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Preface

. . . ad alcuno, dico, di quelli, che troppo laconicamente vorrebbero
vedere, nei più angusti spazii che possibil fusse, ristretti i filosofici
insegnamenti, sı́ che sempre si usasse quella rigida e concisa maniera,
spogliata di qualsivoglia vaghezza ed ornamento, che é propria dei
puri geometri, li quali né pure una parola proferiscono che dalla
assoluta necessitá non sia loro suggerita.
Ma io, all’incontro, non ascrivo a difetto in un trattato, ancorché
indirizzato ad un solo scopo, interserire altre varie notizie, purché
non siano totalmente separate e senza veruna coerenza annesse al
principale instituto.∗

Galileo Galilei
“Lettera al Principe Leopoldo di Toscana” (1623)

Hydrodynamics is one of those fundamental areas in mathematics where progress
at any moment may be regarded as a standard to measure the real success of math-
ematical science. Many important achievements in this field are based on profound
theories rather than on experiments. In turn, those hydrodynamical theories stimu-
lated developments in the domains of pure mathematics, such as complex analysis,
topology, stability theory, bifurcation theory, and completely integrable dynamical
systems. In spite of all this acknowledged success, hydrodynamics with its spec-
tacular empirical laws remains a challenge for mathematicians. For instance, the
phenomenon of turbulence has not yet acquired a rigorous mathematical theory.
Furthermore, the existence problems for the smooth solutions of hydrodynamic
equations of a three-dimensional fluid are still open.

The simplest but already very substantial mathematical model for fluid dy-
namics is the hydrodynamics of an ideal (i.e., of an incompressible and inviscid)
homogeneous fluid. From the mathematical point of view, a theory of such a fluid

∗“ . . . Some prefer to see the scientific teachings condensed too laconically into the
smallest possible volume, so as always to use a rigid and concise manner that whatsoever
lacks beauty and embellishment, and that is so common among pure geometers who do not
pronounce a single word which is not of absolute necessity.
I, on the contrary, do not consider it a defect to insert in a treatise, albeit devoted to a single
aim, other various remarks, as long as they are not out of place and without coherency with
the main purpose,” see [Gal].
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filling a certain domain is nothing but a study of geodesics on the group of dif-
feomorphisms of the domain that preserve volume elements. The geodesics on
this (infinite-dimensional) group are considered with respect to the right-invariant
Riemannian metric given by the kinetic energy.

In 1765, L. Euler [Eul] published the equations of motion of a rigid body.
Eulerian motions are described as geodesics in the group of rotations of three-
dimensional Euclidean space, where the group is provided with a left-invariant
metric. In essence, the Euler theory of a rigid body is fully described by this
invariance. The Euler equations can be extended in the same way to an arbitrary
group. As a result, one obtains, for instance, the equations of a rigid body motion
in a high-dimensional space and, especially interesting, the Euler equations of the
hydrodynamics of an ideal fluid.

Euler’s theorems on the stability of rotations about the longest and shortest
axes of the inertia ellipsoid have counterparts for an arbitrary group as well. In
the case of hydrodynamics, these counterparts deliver nonlinear generalizations
of Rayleigh’s theorem on the stability of two-dimensional flows without inflection
points of the velocity profile.

The description of ideal fluid flows by means of geodesics of the right-invariant
metric allows one to apply the methods of Riemannian geometry to the study of
flows. It does not immediately imply that one has to start by constructing a consis-
tent theory of infinite-dimensional Riemannian manifolds. The latter encounters
serious analytical difficulties, related in particular to the absence of existence the-
orems for smooth solutions of the corresponding differential equations.

On the other hand, the strategy of applying geometric methods to the infinite-
dimensional problems is as follows. Having established certain facts in the finite-
dimensional situation (of geodesics for invariant metrics on finite-dimensional
Lie groups), one uses the results to formulate the corresponding facts for the
infinite-dimensional case of the diffeomorphism groups. These final results often
can be proved directly, leaving aside the difficult questions of foundations for the
intermediate steps (such as the existence of solutions on a given time interval).
The results obtained in this way have an a priori character: the derived identities
or inequalities take place for any reasonable meaning of “solutions,” provided
that such solutions exist. The actual existence of the solutions remains an open
question.

For example, we deduce the formulas for the Riemannian curvature of a group
endowed with an invariant Riemannian metric. Applying these formulas to the
case of the infinite-dimensional manifold whose geodesics are motions of the
ideal fluid, we find that the curvature is negative in many directions. Negative-
ness of the curvature implies instability of motion along the geodesics (which
is well-known in Riemannian geometry of finite-dimensional manifolds). In the
context of the (infinite-dimensional) case of the diffeomorphism group, we con-
clude that the ideal flow is unstable (in the sense that a small variation of the
initial data implies large changes of the particle positions at a later time). More-
over, the curvature formulas allow one to estimate the increment of the expo-
nential deviation of fluid particles with close initial positions and hence to pre-
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dict the time period when the motion of fluid masses becomes essentially unpre-
dictable.

For instance, in the simplest and utmost idealized model of the earth’s atmo-
sphere (regarded as two-dimensional ideal fluid on a torus surface), the deviations
grow by the factor of 105 in 2 months. This circumstance ensures that a dynamical
weather forecast for such a period is practically impossible (however powerful the
computers and however dense the grid of data used for this purpose).

The table of contents is essentially self explanatory. We have tried to make the
chapters as independent of each other as possible. Cross-references within the
same chapter do not contain the chapter number.

For a first acquaintance with the subject, we address the reader to the following
sections in each chapter: Sections I.1–5 and I.12, Sections II.1 and II.3–4, Sections
III.1–2 and III.4, Section IV.1, Sections V.1–2, Sections VI.1 and VI.4.

Some statements in this book may be new even for the experts. We mention
the classification of the local conservation laws in ideal hydrodynamics (Theorem
I.9.9), M. Freedman’s solution of the A. Sakharov–Ya. Zeldovich problem on the
energy minimization of the unknotted magnetic field (Theorem III.3), a discussion
of the construction of manifold invariants from the energy bounds (Remark III.2.6),
a discussion of a complex version of the Vassiliev knot invariants (in Section
III.7.E), a nice remark of B. Zeldovich on the Lobachevsky triangle medians
(Problem IV.1.4), the relation of the covariant derivative of a vector field and the
inertia operator in hydrodynamics (Section IV.1.D), a digression on the Fokker–
Planck equation (Section V.3.C), and the dynamo construction from the geodesic
flow on surfaces of constant negative curvature (Section V.4.D).
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The preparation of this book was partially supported by the Russian Basic Re-
search Foundation, project 96-01-01104 (V.A.), by the Alfred P. Sloan Research
Fellowship, and by the NSF and NSERC research grants (B.K.).



Contents

Preface v

Acknowledgments ix

I. Group and Hamiltonian Structures of Fluid Dynamics 1

§1. Symmetry groups for a rigid body and an ideal fluid 1
§2. Lie groups, Lie algebras, and adjoint representation 3
§3. Coadjoint representation of a Lie group 10

3.A. Definition of the coadjoint representation 10
3.B. Dual of the space of plane divergence-free vector fields 11
3.C. The Lie algebra of divergence-free vector fields and its

dual in arbitrary dimension 13
§4. Left-invariant metrics and a rigid body for an arbitrary group 14
§5. Applications to hydrodynamics 19
§6. Hamiltonian structure for the Euler equations 25
§7. Ideal hydrodynamics on Riemannian manifolds 31

7.A. The Euler hydrodynamic equation on manifolds 31
7.B. Dual space to the Lie algebra of divergence-free fields 32
7.C. Inertia operator of an n-dimensional fluid 36

§8. Proofs of theorems about the Lie algebra of divergence-free
fields and its dual 39

§9. Conservation laws in higher-dimensional hydrodynamics 42
§10. The group setting of ideal magnetohydrodynamics 49

10.A. Equations of magnetohydrodynamics and the
Kirchhoff equations 49

10.B. Magnetic extension of any Lie group 50
10.C. Hamiltonian formulation of the Kirchhoff and

magnetohydrodynamics equations 53
§11. Finite-dimensional approximations of the Euler equation 56

11.A. Approximations by vortex systems in the plane 56
11.B. Nonintegrability of four or more point vortices 58
11.C. Hamiltonian vortex approximations in three

dimensions 59
11.D. Finite-dimensional approximations of diffeomorphism

groups 60



xii Contents

§12. The Navier–Stokes equation from the group viewpoint 63

II. Topology of Steady Fluid Flows 69

§1. Classification of three-dimensional steady flows 69
1.A. Stationary Euler solutions and Bernoulli functions 69
1.B. Structural theorems 73

§2. Variational principles for steady solutions and applications to
two-dimensional flows 75
2.A. Minimization of the energy 75
2.B. The Dirichlet problem and steady flows 78
2.C. Relation of two variational principles 80
2.D. Semigroup variational principle for two-dimensional

steady flows 81
§3. Stability of stationary points on Lie algebras 84
§4. Stability of planar fluid flows 88

4.A. Stability criteria for steady flows 89
4.B. Wandering solutions of the Euler equation 96

§5. Linear and exponential stretching of particles and rapidly
oscillating perturbations 99
5.A. The linearized and shortened Euler equations 99
5.B. The action–angle variables 100
5.C. Spectrum of the shortened equation 101
5.D. The Squire theorem for shear flows 102
5.E. Steady flows with exponential stretching of particles 103
5.F. Analysis of the linearized Euler equation 105
5.G. Inconclusiveness of the stability test for space steady

flows 106
§6. Features of higher-dimensional steady flows 109

6.A. Generalized Beltrami flows 109
6.B. Structure of four-dimensional steady flows 111
6.C. Topology of the vorticity function 112
6.D. Nonexistence of smooth steady flows and sharpness of

the restrictions 116

III. Topological Properties of Magnetic and Vorticity Fields 119

§1. Minimal energy and helicity of a frozen-in field 119
1.A. Variational problem for magnetic energy 119
1.B. Extremal fields and their topology 120
1.C. Helicity bounds the energy 121
1.D. Helicity of fields on manifolds 124

§2. Topological obstructions to energy relaxation 129
2.A. Model example: Two linked flux tubes 129
2.B. Energy lower bound for nontrivial linking 131

§3. Sakharov–Zeldovich minimization problem 134



Contents xiii

§4. Asymptotic linking number 139
4.A. Asymptotic linking number of a pair of trajectories 140
4.B. Digression on the Gauss formula 143
4.C. Another definition of the asymptotic linking number 144
4.D. Linking forms on manifolds 147

§5. Asymptotic crossing number 152
5.A. Energy minoration for generic vector fields 152
5.B. Asymptotic crossing number of knots and links 155
5.C. Conformal modulus of a torus 159

§6. Energy of a knot 160
6.A. Energy of a charged loop 160
6.B. Generalizations of the knot energy 163

§7. Generalized helicities and linking numbers 166
7.A. Relative helicity 166
7.B. Ergodic meaning of higher-dimensional helicity

integrals 168
7.C. Higher-order linking integrals 174
7.D. Calugareanu invariant and self-linking number 177
7.E. Holomorphic linking number 179

§8. Asymptotic holonomy and applications 184
8.A. Jones–Witten invariants for vector fields 184
8.B. Interpretation of Godbillon–Vey-type characteristic

classes 191

IV. Differential Geometry of Diffeomorphism Groups 195

§1. The Lobachevsky plane and preliminaries in differential
geometry 196
1.A. The Lobachevsky plane of affine transformations 196
1.B. Curvature and parallel translation 197
1.C. Behavior of geodesics on curved manifolds 201
1.D. Relation of the covariant and Lie derivatives 202

§2. Sectional curvatures of Lie groups equipped with a one-sided
invariant metric 204

§3. Riemannian geometry of the group of area-preserving
diffeomorphisms of the two-torus 209
3.A. The curvature tensor for the group of torus

diffeomorphisms 209
3.B. Curvature calculations 212

§4. Diffeomorphism groups and unreliable forecasts 214
4.A. Curvatures of various diffeomorphism groups 214
4.B. Unreliability of long-term weather predictions 218

§5. Exterior geometry of the group of volume-preserving
diffeomorphisms 219

§6. Conjugate points in diffeomorphism groups 223



xiv Contents

§7. Getting around the finiteness of the diameter of the group of
volume-preserving diffeomorphisms 225
7.A. Interplay between the internal and external geometry

of the diffeomorphism group 226
7.B. Diameter of the diffeomorphism groups 227
7.C. Comparison of the metrics and completion of the

group of diffeomorphisms 228
7.D. The absence of the shortest path 230
7.E. Discrete flows 234
7.F. Outline of the proofs 235
7.G. Generalized flows 236
7.H. Approximation of fluid flows by generalized ones 238
7.I. Existence of cut and conjugate points on

diffeomorphism groups 240
§8. Infinite diameter of the group of Hamiltonian diffeomorphisms

and symplecto-hydrodynamics 242
8.A. Right-invariant metrics on symplectomorphisms 243
8.B. Calabi invariant 246
8.C. Bi-invariant metrics and pseudometrics on the group

of Hamiltonian diffeomorphisms 252
8.D. Bi-invariant indefinite metric and action functional on

the group of volume-preserving diffeomorphisms of a
three-fold 255

V. Kinematic Fast Dynamo Problems 259

§1. Dynamo and particle stretching 259
1.A. Fast and slow kinematic dynamos 259
1.B. Nondissipative dynamos on arbitrary manifolds 262

§2. Discrete dynamos in two dimensions 264
2.A. Dynamo from the cat map on a torus 264
2.B. Horseshoes and multiple foldings in dynamo

constructions 267
2.C. Dissipative dynamos on surfaces 271
2.D. Asymptotic Lefschetz number 273

§3. Main antidynamo theorems 273
3.A. Cowling’s and Zeldovich’s theorems 273
3.B. Antidynamo theorems for tensor densities 274
3.C. Digression on the Fokker–Planck equation 277
3.D. Proofs of the antidynamo theorems 281
3.E. Discrete versions of antidynamo theorems 284

§4. Three-dimensional dynamo models 285
4.A. “Rope dynamo” mechanism 285
4.B. Numerical evidence of the dynamo effect 286



Contents xv

4.C. A dissipative dynamo model on a three-dimensional
Riemannian manifold 288

4.D. Geodesic flows and differential operations on surfaces
of constant negative curvature 293

4.E. Energy balance and singularities of the Euler equation 298
§5. Dynamo exponents in terms of topological entropy 299

5.A. Topological entropy of dynamical systems 299
5.B. Bounds for the exponents in nondissipative dynamo

models 300
5.C. Upper bounds for dissipative L1-dynamos 301

VI. Dynamical Systems with Hydrodynamical Background 303

§1. The Korteweg–de Vries equation as an Euler equation 303
1.A. Virasoro algebra 303
1.B. The translation argument principle and integrability of

the high-dimensional rigid body 307
1.C. Integrability of the KdV equation 312
1.D. Digression on Lie algebra cohomology and the

Gelfand–Fuchs cocycle 315
§2. Equations of gas dynamics and compressible fluids 318

2.A. Barotropic fluids and gas dynamics 318
2.B. Other conservative fluid systems 322
2.C. Infinite conductivity equation 324

§3. Kähler geometry and dynamical systems on the space of
knots 326
3.A. Geometric structures on the set of embedded curves 326
3.B. Filament, nonlinear Schrödinger, and Heisenberg

chain equations 331
3.C. Loop groups and the general Landau–Lifschitz

equation 333
§4. Sobolev’s equation 335
§5. Elliptic coordinates from the hydrodynamical viewpoint 340

5.A. Charges on quadrics in three dimensions 340
5.B. Charges on higher-dimensional quadrics 342

References 345

Index 369




