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 Purpose: To assess the performance of computer-extracted dynamic 
contrast material–enhanced (DCE) magnetic resonance 
(MR) imaging kinetic and morphologic features in the dif-
ferentiation of invasive versus noninvasive breast lesions 
and metastatic versus nonmetastatic breast lesions.

 Materials and 
Methods: 

In this institutional review board–approved HIPAA-compliant 
study, in which the requirement for informed patient con-
sent was waived, breast MR images were retrospectively 
collected. The images had been obtained with a 1.5-T MR 
unit by using a gadodiamide-enhanced T1-weighted spoiled 
gradient-recalled acquisition in the steady state sequence. 
The breast MR imaging database contained 132 benign, 71 
ductal carcinoma in situ (DCIS), and 150 invasive ductal car-
cinoma (IDC) lesions. Fifty-four IDC lesions were associated 
with metastasis-positive lymph nodes (LNs), and 64   IDC 
lesions were associated with negative LNs. Lesion segmenta-
tion and extraction of morphologic and kinetic features were 
automatically performed by a laboratory-developed computer 
workstation. Features were fi rst selected by using step-
wise linear discriminant analysis and then merged by using 
Bayesian neural networks. Lesion classifi cation performance 
was assessed with receiver operating characteristic analysis.

 Results: Differentiation of DCIS from IDC lesions yielded an area 
under the receiver operating characteristic curve (AUC) of 
0.83  6  0.03 (standard error). AUCs were 0.85  6  0.02 for 
differentiation between IDC and benign lesions and 0.79  6  
0.03 for differentiation between DCIS and benign lesions. 
Differentiation between IDC lesions associated with positive 
LNs and IDC lesions associated with negative LNs yielded an 
AUC of 0.82  6  0.04. AUCs were 0.86  6  0.03 for differentia-
tion between IDC lesions associated with positive LNs and 
benign lesions and 0.83  6  0.03 for differentiation between 
IDC lesions associated with negative LNs and benign lesions.

 Conclusion: Computer-aided diagnosis of breast DCE MR imaging–
depicted lesions was extended from the task of discriminating 
between malignant and benign lesions to the prognostic tasks 
of distinguishing between noninvasive and invasive lesions 
and discriminating between metastatic and nonmetastatic 
lesions, yielding MR imaging–based prognostic markers.
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reduce interobserver variation in inter-
pretations by facilitating a more objec-
tive evaluation of the images ( 28,29 ). 

 Various researchers have devel-
oped CAD methods for breast imaging 
modalities—including mammography, 
US, and MR imaging—and for combined 
modalities for the tasks of automated 
lesion segmentation, feature extraction, 
and lesion characterization ( 11–13,30–
35 ). In addition, several observer stud-
ies of all three of these modalities have 
revealed the potential usefulness of 
CAD in clinical settings ( 36–40 ). Thus, 
in this study, our aim was to investi-
gate whether our CAD method can be 
extended from diagnostic to prognostic 
tasks to ultimately yield MR imaging–
based prognostic markers. Our specifi c 
goal was to assess the performance of 
computer-extracted morphologic and 
kinetic features of lesions from DCE MR 
images in the differentiation of certain 
subtypes of malignant breast lesions, 
with respect to invasive versus nonin-
vasive cancers and metastatic versus 
nonmetastatic cancers. 

Tumor invasiveness is one important 
prognostic marker. The most common 
malignant lesion (in approximately 70% 
of all cases) is invasive ductal carci-
noma (IDC) ( 14,15 ). Relatively recent 
research has been performed to inves-
tigate the MR imaging–based visual and 
manual assessment of another type of 
malignant lesion: noninvasive (in situ) 
cancer ( 16–20 ). Ductal carcinoma in 
situ (DCIS) is generally considered to 
be a nonobligate precursor of invasive 
cancer, with a 30%–50% chance of be-
coming invasive ( 21 ). Accurate charac-
terization of invasive and noninvasive 
breast lesions is essential for clinical 
management decisions and successful 
treatment. 

 Lymph node (LN) involvement is 
the most important prognostic marker 
because the lymph nodes, particularly 
the axillary LNs, are the fi rst site of 
metastasis from breast adenocarcinoma. 
Study results have shown that breast le-
sions associated with LNs that are posi-
tive for metastasis have a poorer prog-
nosis than do breast lesions associated 
with negative (ie, nonmetastatic) LNs 
( 22–25 ). 

 MR imaging assessment of breast 
cancer cases may involve labor-intensive 
interpretation methods and inter- and 
intraobserver variations ( 26,27 ). The 
goal of automated computerized analy-
sis of medical images is to obtain quan-
titative indexes for diagnosis, prognosis, 
and response to therapy. Computer-
aided diagnosis (CAD) is intended to 

             Breast magnetic resonance (MR) 
imaging continues to become an 
important component of the clin-

ical work-up of patients suspected of 
having breast carcinoma. Dynamic con-
trast material–enhanced (DCE) MR 
imaging enables the visual differen-
tiation of lesions from normal tissue 
owing to the increased vascularity and 
capillary permeability of breast lesions 
( 1–4 ). Thus, dynamic MR imaging has 
emerged as a modality that is possi-
bly complementary to mammo graphy 
and ultrasonography (US) because of 
the additional three-dimensional spa-
tial and temporal information about 
the lesion that it yields. Results of pre-
vious studies have shown that morpho-
logic characteristics and enhancement 
kinetics—specifi cally, the time course of 
the signal intensity within the lesion—
can be used in the interpretation of 
lesions to determine the likelihood of 
malignancy ( 5–13 ). 

 Studies have been focused on the 
diagnostic value of MR imaging charac-
terization—that is, the differentiation 
of malignant from benign lesions. Once 
a lesion is established as being malig-
nant, knowledge of the prognostic na-
ture of the lesion is also crucial because 
it infl uences the choice of treatment 
and how the lesion will be monitored. 

 Implication for Patient Care 

 In situ cancer and invasive  n

cancer without metastasis to 
the lymph nodes (LNs) have a 
better prognosis than does inva-
sive cancer with LN metastasis; 
thus, accurate prognostic char-
acterization of breast lesions 
may infl uence decisions regard-
ing the clinical management of 
patients. 

 Preclinical studies need to be  n

completed to determine exactly 
how such analyses might ulti-
mately fi t into clinical care. 

 Advances in Knowledge 

 Computer-extracted kinetic and  n

morphologic features of lesions 
seen at dynamic contrast-
enhanced breast MR imaging 
have the potential to facilitate the 
characterization and differentia-
tion of invasive cancer, noninva-
sive (in situ) cancer, and benign 
lesions. 

 Computerized analysis of  n

dynamic contrast-enhanced 
breast MR imaging lesions has 
the capability for differentiation 
of metastatic versus nonmeta-
static breast lesions. 

 These two classifi cation tasks can  n

be interpreted as prognostic 
tasks, thereby yielding promising 
MR imaging–based prognostic 
markers. 

  Published online before print  
 10.1148/radiol.09090838 
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 Abbreviations: 
 AUC = area under maximal likelihood–fi tted binormal 

receiver operating characteristic curve 
 CAD = computer-aided diagnosis 
 DCE = dynamic contrast enhanced 
 DCIS = ductal carcinoma in situ 
 IDC = invasive ductal carcinoma 
 LN = lymph node 
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 Because of the internal uptake het-
erogeneity within breast lesions, an av-
erage kinetic curve that uses all of the 
voxels within the lesion was not used. 
Instead, fuzzy  c -means clustering was 
applied to identify different kinetic time 
course curves within the lesion. The 
kinetic curve with the highest initial en-
hancement was then automatically cho-
sen as the curve from which the kinetic 
features would be extracted ( 11 ). It has 
been shown that using only the most 
enhancing voxels, as compared with us-
ing the average kinetic curve, improves 
the performance of kinetic features 
( 11 ). Spatial enhancement variance fea-
tures, which describe the spatial vari-
ance of the enhancement within a lesion 
at each acquired time point, were also 
calculated ( 12 ). 

 In addition to kinetic features, math-
ematical descriptors of the morphology 
were extracted. Three-dimensional tex-
tural features were calculated by using a 
three-dimensional volumetric gray-level 
co-occurrence matrix method ( 13,42 ). 
Geometric features such as size and 
margin gradient were also computed 
( 43 ). Overall, thirty-one features ( Table 1  ) 
were calculated for each lesion. 

 For each prognostic task, four clas-
sifi cations were investigated. For the 
classifi cation of invasive versus nonin-
vasive lesions, we considered  (a)  IDC 

After nonenhanced images were acquired, 
gadodiamide (Omniscan; Nycomed-
Amersham, Princeton, NJ) was admin-
istered intravenously at a fi xed dose of 
20 mL; a 20-mL saline fl ush followed. 
Three to fi ve contrast-enhanced image 
series were obtained with   a time inter-
val of 68 seconds. Each series consisted 
of 60 coronal sections with a matrix of 
256  3  256 pixels. The in-plane spatial 
resolution was 1.25  3  1.25 mm, and 
the section thickness was in the range of 
2–3 mm, depending on the breast size. 

 Data Analyses 
 Our automatic analysis ( Fig 2  ) began 
once the dynamic MR images were ac-
quired, and the lesion location was based 
on clinical radiology reports. Identifi ca-
tion of the lesion location was the only 
manual step in the analysis; all subse-
quent steps were automatically performed 
in real time by the computer. The com-
puter used the fuzzy  c -means clustering 
method to automatically segment the 
lesion in three dimensions, enabling the 
calculation of tumor volume ( 41 ). Fuzzy 
 c -means clustering used the enhance-
ment of the lesion over time to output 
a membership map that classifi ed each 
voxel as lesion or nonlesion. Connected-
component labeling and hole fi lling 
were the fi nal steps in generating the 
segmentation outline of the lesion ( 41 ). 

 Materials and Methods 

 Breast MR Imaging Database 
 M.L.G. and the spouse of G.M.N. are 
stockholders of and receive royalties 
from R2 Technology/Hologic   (Bedford, 
Mass). It is the policy of the University 
of Chicago that investigators publicly 
disclose actual or potential substantial 
fi nancial interest that would reasonably 
appear to be directly and markedly af-
fected by the research activities. 

 This was an institutional review 
board–approved, Health Insurance Por-
tability and Accountability Act–compliant 
study, with the requirement for in-
formed consent waived. Retrospective 
review of the fi ndings from 600 con-
secutive breast   MR examinations per-
formed at the University of Chicago 
Medical Center between April 2002 and 
October 2005 revealed 150 IDC lesions, 
71 DCIS lesions, and 132 benign lesions 
in 311 women (mean age, 53.9 years  6  
13.7 [standard deviation]; age range, 
22–88 years). Lesions with mixed histo-
logic features (eg, IDC and DCIS) and 
lesions of other histologic types (eg, 
invasive lobular carcinoma, mucinous 
carcinoma, etc) were excluded. All 
353 lesions included in the study were 
examined and documented by experi-
enced pathologists  , and all cases were 
reviewed at a multidisciplinary breast 
cancer management conference. Of the 
150 IDC lesions, 54 were associated 
with positive LNs and 64 lesions were 
associated with negative LNs. Invasive 
lesions for which the work-up was per-
formed at an outside institution were 
excluded from the LN metastasis por-
tion of the study.  Figure 1   shows the 
distribution of tumor volumes for all of 
the lesions included in the study. 

 MR images were obtained by us-
ing a T1-weighted three-dimensional 
spoiled gradient-recalled acquisition in 
the steady state sequence (7.7/4.2 
[repetition time msec/echo time msec], 
30° fl ip angle). Fat suppression was not 
used. The patients were imaged in the 
prone position with use of a standard 
double breast coil and a 1.5-T whole-
body MR imaging system   (GE Signa; 
GE Medical Systems, Milwaukee, Wis). 

 Figure 1 

  
  Figure 1:  Graph illustrates distribution of lesion volumes for all IDC lesions with positive LNs, IDC lesions 
with negative LNs, DCIS lesions, and benign lesions in the breast MR imaging database.   
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 Results 

 Relationships between Lesion 
Characteristics in the Classifi cation Tasks 
 The lesion segmentations and charac-
teristic kinetic curves for four sample 
breast lesions are demonstrated in  
Figure 3  . Performance values for the 
computer-extracted kinetic and mor-
phologic features of these four lesions 
are given in  Table 2  . The IDC lesion with 
positive LNs had a fast contrast mate-
rial uptake, with maximal enhancement 
at the fi rst postcontrast time point, and 
a rapid washout, while the benign lesion 
had a slow and persistent uptake, with 
maximal enhancement at the fi fth post-
contrast time point. The DCIS lesion 
had an intermediate enhancement pat-
tern, with delayed and less enhance-
ment compared with the IDC lesion 
with negative   LNs ( Fig 3b ). In terms 
of the shape of the lesions, the DCIS 
lesion ( Fig 3c ) was non–mass like and seg-
mental compared with the mass-like IDC 
and benign lesions (Fig, 3a, 3b, 3d), as 
evident in the circularity and irregularity 
feature values ( Table 2 ). 

 Uptake rate, a measure of how fast 
the contrast agent is taken up by the 
lesion, was a strong feature. The DCIS 
and benign lesions exhibited lower up-
take rates compared with the IDC le-
sions, and the IDC lesions with positive 
LNs outnumbered the IDC lesions with 
negative LNs, with greater uptake val-
ues (Fig E1 [online]). The correlation 
coeffi cient between uptake rate and size 
was 0.40 ( P   ,  .05) for DCIS lesions 
and  2 0.02 ( P   .  .1) for benign lesions. 
Another important kinetic feature was 
time to peak. The enhancement of the 
malignant lesions peaked at the fi rst or 
second postcontrast time point, while 
the enhancement of the benign lesions 
was more likely to peak at the 5th or 
fi nal postcontrast time point. Among the 
malignant lesions, the IDC lesions with 
negative lymph nodes and the DCIS 
lesions tended to peak later than the 
IDC lesions with positive lymph nodes 
(Fig E2 [online]). 

 In terms of morphologic lesion 
characterization, contrast is a textural 
descriptor of lesion heterogeneity. As 

sen feature. Features whose frequency 
was greater than the threshold were 
selected for the classifi cation task, and 
a two-class Bayesian artifi cial neural 
network was then used to merge these 
selected features ( 45 ). The round-robin-
by-case validation method was used 
in the performance evaluation for the 
Bayesian artifi cial neural network ap-
proach. Receiver operating character-
istic analysis was used to evaluate the 
performance of each classifi cation task 
( 46,47 ). The area under the maximal 
likelihood–fi tted binormal receiver op-
erating characteristic curve (AUC) was 
used as the index of performance and 
was calculated by using the ROCKIT 
software package (ROCKIT, version 
0.9b, 1998; C. E. Metz,  http://www.
radiology.uchicago.edu/krl/roc_soft.
htm ). The  z  test was applied to assess 
the statistical signifi cance of the differ-
ence between the calculated AUC and 
an AUC of 0.50. 

versus DCIS lesions,  (b)  IDC versus 
benign lesions,  (c)  DCIS versus benign 
lesions, and  (d)  malignant (DCIS and 
IDC) versus benign lesions. Similarly, 
for the classifi cation of metastatic ver-
sus nonmetastatic lesions, we examined 
 (a)  IDC lesions with positive LNs versus 
IDC lesions with negative LNs,  (b)  IDC 
lesions with positive LNs versus benign 
lesions,  (c)  IDC lesions with negative 
LNs versus benign lesions, and  (d)  ma-
lignant (IDC lesions with positive and 
negative LNs) versus benign lesions. 

 Statistical Analyses 
 Stepwise feature selection using linear 
discriminant analysis with a Wilks lambda 
cost function in a round-robin-by-case 
method was used to select the subset 
of features that performed effectively 
in the classifi cation of lesions for each 
task ( 44 ). Once the feature histogram 
was generated, the threshold was set at 
50% of the frequency of the most cho-

 Figure 2 

  
  Figure 2:  Diagram outlines the protocol for automated analysis of breast 
lesions seen at DCE MR imaging.  BANN  = Bayesian artifi cial neural network, 
 FCM  = fuzzy  c -means clustering,  LDA  = linear discriminant analysis. 
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round-robin-by-case iterations (Fig E3 
[online]). The features selected for 
each classifi cation task are shown in 
 Table 3 ,  with performance values cited 
in AUCs from the resulting classifi er. 
The corresponding receiver operating 
characteristic curves derived at round-
robin-by-case   analysis are shown in 
 Figure 5  . AUCs were 0.83  6  0.03 (stan-
dard error), 0.85  6  0.02, 0.79  6  0.03, 
and 0.81 6  0.02 for the classifi cations 
of IDC versus DCIS lesions, IDC versus 
benign lesions, DCIS versus benign le-
sions, and malignant (DCIS + IDC) ver-
sus benign lesions, respectively. AUCs 
were 0.82  6  0.04, 0.86  6  0.03, 0.83  6  
0.03, and 0.84  6  0.02 for the classifi ca-
tions of IDC lesions with positive LNs 
versus IDC lesions with negative LNs, 
IDC lesions with positive LNs versus 
benign lesions, IDC lesions with nega-
tive LNs versus benign lesions, and ma-
lignant (IDC lesions with positive and 
negative LNs) versus benign lesions, re-
spectively. For the malignant lesions, we 
achieved a coeffi cient of 0.31 ( P   ,  .001) 
for the correlation between the computer-
estimated probability of cancer inva-
siveness and the computer-estimated 
probability of cancer associated with 
positive LNs (Fig E4 [online]). 

 Discussion 

 Our study results show that our DCE 
MR imaging CAD algorithm has the po-
tential to be extended to two prognostic 
tasks— (a)  classifi cation of noninvasive 
(DCIS) and invasive (IDC) lesions and 
 (b)  further classifi cation of IDC lesions 
into IDC lesions with positive LNs and 
IDC lesions with negative LNs—with 
the use of combined computer-extracted 
MR imaging kinetic and morphologic 
features. 

 Although DCIS lesions have a vari-
able enhancement pattern, it has been 
shown that they tend to show delayed 
as well as decreased enhancement com-
pared with IDC lesions ( 13 ). Our re-
sults are in agreement with this fi nding: 
The DCIS lesions had a lower uptake 
rate and higher time to peak values 
compared with the IDC lesions. We 
found that the IDC lesions with positive 
LNs had more aggressive kinetics than 

lesions having higher circularity values 
than DCIS lesions   (Fig 4   ). 

 Performance of Classifi cation Tasks 
 During feature selection, the feature 
sets were generally stable across the 

expected, the malignant lesions had 
larger contrast values than did the be-
nign lesions   (Fig E1 [online]). Circular-
ity is a geometric feature of how closely 
a lesion resembles a sphere. There was 
a general trend toward IDC and benign 

 Table 1 

 Computer-extracted Breast Lesion Features 

Feature Type and No. Lesion Feature Defi nition

Kinetic 
 1 Maximal uptake Maximal contrast enhancement
 2 Time to peak Time point at which maximal uptake occurs
 3 Uptake rate Rate of contrast material uptake
 4 Washout rate Rate of contrast enhancement washout
 5 Curve shape index Difference between early and late enhancement
 6 Enhancement at fi rst 

 postcontrast time point
 7 Enhancement ratio Ratio of initial enhancement to overall enhancement
Spatial enhancement variance
 8 Maximal variance in uptake Maximal variance in contrast enhancement
 9 Variance in time to peak Time point at which maximal variance occurs
 10 Variance in uptake rate Speed at which variance reaches maximal variance
 11 Variance in washout rate Speed at which variance decreases from maximal 

 variance
Textural
 12 Contrast Measure of local image variation
 13 Correlation Measure of image linearity
 14 Energy Measure of image homogeneity
 15 Homogeneity Measure of local homogeneity
 16 Entropy Measure of randomness of gray levels
 17 Variance Measure of how spread out the gray-level 

distribution is
 18 Sum average Measure of overall image brightness
 19 Sum variance Measure of how spread out the sum of the gray 

levels of voxel pairs is
 20 Sum entropy Measure of randomness of the sum of the gray 

levels of neighboring voxels
 21 Difference in variance Measure of variation in the difference in gray levels 

between voxel pairs
 22 Difference in entropy Measure of randomness of the difference in 

 neighboring gray levels
 23 IMC1  Measure of nonlinear gray-level dependence
 24 IMC2 Measure of nonlinear gray-level dependence
 25 Maximal correlation coeffi cient Measure of nonlinear gray-level dependence
Geometric 
 26 Size Lesion volume, in cubic centimeters
 27 Circularity Conformity of lesion to spherical shape
 28 Irregularity Deviation of 3D lesion surface from sphere surface
 29 Margin sharpness Mean image gradient at lesion margin
 30 Variance in margin sharpness Variance in image gradient at lesion margin
 31 Variance in RGH How well enhancing structures in a lesion extend in 

 a radial pattern originating from center of lesion

Note.—IMC1 = information measure of correlation 1, IMC2 = information measure of correlation 2, RGH = radial gradient 
histogram, 3D = three-dimensional.
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did the IDC lesions with negative LNs, 
especially with respect to the uptake 
rate feature. 

 In terms of textural features, a com-
mon indicator of malignancy was lesion 
heterogeneity, which can be described 
by using different mathematic algo-
rithms. Three textural features—con-
trast, maximal correlation coeffi cient, 
and IMC2—were selected for the IDC 
versus DCIS classifi cation task, while 
four textural features—contrast, energy, 
homogeneity, entropy, and variance—
were chosen for the IDC lesions with 
positive LNs versus IDC lesions with 
negative LNs classifi cation task. Thus, 
the results from the selection and com-
bination of such features indicate that 
each malignant lesion subtype—IDC 
lesions with positive LNs, IDC lesions 

 Figure 3 

  
  Figure 3:  Coronal MR   images show segmentation (red outline) of  (a)  IDC lesion with positive LNs in 34-year-old woman,  (b)  IDC lesion with negative LNs in 
39-year-old woman,  (c)  DCIS lesion in 66-year-old woman, and  (d)  benign lesion in 48-year-old woman.  (e)  Corresponding characteristic kinetic curves for these four 
breast lesions.   

 Table 2 

 Computer-extracted Kinetic and Morphologic Feature Values for Four Breast Lesions 

Lesion Feature
IDC Lesion with 
Positive LN

IDC Lesion with 
Negative LN DCIS Lesion Benign Lesion

Maximal uptake 2.25 1.87 1.70 1.42
Curve shape index  2 0.46 0.16 0.20 0.44
Variance in time to peak First postcontrast 

 time point
Second postcontrast 
 time point

Fifth postcontrast 
 time point

Fifth postcontrast 
 time point

Variance in washout rate 0.26 0.07 0 0
Correlation coeffi cient 0.74 0.61 0.52 0.46
IMC1  2 0.17  2 0.10  2 0.09  2 0.07
Sum average 41.34 27.13 18.22 24.92
Variance in margin sharpness 0.73 0.82 0.91 0.79
Circularity 0.58 0.60 0.44 0.63
Irregularity 0.60 0.40 0.77 0.46

Note.—Data are computer-extracted kinetic and morphologic feature values for an IDC lesion associated with positive LNs in a 
34-year-old woman, an IDC lesion associated with negative LNs in a 39-year-old woman, a DCIS lesion in a 66-year-old woman, and a 
benign lesion in a 48-year-old woman. These four lesions are shown in Figure 3. IMC1 = information measure of correlation 1.
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tumors with associated positive LNs are 
invasive; however, invasive tumors may 
not necessarily be associated with posi-
tive LNs. Thus, a higher probability of a 
lesion being IDC might lead to a higher 
probability of the same lesion having 
positive LNs. There are also IDC lesions 
with negative LNs for which there is a 
high computer-estimated probability of 
the lesion being IDC but that may be 
explained by the timing of the MR imag-
ing examination—that is, the IDC lesion 
had not yet metastasized at the time of 
the examination. 

 Tumor size is another important 
prognostic marker ( 24,25 ) because larger 
tumors are generally associated with a 
poorer prognosis than smaller tumors. 
Size was chosen as a feature for all of 
the classifi cation tasks involving benign 
lesions; this indicates the importance 
of size in distinguishing malignant from 
benign lesions. However, it was not cho-
sen for the DCIS versus IDC  classifi cation 
task (single-feature AUC, 0.61) or the 
IDC lesions with positive LNs versus IDC 
lesions with negative LNs task (single-
feature AUC, 0.65). Thus, tumor size 
might not be as strong of a prognostic 
marker as the other markers; the de-
scribed computerized analysis does yield 
new information for the MR character-
ization of breast lesions. 

 The IDC versus benign lesion clas-
sifi cation task (AUC, 0.85) performed 
better than did the DCIS versus be-
nign lesion classifi cation task (AUC, 
0.79). This might indicate that DCIS 
and benign lesions have some similar 
characteristics and thus that it is more 
diffi cult to distinguish between these 
two breast lesion types. On the other 
hand, the IDC lesions, being inher-
ently more aggressive than the DCIS 
lesions, were more easily differentiated 
from the benign lesions. Similarly, the 
performance of the IDC lesions with 
positive LNs versus benign lesions clas-
sifi cation task (AUC, 0.86) surpassed 
that of the IDC lesions with negative 
LNs versus benign lesions classifi cation 
task (AUC, 0.83), demonstrating that 
IDC lesions with positive LNs are more 
aggressive than IDC lesions with nega-
tive LNs. 

 From a biologic standpoint, invasion 
and metastasis are related events; tu-
mors have to be invasive to develop the 
ability to metastasize. For the malig-
nant lesions, we achieved a coeffi cient 
of 0.31 ( P   ,  .001) for the correlation 
between the computer-estimated prob-
ability of invasiveness and the computer-
estimated probability of being associ-
ated with positive LNs. This result is 
consistent with the assumption that 

with negative LNs, and DCIS lesions—
may have a characteristic heterogeneity 
that distinguishes one subtype from the 
others. 

 We found that DCIS lesions are 
generally non–mass like, with enhance-
ment in a linear distribution, compared 
with mass-like IDC and benign lesions. 
Thus, circularity was an effective le-
sion feature for the IDC versus DCIS 
lesion classifi cation task. This result is 
in agreement with fi ndings in the litera-
ture regarding the clinical MR appear-
ance of DCIS lesions ( 13–15 ). Other 
segmentation algorithms, such as a vol-
ume-growing method ( 43 ), are based on 
the assumption that the lesion is mass 
like. However, our segmentation algo-
rithm is based on the enhancement of 
the lesion and thereby has the fl exibil-
ity to enable assessment of the three-
dimensional extent of both non–mass-like 
lesions, such as DCIS, and mass-like 
lesions. 

 It should be noted that DCIS can 
appear as mass-like enhancement; thus, 
in our analysis, we used both kinetic 
and morphologic features for classifi ca-
tion rather than one feature. The com-
puter program can use other selected 
features, such as uptake rate and con-
trast, to help designate mass-like lesions 
as DCIS. 

 Figure 4 

  
  Figure 4:  Graphs show  (a)  relationships between homogeneity and circularity for IDC lesions with positive LNs, IDC lesions with negative LNs, DCIS lesions, and 
benign lesions and  (b)  relationships between homogeneity and circularity for IDC lesions with positive lymph nodes, IDC lesions with negative lymph nodes, and DCIS 
lesions.   
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data set for both round-robin feature 
selection and round-robin classifi cation 
performance evaluation. We also limited 

the feature sets were generally stable 
across the round-robin-by-case iterations, 
with minimal bias yielded by using the 

 Although our preliminary results 
are promising, there were several limi-
tations to the study. As noted earlier, 

 Table 3 

 Computer-selected Features and Corresponding AUCs for Invasive Cancer and Metastasis Classifi cation Tasks 

Computer-extracted Lesion 
Features and AUCs

Invasive Cancer Tasks Metastatic Cancer Tasks-Lymph Node Assessment

IDC vs DCIS IDC vs Benign DCIS vs Benign
Malignant vs 
Benign * 

IDC with LN+ vs 
IDC with LN 2 

IDC with LN+ vs 
Benign

IDC with LN 2  vs 
Benign

Malignant vs 
Benign  †  

Kinetic feature
 Maximum uptake X X
 Time to peak X X X X X X
 Uptake rate X X X
 Washout rate
 Curve shape index
 Enhancement, fi rst 
  postcontrast time point
 Enhancement ratio
Spatial enhancement variance 
  feature 
 Maximal variance in uptake
 Variance in time to peak
 Variance in uptake rate X X X X
 Variance in washout rate X X X
Textural feature
 Contrast X X
 Correlation
 Energy X
 Homogeneity X X X
 Entropy X
 Variance X
 Sum average X
 Sum variance X X X
 Sum entropy X X X X X
 Difference in variance
 Difference in entropy
 IMC1
 IMC2 X X X X
 Maximal correlation 
  coeffi cient

X

Geometric feature
 Circularity X X X
 Irregularity X
 Margin sharpness X X
 Variance in margin 
  sharpness

X X

 Variance in RGH
 Size X X X X X X
AUC (merged features)  ‡  
 

0.83  6  0.03 
 (0.77, 0.89)

0.85  6  0.02 
 (0.81, 0.87)

0.79  6  0.03 
 (0.73, 0.85)

0.81  6  0.02 
 (0.77, 0.85)

0.82  6  0.04 
 (0.74, 0.90)

0.86  6  0.03 
 (0.80, 0.92)

0.83  6  0.03 
 (0.77, 0.89)

0.84  6  0.02 
 (0.80, 0.88)

Note.—X indicates the given feature was involved in the specifi ed classifi cation task. IMC1 = information measure of correlation 1, IMC2 = information measure of correlation 2, LN+ = LNs positive 
for metastasis. LN 2  = LNs negative for metastasis, RGH = radial gradient histogram.  P   ,  .001 for all comparisons at  z  test analysis.

* Malignant refers to DCIS and IDC lesions.

 †  Malignant refers to IDC lesions with positive and negative LNs.

 ‡  AUCs are cited with standard errors. Numbers in parentheses are 95% confi dence intervals.
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if the workstation fi ndings indicate that 
the lesion is potentially metastatic, 
then US or biopsy of the axillary LNs 
would be performed to rule in possible 
metastasis. 

 Future steps in our research include 
examining the characterization of other 
invasive breast carcinomas such as in-
vasive lobular carcinoma, as well as 
investigating other prognostic factors 
such as histologic grade ( 50–53 ), to 
further test the robustness of our com-
puterized analysis of DCE MR imaging 
fi ndings and generate multiple prognos-
tic image-based markers for breast 
carcinoma. By merging or correlating 
these image-based prognostic markers, 
we hope to generate an overall prog-
nostic marker for breast   lesions. The 
output from such quantitative image 
analysis may be useful in the data min-
ing of lesion characteristics with clini-
cal, histopathologic, and genomic data, 
potentially contributing to personalized 
medicine. 
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