preinjec-
tion imaging. The postinjection image 

the plaque represented staining arti-
facts (Fig E6,  D  and  E  [online]). 

 We further investigated the cellular 
localization of Au-HDL in plaque by us-
ing confocal microscopy. Sections were 
stained with CD68 for macrophages, and 
nuclei were stained with 4,6-diamidino-2-
phenylindole. Representative images are 
shown in Figure E6,  F – I  (online). As seen 
on these images, areas of nanoparticle 
accumulation (stained red) closely cor-
responded to areas that stained posi-
tive for macrophages (stained green), 
confi rming the macrophage specifi city 
of Au-HDL. 

 Discussion 

 In this study, we demonstrated that 
spectral CT enables multicolor imaging 
and can be used to accurately distinguish 
a gold-based contrast agent (Au-HDL) 
from an iodinated contrast agent, tissue, 
and calcium-rich matter on scans of 
phantoms in water or meat, an artery 
phantom, and apo E–KO mice in situ. 
Furthermore, the concentrations of the 
agents can be determined with good ac-
curacy, even under confounding condi-

 Figure 3 

  
  Figure 3:  Images of artery phantom.  (a)  Labeled CT image;  (b)  spectral CT images; and  (c)  overlay of gold, iodine, photoelectric, and Compton 
images are shown.  Ca 

3
 (PO 

4
 ) 
2
   = calcium phosphate.   
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detection is clearly a limitation of CT, 
and it has been posited that molecular 
imaging would not be possible with use 
of CT ( 38 ). The results of this study and 
others ( 39–41 ) indicate, however, that 
molecular imaging with CT could be pos-
sible for certain processes. Owing to the 
relative insensitivity of CT for contrast 
material detection, the low densities of 
macrophages will likely not be detected. 
Infl amed and unstable plaques are rich 
in macrophages. Therefore, this in-
sensitivity may be a benefi cial feature, 
as there will be little signal from qui-
escent plaques. We plan to conduct 
studies with atherosclerotic rabbits to 
correlate infl ammation burden with CT 
attenuation. 

spectral CT systems at a speed compa-
rable to that of current clinical systems. 

 The 500 mg/kg (2.53 mmol of gold 
per kilogram of body weight) dose of 
Au-HDL used is comparable to that 
used for commercially available iodinated 
contrast agents (370 mg/kg or 2.92 
mmol of iodine per kilogram of body 
weight) ( 13 ). We chose a dose equiva-
lent to the number of particles used in 
our previous MR imaging studies with 
high-density lipoprotein–based contrast 
agents ( 22,37 ). Nevertheless, we plan to 
perform dose-response studies to deter-
mine optimized dosing. From the cur-
rent study results, it seems likely that the 
dose could be reduced by a factor of two 
to four. The sensitivity for contrast agent 

study has only one detector row, result-
ing in longer scanning times. Another 
crucial contributor to the scanning time 
duration, however, is the low x-ray fl ux 
under which the scanner can be operated 
because of the lower count-rate limit of 
the photon-counting detectors used, as 
compared with the count-rate limit of 
conventional CT detectors ( 20 ). Nev-
ertheless, the lengthy scanning times 
can be overcome by using a number 
of methods or various combinations 
thereof—for example, detectors with 
higher count-rate capability ( 34,35 ), 
detectors with a smaller area ( 21 ), and 
vertically stacked detectors ( 36 ). There-
fore, we anticipate that it eventually will 
be feasible to perform imaging with 

 Figure 4 

  
  Figure 4:   A–C,  Spectral CT images of thorax and abdomen in apo E–KO mouse injected 24 hours earlier with Au-HDL. 
 D, E,  Spectral CT images near bifurcation of aorta in apo E–KO mouse injected with Au-HDL and an iodinated emulsion contrast 
agent (Fenestra VC) for vascular imaging.   
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 In summary, we have demonstrated 
the potential of the described spectral 
CT imaging system for differentiation 
of gold, iodine, and calcifi ed material 
in atherosclerosis. The spectral CT im-
aging system, together with Au-HDL, 
can be used to detect macrophages in 
atherosclerosis while imaging the vas-
culature and calcifi ed tissue at the same 
time. This fi nding points to preclinical 
and clinical applications in atheroscle-
rosis, and the described spectral CT 
system potentially could be used with 
other types of contrast agents to probe 
other biologic processes and diseases. 

   Practical applications:   In this study, 
we focused on gold- and iodine-based 
contrast agents. Others, however, have 
used gadolinium- ( 21 ) or bismuth-based 
contrast agents ( 42 ), and the use of 
contrast agents based on many other 
elements is theoretically possible with 
spectral CT. Moreover, settings other 
than arterial infl ammation, such as ar-
teries with stents ( 21 ), thrombus for-
mation ( 42 ), and renal disease ( 43 ), may 
be probed by using spectral CT, and we 
anticipate further applications in can-
cer, cardiovascular disease, and bowel 
diseases. 
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