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Abstract
PURPOSE—To present a database of systolic three-dimensional (3D) strain evolution throughout
the normal left ventricle (LV) in humans.

MATERIALS AND METHODS—In 31 healthy volunteers, magnetic resonance (MR) tissue
tagging and breath-hold MR imaging were used to generate and then detect the motion of transient
fiducial markers (ie, tags) in the heart every 32 msec. Strain and motion were calculated from a 3D
displacement field that was fit to the tag data. Special indexes of contraction and thickening that were
based on multiple strain components also were evaluated.

RESULTS—The temporal evolution of local strains was linear during the first half of systole. The
peak shortening and thickening strain components were typically greatest in the anterolateral wall,
increased toward the apex, and increased toward the endocardium. Shears and displacements were
more spatially variable. The two specialized indexes of contraction and thickening had higher
measurement precision and tighter normal ranges than did the traditional strain components.

CONCLUSION—In this study, the authors noninvasively characterized the normal systolic ranges
of 3D displacement and strain evolution throughout the human LV. Comparison against this
multidimensional database may permit sensitive detection of systolic LV dysfunction.

Previous methods for cardiac strain measurement in humans have been limited by low spatial
resolution or invasiveness. Coronary arterial bifurcations have been tracked in three
dimensions with cine radiography (1,2). In the transplanted human heart, the motion of metal
markers implanted near the midwall, as detected by using biplanar cine radiography, also has
been used to calculate strain (3-7).

Magnetic resonance (MR) tissue tagging (8-14) with dynamic MR imaging is a rapidly
developing technique for the quantitative, noninvasive evaluation of cardiac mechanical
function with high spatial and temporal resolution. Tags are regions, usually planes, of tissue
in which the magnetization is altered by special MR pulses. Differences in signal intensity
between tagged regions and undisturbed regions serve as a means of accurately tracking the
motion of the underlying tissue on subsequent MR images (15-18). Mathematical techniques
are then used to reconstruct a three-dimensional (3D) deformity from tag positions on cine MR
images (19-22).
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The normal pattern of 3D strain evolution in the human left ventricle (LV) has been only grossly
characterized. The purpose of this work was to determine the normal range of 3D systolic
displacement and strain as a function of position in the LV and of time during systole. This
database is needed as a reference with which strains in abnormal hearts can be compared. It
could also be used to test current models of cardiac mechanics, quantify degrees of function
during stress testing, or quantify degrees of contraction asynschrony in paced hearts or hearts
with conduction anomalies.

MATERIALS AND METHODS
Thirty-one healthy volunteers who gave informed consent were examined; these individuals
had no clinical history of cardiovascular disease, diabetes mellitus, or potential cardiac
symptoms such as chest pain or dyspnea. The volunteers were predominantly white, and there
was a nearly even distribution of men and women (16 men, 15 women; mean age ± SD, 37
years ± 11; age range, 21–62 years). The age, sex, race, and heart rate of the volunteers are
listed in Table 1. The study was approved by to Joint Committee on Clinical Investigation and
was carried out in accordance with institutional guidelines.

MR Imaging
MR imaging was performed, with the volunteers in the supine position, by using a Signa 1.5-
T imaging unit (GE Medical Systems, Milwaukee, Wis) with a flexible surface coil wrapped
around the left side of the chest. A cardiac-gated (upslope of the electrocardiograph R wave)
pulse sequence with parallel plane tagging (14,23) and blood saturation (24) was used during
breath holds, in 22 heart beats, at end-expiratory lung volume to rapidly acquire tagged images
with minimal motion artifact. The tagging sequence consisted of five nonselective radio-
frequency pulses with relative amplitudes of 0.7, 0.9, 1.0, 0.9, and 0.7 separated by gradient
pulses to achieve a tag spacing of approximately 6 mm. The tagging tip angle was tuned to
180°. The center of the tagging pulse occurred 20 msec after the trigger, and this was considered
to be the end-diastolic reference time. MR imaging involved spoiled gradient-recalled
acquisition at steady state with k-space segmentation and a partial echo to minimize imaging
time.

Three sets of tagged MR images with 32.5-msec temporal resolution we acquired in each heart.
There were two sets of six parallel, short-axis sections with orthogonal tags and one radially
oriented set of six long-axis sections spaced every 30° with tags perpendicular to the long axis.
Representative short- and long-axis images at early, middle, and late systole are shown in
Figure 1 to illustrate the image and tag orientation and the ability of tags to depict the underlying
myocardial deformity. The top row shows a basal short-axis section at three phases of
contraction. The section (middle) row is analogous to the first, but the tags and readout gradient
have been rotated 90°. The bottom row shows a long-axis section at the same three times
through systole.

The MR imaging parameters for each section were as follows: 6.5/2.1 (repetition time msec/
echo time |fractional echo| msec), 36-cm field of view, 12° flip angle, 110 phase-encoding steps
(256 × 110 matrix), ±32-kHz bandwidth, one signal acquired, and five phase-encoding views
per time frame. Each cine MR sequence included nine to 12 images.

Strain Calculation
The images were processed by using semiautomated software (25) to identify the tag lines
within the myocardium and the endocardial and epicardial contours. All hearts were registered
about the long axis by aligning the major axes of prolate spheroids that were fit, with least-
squares minimization, to the epicardial contours of each LV. Next, the midpoints of the basal
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right ventricular insertions were aligned. A standardized, regularly spaced material point array
(ie, sample points within the myocardium where the positions and strains were tracked three
dimensionally) was defined in each normal heart. Short-axis planes of material points, called
levels, were defined at regular percentages of the distances between the LV apical point and
the basal valve plane within the volume spanned on the short-axis images. Because of variation
in short-axis imaging geometry, not all apical and basal levels were present in all the hearts.
Within a level, material points were spaced at even angles (ie, sectors) about the long axis at
the endocardium, midwall, and epicardium. Thus, anatomically corresponding material point
positions were defined in each LV.

Three-dimensional displacements and strains were determined at each material point by using
the displacement field fitting method (21). Each time frame was reconstructed independently
and based solely on tag positions, which are more precisely identified than the cardiac contours
(26). All the one-dimensional displacement data from the three sets of images with orthogonal
tag planes (approximately 2,400 points per time frame) were simultaneously fit to a 3D
displacement function by using a least-squares methods. This function included 12 first-order
Cartesian terms describing bulk motion and spatially invariant shears and stretches, followed
by a 150-term harmonic expansion in prolate spheroidal coordinated to fit higher modes of
local displacement variation. The prolate spheroidal expansion contained first-order terms In
the radial direction and fourth-order terms in the circumferential and longitudinal angles (see
Appendix A) (21). Spatial gradients of this displacement function were used to calculate the
Lagrangian finite deformation gradient tensor F at the material points in the heart wall.

Strain and displacement at each material point were expressed in a local coordinate system
along the radial, circumferential, and longitudinal directions, on the basis of the orientation of
the overlying epicardial surface at the reference (undeformed) geometry. These relationships
are shown in Figure 2 (A). The radial direction was outward and perpendicular to the epicardial
surface. The circumferential direction was In the short-axis plane (perpendicular to the long
axis), parallel to the epicardial surface, and counterclockwise, as viewed from the base. The
longitudinal direction was in the plane defined by the material point and the long-axis line,
tangent to the epicardial surface, and increased from the apex to the base. Thus, various radial-
circumferential longitudinal coordinate angles and planes were defined to create a right-handed
system. The angles between pairs of these coordinate directions, which are illustrated in Figure
2 (B), were used to describe the orientations of the principal strains.

The Lagrangian finite strain tensor E was calculated from the relationship E = ½FTF − I, where
the superscript T represents the matrix transpose, and I, the identity tensor. Polar decomposition
of F gave the right stretch tensor U, where F equals RU, and R is a bulk rotation matrix.

A shortening Index (SI) was defined to reflect the geometric mean of fractional one-
dimensional shortening within the circumferential-longitudinal plane. The SI is negative for
muscle shortening in any direction that produces a net area decrease in this plane. This
parameter is directionally insensitive within the plane and therefore a robust way to report
myocardial contraction. Mathematically. it is the square root of the fractional area change in
the plane minus 1.0, so that it is zero with no strain (see Appendix B for derivation), which is
expressed as follows:

(1)

where × represents the vector cross product; the vertical bars represent the vector magnitude;
and the subscripts RC, CC, LC, RL, CL, and LL represent, respectively, the radial-
circumferential, circumferential, longitudinal-circumferential, radial-longitudinal,
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circumferential-longitudinal, and longitudinal components of U. The same-letter subscripts
(ie, CC and LL) denote length changes along that coordinate direction and are associated with
axial strains. (In continuum mechanics, this is usually called “normal strain”; however, this
nomenclature would be confusing in this article.) The different-letter subscripts (ie, RC, LC,
RL, and CL) refer to shear within the plane defined by the two coordinate directions. Various
normal and abnormal deformations and the associated SI values are illustrated in Figure 3. For
contraction of the wall, the SI is negative, and for stretching of the wall, it is positive.
Circumferential and longitudinal contractions contribute equally to the SI, and simple shear in
the circumferential-longitudinal plane has no effect.

By using the assumption of tissue incompressibility, a wall thickening parameter T, which is
an estimation of the local fractional thickening at a material point, also was calculated. This
parameter was supported by a high spatial density of tag data and also allowed for a more direct
comparison with traditional wall thickening than can be done with radial strain ERR, which is
a nonlinear function of fractional length change. Fractional length change is expressed as (2E
+ 1)½ − 1, where E is the axial strain component along the desired direction. Incompressibility
was enforced by setting the determinate of U to equal 1.0 after replacing the radial component
of the right stretch tensor URR with (T + 1) and solving for T (see Appendix C for derivation)
as follows:

(2)

The rotation and torsion of the LV about its long axis also were evaluated. The rotation of a
material point was calculated about the centroid of the short-axis plane that contained that point
so the bulk translation would not produce artifactual variations in the calculated rotation.
Following the coordinate system illustrated in Figure 2, positive angles were defined
counterclockwise, as viewed from the base. Torsion, which is the long-axis gradient of rotation,
was calculated by using the average rotation of material points at each level. Following the
work of other authors (27-30), as well as the sign convention in Figure 2, we defined torsion
angles relative to the basal (81%) level, with positive values representing relative clockwise
rotation of more apical levels, as viewed from the base.

The duration of local systole at each material point was defined for each strain component as
the time to the maximum strain magnitude, or the peak strain. The average systolic strain
evolution was then calculated by including strain data through local end systole. At a given
material point position, different hearts reached a peak strain at different times. Thus, when
the strains of hearts were averaged at each time frame, for the later time frames, there were
fewer hearts that contributed systolic strain data. The average strain at a material point was
calculated if five or more hearts remained in local systole at that time. Adjustment for heart
rate before averaging among hearts was not performed because it would have introduced an
additional postprocessing step with its own variability and was not found to narrow the range
of normal strain. For displacement and rotation, local end systole was defined as the time of
greatest principal contraction, because these parameters were not monotonic.

Statistical Analysis
Statistical analysis for the spatial variation of strain or displacement at the midwall was
performed with repeated measures analysis of variance (two-way) by using STATISTICA
software (StatSoft, Tulsa, Okla). For midwall analyses, three levels—30%, 55%, and 80%—
and four circumferential sectors—anterior, lateral, inferior, and septal—were used to limit the
number of possible comparisons. If statistically significant variation was found, Scheffé
subtesting was used to compare sectors, levels, or individual positions. For radial gradients,
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paired Student t testing was used to evaluate differences between the endocardium and
epicardium at each circumferential-longitudinal position. A P value of .05 or less was
considered to be significant.

RESULTS
Midwall Axial Strains and Indexes

The monotonic time courses of all axial strain parameters were observed during systole. The
axial strain evolution curves for the 31 hearts were tightly clustered in each region throughout
the LV, without outlying curves, although different hearts reached a peak strain at different
times.

The average strain at each time frame during systole was calculated for the 31 hearts. A full-
resolution strain map of the average SI evolution is shown in Figure 4a. Each box represents
a different circumferential-longitudinal position for a midwall material point, and the SI versus
time is plotted in each box. The mean and two 2-SD curves, calculated by averaging the heart
strains at each time frame, are shown. The number of hearts with data at the different levels is
shown to the right of each row. In addition, the mean and 2-SD values for the peak strain are
shown as short horizontal lines at the left in each box. The values in this figure demonstrate
the tight normal ranges, spatial heterogeneity, and smooth evolution of the SI parameter. The
mean and SD of the peak SI, wall thickening, and axial strain components are listed In Table
2. Figure 4b shows renderings of a LV material point wire frame, with color encoding of the
SI at the first, fourth, seventh, and 10th time frames. The LV is viewed from the apex, with the
septum to the left (green dot). The colors range from yellow at no strain (SI = 0.0) to blue at
25% strain in-plane contraction (SI = −.25). The peak SI was greatest in magnitude apically
(P < .001 vs equatorially or basally) and anteriorly and laterally (P < .005 vs inferiorly or at
septal walls). The maximum mean SI magnitude (−0.25 ± 0.05) was at the apical anterior and
lateral positions, and the minimum mean SI magnitude (−0.17 ± 0.03) was at the basal and
equatorial portions of the septum (P < .001).

The local wall thickening at midwall is illustrated in Figure 5. A standard resolution array,
which had data from 19 hearts at the 30% level, 31 hearts at the 55% level, and 29 hearts at
the 80% level, is shown. This parameter had good precision, narrow 2-SD curves, and spatial
heterogeneity. Similar to the SI, the wall thickening was greatest apically (P < .001 vs
equatorially or basally) and anteriorly and laterally (P < .002 vs inferiorly or at septal walls).
The extreme mean values were 0.82 ± 0.21 in the apical-anterior region and 0.46 ± 0.10 in the
basal septum (P < .001). A plot of the directly calculated ERR is not shown because it had a
lower measurement precision than did the local wall thickening.

The evolution of the ECC at midwall is illustrated in Figure 6. This parameter also had tight
SDs among the hearts; these values were typically less than 25% of the mean peak strain value.
The ECC magnitude also was greatest apically (P < .001 vs equatorial or basal levels) and
anteriorly and laterally (P < .005 vs inferiorly or at septal walls). The extreme mean values
were −0.24 ± 0.04 in the apical anterolateral region and −0.16 ± 0.04 in the inferoseptal region
(P < .001).

The evolution of the ELL is plotted in Figure 7. This strain was consistent among individuals,
as shown by the tight 2-SD lines. The magnitude of the ELL was greatest apically (P < .001 vs
equatorially or basally) but homogeneous about the circumference of the LV (P = .50). The
mean basal value was approximately −0.15 ± 0.03, and the mean apical value was −0.19 ±
0.03.
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The three shear strains had a high degree of variability among the hearts, with wide SDs
spanning the axis of zero strain. The average ERC was positive in all regions except the basal
septum and had wide SDs spanning zero. There was no significant circumferential variation,
but the ERC was lower at the basal level than it was at the equatorial (P = .04) or apical (P = .
004) levels. The ERL also averaged near zero at the base and had wide SDs spanning zero
throughout the LV. The ERL was lower anteriorly than it was at the other three sectors (P < .
001) and was lower at the base than it was at the apex (P = .04). The ECL largely reflects the
long-axis torsion of the LV. There was no significant circumferential variation, but the ECL
was lower basally than it was equatorially (P = .04) or apically (P = .004). The mean ECL
values (± SD) ranged from 0.01 ± 0.04 to 0.05 ± 0.05, corresponding to shear angles of
approximately 1° to 5°.

The evolution of the average principal strains at the midwall is shown in Figure 8, and the
average peak principal strains and angles are shown in Table 3. Any 3D strain tensor made up
of axial and shear components can be expressed in a principal coordinate system, in which the
shears along the axes become zero and the axial strain magnitudes are maximized. These three
principal strains (eigen values of the strain tensor) are oriented along three mutually orthogonal
directions that are called eigen vectors. In this study, the E1 (positive in sign) in the normal
heart was approximately radially oriented, similar to the ERR. No significant spatial variation
of the midwall first principal strain was found.

The E3 (negative in sign) was oriented approximately within the circumferential-longitudinal
plane and angled to spiral clockwise from the apex to the base, as viewed from the base (left-
handed spiral). The E3 was greatest apically (P < .001 vs equatorially or basally) and greater
in the anterior and lateral walls than in the septum (P < .001).

Finally, the E2 was approximately in the circumferential-longitudinal plane and greatest in
magnitude apically (P < .001 vs equatorially or basally). The E2 was greater in maginitude at
the lateral wall than it was at the inferior wall (P = .04).

Displacement and Rotation
The displacement evolution of the midwall material points from the end-diastolic geometry is
platted in Figure 9. The average values of end-systolic displacement are shown in Table 4.
There was significant spatial variation in displacement, even within individual sectors and
levels. Radial displacement was directed inward (negative in sign) throughout the LV. The
radial inward displacement was significantly smaller in the septum than in the lateral (P < .05)
and inferior (P < .01) walls. It was greatest at the apical-inferior wall and least at the apical-
anterior wall (P < .001)

Circumferential midwall displacement at the base, as viewed from the base, was clockwise
(negative) about the long axis for the initial approximately 100 msec of systole, then it reversed
to counterclockwise, with the basal material points ending up with little net change in
circumferential position at end systole. Moving apically, the initial clockwise displacement
increased and the final counterclockwise displacement decreased such that at the apical level,
there was no final counterclockwise motion except at the septum. End-systolic circumferential
displacement (magnitude) increased significantly from the basal to the equatorial levels (P < .
001) and from the equatorial to the apical levels (P < .001). The circumferential displacement
magnitude was greatest at the apical-lateral wall and was least at the inferior-basal wall (P < .
001).

The rotation angle of material points about the long axis followed a pattern similar to that of
circumferential displacement, except that it was homogeneous circumferentially due to the
adjustment made for bulk heart translation.
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Longitudinal motion was in the apical direction (negative in sign) throughout the LV, except
for an initial transient basal displacement at the anterior apex. The end-systolic longitudinal
displacement magnitude increased from the apical to the equatorial levels (P < .001) and from
the equatorial to the basal levels (P < .001). Compared with that in the septal and lateral walls,
the end-systolic longitudinal displacement magnitude was significantly greater in the inferior
wall and significantly smaller in the anterior wall (P < .03 for each comparison).

The peak torsion angle, which is the peak change in the average rotation of a level with respect
to the basal (80%) level, also was calculated. Positive values represent relative clockwise
rotation of the more apical levels, as viewed from the base. The average peak torsion, in degrees
and degrees per centimeter, at each level is illustrated in Figure 10. The torsion angle increased
linearly toward the apex (r = −0.96; mean slope ± standard error of the mean, −0.255 ± 0.006,
in degrees vs level in percentage). The torsion between adjacent levels, when normalized by
using the mean separation between the levels at peak rotation, accounts for the decreasing
separation between material point levels as the heart contracts. In our study, the normalized
torsion increased nonlinearly toward the apex; this indicated an apical tightening of the
rotational gradient along the long axis. This nonlinearity was also present in the subgroup of
five hearts with data at all levels from 20%–80%.

Measurement Precision
Once the mean and SDs of the various strain components were determined, the measurement
precision for each was estimated. The measurement precision of the given strain parameter is
important because measurement uncertainty adds to the apparent normal range of strain (ie,
the ± 2-SD line separation) among hearts. Due to differing amounts of tag data in different
directions and the data averaging effects of composite parameters (wall thickening and SI),
measurement precision was expected to vary among strain parameters. Precision was estimated
on the basis of the smoothness of strain measurements among consecutive time frames, because
the computed strain at each time frame was an independent measurement. This temporal
variability was quantified for a given heart and material point by taking the root mean squared
deviation of the sequential strain measures about a cubic fit of strain versus time (all time
frames) and expressing it as a percentage of maximal value of the fitted curve. This variability
measurement was averaged among all midwall material points and all hearts. The smoothest
strain measurements were those for the wall thickening (2.7%), SI (2.8%), and E3 (2.8%),
followed by those for the ECC (3.3%), ELL(4.0%), E2 (6.5%), ECL (11.0%), E1 (12.0%), ERR
(13.0%), ERC (20.0%), and ERL (23.0%). These results indicated that the wall thickening, SI,
E3, and ECC parameters had the greatest measurement precision relative to magnitude (≤3.3%
of the maximum value), and that the axial strains with large radial components (ERR and E1)
had the least precision (12%–13% of the maximum value). Of the shears, the ECL had the
highest precision, reflecting the high spatial density of the data and the effect of LV torsion.

Transmural Strain Gradients
Transmural gradients of strain also were determined for the strain parameters, with the
exclusion of the ERR and E1, which did not have sufficient spatial resolution in the radial
direction. The evolution of the average endocardial (red) and epicardial (black) axial strains
and strain indexes is shown in Figure 11. A single 2-SD curve is shown for each strain and
index, and the short horizontal lines at the left in each box represent the average and 2-SD
range of the peak values. All of the average peak axial strains and indexes were significantly
greater in magnitude at the endocardium than they were at the epicardiurn in each region (P
< .005 for each strain/position pair, with the exception of the ELL at the basal septum [P < .
05]). These radial gradients were expected from the geometric considerations and tissue
incompressibility, because concentric shells of myocardium have proportionally greater
changes in dimension with decreasing radius. Significant transrmural gradients of the shears
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were not consistently observed throughout the LV. The torsion angle between the basal (80%)
and apical (30%) levels increased from the epicardium (10.0° ± 1.6) to the midwall (12.3° ±
2.3) and also from the midwall to the endocardium (13.9° ± 3.2); both differences were
significant (P < .005).

The transmural parameters, when averaged spatially among the sectors and levels, are shown
in Figure 12. With spatial averaging, significant radial gradients were also achieved with the
shears (P < .001). All strain components and indexes increased from the epicardium to the
endocardium, except for the ERL The spatially averaged E3θCL spiraled counterclockwise from
the base to the apex and progressively less steeply from the epicardiurn (−43° ± 25) to the
midwall (−29° ± 22) to the endocardium (−16° ± 19): both differences were significant (P < .
005).

Example Use of Database
Finally, to illustrate the use of the strain database, the evolution of SI in a patient 3 months
after a nontransmural inferior myocardial infarction is shown in Figure 13. The patient had no
prior history of myocardial infarction and presented with chest pain and ST elevations in leads
II, III, and aVF. The patient received thrombolytic agents, and the SI elevations normalized.
The initial post-MI cardiac sonogram showed inferior hypokinesis with a qualitatively normal
ejection fraction.

When the patient’s SI was plotted against the normal 2-SD lines for each midwall position, the
location and degree of dysfunction were easily seen.

DISCUSSION
In this study, we described the normal systolic evolution of 3D strain throughout the human
LV, with 32.5-msec temporal resolution, on the basis of cine MR imaging with tissue tagging.
Prior to MR tagging and 3D reconstruction, it was not possible to acquire such detailed
functional maps in the human hearts.

An important and potentially useful finding was that the normal ranges of strains, when plotted
versus time, were small compared with the mean values, especially when strain parameters
with high precision such as SI, wall thickening, E3, or ECC were used. Axial strains within the
plane of the heart wall, especially the parameters derived from multiple such strains (ie, wall
thickening and SI), are supported by the greatest amount of tag data due to the geometry of the
heart; the circumference is much greater than the thickness, and there are many more tags
around the circumference than across the wall (Fig 1). Because these parameters are well
supported by the tag data in all directions, they are insensitive to noise on the tag data and can
resolve gradients in the transmural direction.

In contrast, the strain parameters derived from radial displacements (ERR and E1) had the
greatest variability over time and among hearts because they were based on the lowest spatial
density of tag data (two to three across the wall). Thus for the detection of radial strain, the
ERR cannot be measured as reproducibly as can the wall thickening parameter. In addition, the
ERR was limited to nearly a constant value across the wall because the displacement function
was limited to the first order in the radial direction due to the relative low tag spatial density.
For these reasons, true radial strain was not well represented by using ERR measurements.

The wall thickening parameter was derived by using the incompressibility constraint. To the
extent that the myocardium loses blood volume during systole, this parameter will overestimate
true local wall, thickening. Cine radiographs of implanted beads (31) have shown volume losses
of 0%–15%. Data in the canine LV from this laboratory (32) have shown average volume ratios

Moore et al. Page 8

Radiology. Author manuscript; available in PMC 2008 May 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of 0.94 ± 0.07, with normal perfusion and rations of 1.02 ± 0.06 during ischemia following
occlusion of the left anterior descending coronary artery after the first diagonal branch. This
change in volume ratio with ischemia was found to increase the sensitivity of the wall
thickening parameter to that of ischemia. Thus, the wall thickening parameter reflects not only
strains that contribute to thickening but also perfusion-related myocardial volume changes.

The SI parameter, which incorporates both the ECC and ELL, also is of particular interest
because it has high precision owing to the large amount of supporting tag data, permits the
detection of transmural strain gradients, and is insensitive to local variations of fiber angle due
to its symmetry in the circumferential-longitudinal plane.

Although previously collected data on the evolution of local 3D strain in the human LV have
been limited, the results from other studies generally are in good agreement with our results.
With strain data based on implanted markers (5,6,27,33), and in previous studies with MR
tagging (28,34-39), some normal human heart strains have been calculated. Ingels et al (5)
implanted 12 arrays of tantalum screws in 15 transplanted hearts and found the peak shortening
at the middle ventricular level (± SD) to range from 15% ± 4 to 19% ± 5 about the circumference
compared with the 18% ± 3 to 26% ± 3 calculated in this study; in both studies, the maximum
measurement was in the lateral wall. The longitudinal peak shortening observed by Ingels et
al (5) ranged from 12% ± 5 to 13% ± 6 about the middle LV circumference at midwall compared
with 16% ± 3 to 18% ± 3 in this study; both measurments were nearly spatially homogeneous.
Their maximum peak shortening in the same region (15% ± 4 to 19% ± 5) was angled at a
θCL of −45° ± 22.5, and orthogonal to this, the minimum was 11% ± 4 to 12% ± 5. These
maximum and minimum strains correspond to our peak E3 (24% ± 4 to 30% ± 5) and E2 (11%
± 3 to 16% ± 3) values, respectively, when they are re-expressed as percent shortening. The
implanted marker-based midwall strains in the study by Ingels et al were qualitatively similar
but slightly lower in magnitude than those in this study. Limitations of the implantation method,
such as changes from surgical transplantation, presence of metal helices in myocardium, and
low spatial resolution, may account for these differences.

Clark et al (37) used MR imaging with tag grids on short-axis sections to calculate the
circumferential component of end-systolic two-dimensional shortening in 10 normal LVs.
Their average peak shortening for all segments in the LV at the endocardium, midwall, and
epicardium were 44% ± 6, 30% ± 6, and 22% ± 5, respectively. These values were slightly
higher than those in our study (32% ± 4, 23% ± 4, and 16% ± 4, respectively), but the
measurements in both studies showed the average endocardial circumferential contraction to
be double that at the epicardium and the ECC to increase from the base to the apex. The inability
of the two-dimensional method to account for bulk motion of the heart through image sections
and track the same tissue between the reference and deformed states, as well as differences in
material point definition, may account for the minor differences. Kramer et al (35) and Palmon
et al (34), both of whom used grid tagging in the short and long axes to evaluate the percentage
of shortening circumferentially and longitudinally in 10 normal volunteers, produced data in
close agreement to our values.

MacGowan et al (39) examined 10 healthy humans with MR tagging by using three radially
oriented tag planes in the long axis and three parallel tag planes in the short axis to define 12
cuboids in the LV. Their average E3 at the epicardium. was −0.18 ± 0.03 at θCL of 75° ± 12,
and that at the endocardium was −0.31 ± 0.03 at θCL of 6° ± 9. Although these E3θCL
measurements were greater in magnitude than those in this study, both show a small change
in E3θCL across the wall than would be expected from the transmural change in fiber
orientation.
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Young et al (38) used grid MR tagging and finite elements reconstruction to describe 3D end-
systolic displacement and Lagrangian finite strain in 12 volunteers. All displacement and
Lagrangian strain parameters were in close agreements with our data, with the exception that
our midwall ERR values were greater (0.36–0.67 vs 0.02–0.25). These differences may be
partially explained by the difficulty of the two MR tagging–based methods to generate more
than, two lines across the heart wall, the relatively small amount of data in this direction, and
the differences in 3D reconstruction technique. Our ERR values corresponded approximately
to midwall thickening of 46%–80%. These data are in closer agreement with the other wall
thickening estimates based on cine computed tomography (average, 66% ± 12 [40];
approximately 125% at the middle level [41]), short-axis cine MR imaging (56% ± 24 basally
to 91% ± 29 apically [36]), and radially tagged MR imaging (55% ± 4 [39]). Lessiek et al
(40) observed increasing base-to-apex gradients of thickening of approximately 50% ± 15
basally to 72% ± 18 apically; these values are in good agreement with those in our study.

Torsion of the LV also has been evaluated in transplanted human hearts with implanted
markers. Hansen et al (27) found that torsion was altered even by subclinical bouts of rejection.
They reported prerejection midwall torsion values of 5.7° ± 4 to 7.3° ± 5 at the middle ventricle
and of 12.4° ± 6 to 15.3° ± 8 at the apex. On the basis of grid-tagged, two-dimensional MR
imaging in healthy humans. Young et al (28) demonstrated a mean middle ventricular torsion
of 4°–7° and a mean apical torsion of 12°–14°, with the endocardial torsion at the apex (16.5°)
exceeding that at the epicardium (10.3°). By using two-dimensional spinecho MR imaging
with radial tagging, Azhari et al (29) also reported that endocardial torsion (14.5°) exceeded
epicardial torsion (9.2°) at the apex. Buchalter et al (30), by using the same imaging and tagging
technique, reported a mean apical torsion of 12.2° ± 1.3 endocardially and of 11.2° ± 3
epicardially.

Although the detailed 3D displacement and strain evolution of the normal LV is complex, it
can be summarized by using several overall principals and patterns. Displacement reflects the
bulk translation and bulk rotation of the LV, as well as the local effects of strain; therefore,
there is high spatial variation. For example, in our study, the apical level contained the inward
radial displacement maximum (anteriorly) and minimum (inferiorly) due to bulk rotation of
the LV about a transverse axis near the base. Strain, however, is independent of bulk motion,
and in our study, it varied more predictably in the longitudinal and circumferential directions,
tending to be greatest apically and in the free wall. During systole, the base descended toward
the apex and the apex remained relatively fixed. There was also long-axis torsion produced by
the domination of the epicardial muscle fibers, which spiral from the apex to the base in a
clockwise direction, as viewed from the base. This torsion is reflected by the uniformly positive
ECL, as well as by the negative E3θCL.

LV muscle fibers are angled approximately −60° to −80° from the circumferential direction at
the epicardium, but they steadily rotate toward the circumferential direction at the midwall and
to 60°–80° at the endocardium (39,42,43). This transmural variation of fiber angle results in
variation of the E3θCL across the wall; tethering between layers of myocardium accounts for
the much smaller gradient of E3θCL than fiber angle. The torsion serves to increase fiber
contraction at the epicardium and decrease it at the endocardium. This tends to counter the
opposite gradient caused by geometric constraints (ie, tissue incompressibility) and allows
more equal muscle fiber contractions across the wall. With contraction, there is also rising
cavity pressure, which tends to reshape the LV into a sphere (sphericalization), the shape of
greatest volume. This rounding of the apex results in the nonlinear increase of normalized
torsion toward the apex. Finally, normal axial strain magnitudes increase linearly with time for
approximately the first half of systole before reaching a plateau and peaking at end systole.
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The spatial heterogeneity of strain indicates that strain values should be compared with values
that are normal for that region instead of with normal values for a remote zone, as has been
done traditionally. This normal heterogeneity in individual hearts and the regional nature of
ischemic dysfunction both support the need for this high-spatial-resolution strain database,
with which the strain in individual hearts can be compared. Finally, the high temporal resolution
of the described MR tagging method and of this database may permit the identification of
abnormal strain transients or delays in contraction, even when peak strain attains a normal
magnitude.

In conclusion, we used a noninvasive MR tagging and imaging technique to create a database
of normal 3D systolic strain in the LV of healthy humans. In addition to evaluating conventional
3D strain components, displacements, and torsions, we identified composite parameters (SI
and wall thickening) that had optimized precision, were supported by the greatest amount of
tag data, and had the tightest normal variation among hearts. Spatial heterogeneity of strain
was evaluated.

This normal 3D strain database is needed as a reference for evaluating the mechanical function
of individual human hearts with MR tagging. Comparison of strain patterns in the human LV
with those in this multidimensional database of normal strain patterns, with its high spatial and
temporal resolution, may permit sensitive detection of mechanical dysfunction. Finally, the
potential incorporation of this technique into a comprehensive cardiac examination with other
MR modalities such as perfusion, angiography, and spectroscopy may greatly strengthen its
potential for the noninvasive clinical evaluation of heart disease.

Appendix A

Harmonic Fitting Polynomial
Once a least-squares optimized fit to all the one-dimensional tag displacement data is made to
a global 3D cartesian deformation gradient tensor, the residual tag point displacements are fit
to spherical harmonics, with the exception that prolate spheroidal coordinates replace spherical
coordinates as follows:

(A1)

where Term (i) is the i-th term of the polynomial expansion, N is the radial order of the fit
(N = 1), λ is the prolate radial coordinate, L is the angular coordinate order (L = 4), a(i) is the
unknown coefficient of the i-th term, P is the Legendre polynomial, ϕ is the prolate longitudinal
angle coordinate, and θ is the circumferential angle coordinate. The residual displacement data
from all tag points are simultaneously fit as a function position in prolate spheroidal coordinates
to solve for the a(i) coefficients. The 3D displacement at any position in the LV can then be
calculated by evaluating the polynomial expansion (21).

APPENDIX B

Derivation of the SI
The undeformed unit area in the circumferential-longitudinal plane is defined by the unit
vectors C = (0,1,0) and L = (0,0,1). The deformed area is represented by these vectors after
they are transformed to the deformed state by multiplication with the stretch tensor U. Thus,
the deformed circumferential vector becomes
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(B1)

Similarly, the deformed state of L is (URL, UCL, ULL). The area defined by the vectors in the
deformed state is the magnitude of their cross product, which is expressed as follows: deformed
area = ∣(URC, UCC, ULC) × (URL, UCL, ULL)∣. The ratio of the deformed area to the undeformed
area is simply the deformed area because, by definition, the unit vectors C and L defined an
area of 1.0. To derive the geometric mean of linear shortening, the square root of this area ratio
is taken. Finally, for the SI to equal zero when there is no deformation (U = I and URR = 1.0),
1.0 is subtracted. This gives Equation (1):

(1)

APPENDIX C

Derivation of the Wall Thickening Parameter
The incompressibility constraint is met by setting the determinate of U to equal 1.0. The
determinate of U is defined as follows:

(C1)

Next, the poorly measured URR component is replaced by (T + 1.0), with the 1.0 offset included
such that T equals zero with no strain (URR = 1.0). Setting the Det(U) to equal 1.0 and
substituting (T + 1.0) for URR gives the following equation:

Finally, solving for T gives Equation (2):

(2)
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Figure 1.
Early (28 msec) (left), middle (188 msec) (middle), and late (351 msec) (right) systolic tagged
MR images in a normal human heart. The top and middle rows show a basal short-axis section
with different tag orientations, and the bottom row shows a long-axis section. Tag motion, as
seen on these images, provides three orthogonal sets of one-dimensional displacement
information throughout the heart wall.
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Figure 2. Local coordinate systems and angles
In diagram A, a separate cartesian coordinate system, in which the axes are radial ,
circumferential , and longitudinal , is defined for each material point. The material point
is projected along the prolate radial direction to the epicardium, where the coordinate directions
are determined. The local coordinate system is detailed to the right.  is the epicardial outward
normal vector, which is normal to the heart contours in transverse and longitudinal sections.

 is the cross product of the long axis with  which ensures that  lies In the transverse plane.
 is the cross product of , which lies in the longitudinal plane. Diagram B shows the

angles used to describe principal strain directions. At left, the angle in the  plane (θRC)
and is measured from  to ; similar definitions for  plane (θRL) and  plane
(θCL) are shown in the middle and left drawings, respectively.
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Figure 3. Examples of SI deformations
The area inside the dashed lines represents the undeformed state within the plane. (a) Various
contractions, all of which have area decreases (44%) that correspond to SI values of −0.25.
With uniform contraction (3rd from left), both of the deformed edges, which reflect geometric
mean shortening, are 25% shorter. (b) Abnormal deformations. No mean shortening or area
change is seen in the two left panels, and increases ate seen in the two right panels.
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Figure 4. Average SI at midwall
(a) Each box represents a midwall material point, with longitudinal levels from 20% to 90%
of the distance from the apex to the base, and circumferential sectors spaced from the left to
the right, as labeled. The number of hearts averaged (N)at each level is shown on the right.
Within each box, the evolution of the SI, with the mean (thick middle line) and both 2-SD (thin
outer lines) lines, are shown. The short horizontal lines at the left in each box represent the
mean and 2-SD values of the peak SI. The horizontal ticks are spaced every 100 msec, and the
vertical ticks are spaced every 0.1. (b) Three-dimensional renderings of the LV viewed from
the apex. The middle of the septum (green dot) is on the left. The wire frame of all material
points is shown at 46 msec, 143 msec, 241 msec, and 338 msec, with the midwall surface
colored according to the value of the average SI. Tight normal ranges with smooth evolution
are seen throughout the left ventricle with the SI.
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Figure 5. Average midwall thickening parameter
The circumferential sector changes are illustrated in each box, from the left to the right, and
the longitudinal level varies from the top row (basal) to the bottom row (apical). In each box,
the evolution curves are shown as the mean (thick middle line) ± 2 SDs (thin outer lines). The
short horizontal lines at the left in each box represent the mean and 2-SD peak values. The
vertical ticks are spaced every 0.4, and the horizontal ticks are spaced every 100 msec. A
schematic drawing of wall thickening is on the right. Tight normal ranges with smooth
evolution and spatial heterogeneity were seen throughout the LV with the wall thickening
parameter.
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Figure 6. Average ECC at midwall
In each box, the evolution curves are shown as the mean (thick middle line) ± 2 SDs (outer
thin lines). The short horizontal lines at the left in each box represent the mean and 2-SD peak
values. The vertical ticks are spaced every 0.1. and the horizontal ticks arc spaced every 100
msec. A schematic drawing of ECC is on the right. The circumferential contraction amplitude
was greater to the anterior wall than in the inferoseptal region and increased toward the apex.
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Figure 7. Average ELL at midwall
In each box, the evolution curves are shown as the mean (thick middle line) ± 2 SDs (thin outer
lines). The short horizontal lines at the left in each box represent the mean and 2-SD peak
values. The vertical ticks are spaced every 0.1. and the horizontal ticks are spaced every 100
msec. A schematic drawing of ELL is on the right. The ELL was homogeneous about the
circumference and increased from base to the apex.
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Figure 8. Average midwall principal strains
The (a) E1, (b) E2, and (c) E3 are illustrated. In each box, the evolution curves are shown as
the mean (thick middle line) ± 2 SDs (thin outer lines). The short horizontal lines at the left in
each box represent the mean and 2-SD peak values. The horizontal ticks are spaced every 100
msec, and the vertical ticks are spaced every 0.8 in a and every 0.1 in b and c. The drawings
to the right of each array plot illustrate typical directions of strain.
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Figure 9. Average midwall displacements
Average and 2-SD curves for (a) radial, (b) circumferential, and (c) longitudinal displacements
(in mm) are shown. (a) Radial inward (negative) motion was heterogeneous and greatest in the
anterior wall. (b) Average circumferential displacement (viewed front the base) was initially
clockwise at the base before reversing and returning to nearly the starting position by end
systole. At the apex, it was steadily clockwise, producing net torsion about the long axis by
end systole. (c) The longitudinal motion in the base-to-apex direction (negative) was greatest
at the base and least at the apex. In each panel, the horizontal ticks are spaced every 100 msec,
and the vertical ticks are spaced every 4 mm. Typical motions are illustrated in the drawings
on the right.
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Figure 10. Graphs illustrate the average peak torsion at midwall
(a) The torsion angle was calculated relative to the most basal (80%) level and increased
linearly toward the apex. The positive torsion angles represent the clockwise rotation of a level
relative to the basal (80%) level, as viewed from the base. (b) The torsion between adjacent
levels, as normalized by the long-axis separation at the deformed state, is shown. Normalized
torsion increased nonlinearly toward the apex. In a and b, the mean value curve, SDs (vertical
bars), and number of measurements at each level are shown.
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Figure 11. Transmural variation of average axial strains and indexes
(a) ECC, (b) ELL, (c) E2, (d) E3, (e) SI, and (f) wall thickening are illustrated. As expected from
geometric constraints, the mean axial strain magnitudes at the endocardium (thick red line)
exceed those at the epicardium (thick black line); a single 2-SD curve (thin red and black lines)
is shown for each. The short horizontal lines at the left in each box represent the mean and 2-
SD values for the peak strain. The horizontal ticks are spaced every 100 msec, and the vertical
ticks are spaced every 0,1 in a–e and every 0.8 in f. ANT. = anterior, INF. = inferior, LAT. =
lateral, SEP. = septal.
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Figure 12. Graphs illustrate transmural variation of spatially averaged strains
The black bars represent the values at the endocardium; gray bars, values at the midwall; and
white bars, values at the epicardium. The (a) axial strains and SI, (b) wall thickening parameter,
(c) shears, and (d) principal angles and the torsion angle between the 80% and 30% levels are
illustrated. Significant transmural gradients were seen for all components (P < .005 for each).
In b, T = wall thickening, and in d, Tor = torsion.
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Figure 13. Use of the database of normal strain patterns to evaluate a postinfraction LV
The SI evolution of a human LV 3 months after a nontransmural inferior infraction (thick line)
is plotted with the two normal 2 SDs (thick lines) for each position. Relative to the normal
range, there was a decrease in the strain rate (slope) and level of peak contraction in the inferior
wall compared with that in the other regions. In addition, there was tranisent, early systolic
wall stretching (intital positive values) in the basal inferior wall followed by contraction. The
vertical ticks are spaced every 0.1, and the horizontal ticks are spaced everry 100 msec.
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TABLE 1
Patient Demographic Data

Volunteer
No.

Age Sex Race Heart Rate
(bpm)*

1 29 M White 68
2 29 F White 73
3 28 M White 58
4 30 F White 60

5† 27 M White 50
6† 30 M White 45
7 47 F White 67
8 31 M White 76
9 47 F White 67

10 25 M White 56
11 35 F White 61
12 57 M White 77
13 62 M White 56
14 52 M White 62
15 30 F White 69
16 26 M White 60
17 30 F White 83
18 31 M White 68
19 25 F White 64
20 28 M Asian 75
21 21 M Asian 72
22 50 F White 59
23 51 M White 96
24 41 F White 76
25 55 F Asian 54
26 38 F White 69
27 44 F White 75
28 31 F White 72
29 50 M White 69
30 44 F White 84
31 28 M White 90

*
Data are the heart rate during MR imaging.

†
Volunteers 5 and 6 were athletic men with resting heart rates typically in the upper and lower 50s, respectively.
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TABLE 2
Average Peak Strain Components and Indexes

Strain Septal Anterior Lateral Inferior

SI
 Basal −0.17 ± 0.03 −0.20 ± 0.03 −0.20 ± 0.03 −0.18 ± 0.03
 Equatorial −0.17 ± 0.03 −0.22 ± 0.04 −0.21 ± 0.03 −0.18 ± 0.04
 Apical −0.20 ± 0.03 −0.25 ± 0.05 −0.25 ± 0.04 −0.24 ± 0.05
T
 Basal 0.46 ± 0.10 0.58 ± 0.12 0.60 ± 0.12 0.50 ± 0.11
 Equatorial 0.49 ± 0.10 0.68 ± 0.17 0.61 ± 0.12 0.51 ± 0.14
 Apical 0.63 ± 0.14 0.82 ± 0.21 0.80 ± 0.17 0.77 ± 0.20
ERR
 Basal 0.45 ± 0.12 0.42 ± 0.21 0.52 ± 0.19 0.41 ± 0.17
 Equatorial 0.42 ± 0.19 0.52 ± 0.25 0.38 ± 0.18 0.35 ± 0.22
 Apical 0.36 ± 0.22 0.67 ± 0.31 0.49 ± 0.29 0.39 ± 0.38
ECC
 Basal −0.17 ± 0.03 −0.20 ± 0.03 −0.21 ± 0.03 −0.16 ± 0.03
 Equatorial −0.16 ± 0.03 −0.23 ± 0.04 −0.22 ± 0.03 −0.16 ± 0.05
 Apical −0.18 ± 0.03 −0.24 ± 0.06 −0.24 ± 0.04 −0.23 ± 0.04
ELL
 Basal −0.14 ± 0.03 −0.15 ± 0.03 −0.15 ± 0.03 −0.15 ± 0.03
 Equatorial −0.15 ± 0.03 −0.15 ± 0.03 −0.14 ± 0.04 −0.15 ± 0.03
 Apical −0.18 ± 0.04 −0.19 ± 0.03 −0.19 ± 0.03 −0.18 ± 0.04
ERC
 Basal −0.01 ± 0.06 0.05 ± 0.06 0.05 ± 0.07 0.01 ± 0.08
 Equatorial 0.02 ± 0.08 0.09 ± 0.06 0.05 ± 0.06 0.05 ± 0.07
 Apical 0.11 ± 0.10 0.09 ± 0.09 0.05 ± 0.08 0.06 ± 0.08
ERL
 Basal 0.03 ± 0.09 −0.05 ± 0.05 0.05 ± 0.07 0.01 ± 0.10
 Equatorial 0.08 ± 0.05 0.01 ± 0.08 0.07 ± 0.06 0.03 ± 0.08
 Apical 0.06 ± 0.09 0.02 ± 0.11 0.05 ± 0.08 0.09 ± 0.10
ECL
 Basal 0.01 ± 0.05 0.01 ± 0.04 0.03 ± 0.05 0.05 ± 0.05
 Equatorial 0.03 ± 0.05 0.03 ± 0.03 0.03 ± 0.04 0.05 ± 0.04
 Apical 0.04 ± 0.05 0.04 ± 0.04 0.04 ± 0.03 0.03 ± 0.04

Note.—Data are the mean ± SD. Basal values were at 80% of the distance from the apex to the valve plane; equatorial values, at 55%; and apical values,
at 30%. The axial parameters tended to be greatest in the anterior and lateral walls. The ERR had the highest variability. ECC = circumferential strain,
ECL = circumferential-longitudinal shear, ELL = longitudinal strain, ERC = radial-circumferential shear, ERL = radial-longitudinal shear.
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TABLE 3
Average Peak Principal Strains

Strain Septal Anterior Lateral Inferior

E1
 Basal 0.46 ± 0.13 0.43 ± 0.22 0.53 ± 0.20 0.43 ± 0.17
  θRC −1 ± 5 4 ± 5 4 ± 5 1 ± 9
  θRL 3 ± 8 −5 ± 6 4 ± 5 1 ± 10
 Equatorial 0.45 ± 0.17 0.54 ± 0.26 0.40 ± 0.19 0.37 ± 0.22
  θRC 2 ± 18 7 ± 5 5 ± 6 6 ± 8
  θRL 8 ± 15 1 ± 6 8 ± 6 4 ± 9
 Apical 0.42 ± 0.21 0.69 ± 0.31 0.51 ± 0.30 0.43 ± 0.40
  θRC 11 ± 12 6 ± 6 4 ± 8 6 ± 9
  θRL 7 ± 7 1 ± 6 5 ± 8 9 ± 14
E2
 Basal −0.12 ± 0.03 −0.14 ± 0.03 −0.14 ± 0.03 −0.11 ± 0.06
  θRC 97 ± 21 77 ± 27 103 ± 15 92 ± 21
  θCL 69 ± 30 73 ± 20 67 ± 12 46 ± 16
 Equatorial −0.13 ± 0.03 −0.15 ± 0.03 −0.14 ± 0.04 −0.12 ± 0.04
  θRC 99 ± 13 101 ± 29 121 ± 25 101 ± 27
  θCL 42 ± 31 72 ± 17 75 ± 18 50 ± 27
 Apical −0.17 ± 0.04 −0.17 ± 0.04 −0.18 ± 0.03 −0.18 ± 0.04
  θRC 110 ± 23 98 ± 17 103 ± 38 113 ± 33
  θCL 55 ± 35 65 ± 27 61 ± 19 64 ± 29
E3
 Basal −0.20 ± 0.03 −0.23 ± 0.03 −0.23 ± 0.03 −0.22 ± 0.03
  θRC 88 ± 7 96 ± 6 92 ± 6 90 ± 15
  θCL −21 ± 30 −17 ± 21 −23 ± 12 −44 ±14
 Equatorial −0.21 ± 0.03 −0.26 ± 0.03 −0.24 ± 0.02 −0.22 ± 0.03
  θRC 83 ± 11 97 ± 6 93 ± 7 93 ± 10
  θCL −47 ± 31 −18 ± 14 −16 ± 16 −40 ± 25
 Apical −0.24 ± 0.03 −0.28 ± 0.03 −0.27 ± 0.03 −0.26 ± 0.03
  θRC 96 ± 19 95 ± 10 92 ± 6 91 ± 9
  θCL −36 ± 31 −25 ± 25 −29 ± 18 −26 ± 26

Note.—Data are the mean ± SD. Principal angles (θ) are in degrees. (See figure 2 for angle definitions). The first principal strain (E1), the strain of greatest
elongation, was approximately radially oriented (θRC and θRL, ≈0°) and greater than zero, which indicated thickening. The SDs of the E1 were larger
than those of the other principal strains. The middle principle strain (E2) and principal strain of greatest contraction (E3) both were approximately within
the plane of the wail (θRC near 90°) and demonstrated contraction. The mean angle within the wall of the greatest contraction (E3θCL) ranged from −17°
to −47°, approximating the expected orientation of the epicardial muscle fibers. Basal values were at 80% of the distance from the apex to the valve plane;
equatorial values, at 55%; and apical values, at 30%.
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TABLE 4
Average End-Systolic Displacement at the Middle Wall

Displacement Septal Anterior Lateral Inferior

Radial
 Basal −3.2 ± 2.0 −5.8 ± 1.6 −6.0 ± 1.9 −4.9 ± 1.7
 Equatorial −3.0 ± 2.3 −3.7 ± 1.6 −5.2 ± 1.6 −5.2 ± 1.6
 Apical −3.9 ± 1.8 −2.4 ± 1.1 −4.2 ± 1.3 −6.3 ± 1.3
Circumferential
 Basal −1.8 ± 1.6 −1.6 ± 1.8 −1.4 ± 2.2 −1.3 ± 2.4
 Equatorial −2.4 ± 1.0 −2.8 ± 2.0 −3.9 ± 1.4 −3.2 ± 1.9
 Apical −1.9 ± 1.3 −3.3 ± 1.9 −5.5 ± 1.4 −4.5 ± 1.8
Longitudinal
 Basal −8.1 ± 2.3 −7.1 ± 1.9 −8.8 ± 2.3 −10.6 ± 1.9
 Equatorial −5.7 ± 2.0 −5.1 ± 2.0 −6.7 ± 2.2 −7.4 ± 1.6
 Apical −3.5 ± 1.4 −2.3 ± 1.7 −4.9 ± 1.7 −4.8 ± 1.4

Note.—Data are the mean ± SD, in millimeters. As shown in Figure 2, positive radial values were outward, positive circumferential values were in the
plane of the heart wall directed counterclockwise as viewed from the base, and positive longitudinal values were in the plane of the heart wall direction,
with an increase toward the base. Basal values were at 80% of the distance from the apex point to the valve plane; equatorial values, at 55% and apical
values, at 30%.
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