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Abstract

Genomic instability in disease and its fidelity in health depend on the DNA damage response 

(DDR), regulated in part from the complex of meiotic recombination 11 homolog 1 (MRE11), 

ATP-binding cassette–ATPase (RAD50), and phosphopeptide-binding Nijmegen breakage 

syndrome protein 1 (NBS1). The MRE11–RAD50–NBS1 (MRN) complex forms a 

multifunctional DDR machine. Within its network assemblies, MRN is the core conductor for the 

initial and sustained responses to DNA double-strand breaks, stalled replication forks, 

dysfunctional telomeres, and viral DNA infection. MRN can interfere with cancer therapy and is 

an attractive target for precision medicine. Its conformations change the paradigm whereby 

kinases initiate damage sensing. Delineated results reveal kinase activation, posttranslational 

targeting, functional scaffolding, conformations storing binding energy and en-abling access, 

interactions with hub proteins such as replication protein A (RPA), and distinct networks at DNA 

breaks and forks. MRN biochemistry provides prototypic insights into how it initiates, 

implements, and regulates multifunctional responses to genomic stress.
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INTRODUCTION

At the cellular level, life is constantly challenged by genotoxic stress originating from 

endogenous and exogenous sources, with stalled replication forks (RFs) and double-strand 

breaks (DSBs) being among the most deleterious and extreme forms of DNA damage. 
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Failure to properly respond to genomic distress can be mutagenic and toxic to cells as well 

as fatal to the organism. Cells have therefore evolved to counteract genotoxic stress by 

integrating DNA repair mechanisms and cell cycle regulation through checkpoint signaling 

(1). In this network of DNA damage responses (DDR), the meiotic recombination 11 

homolog 1 (MRE11)–DNA repair protein RAD50–Nijmegen breakage syndrome protein 1 

(NBS1) (MRN) complex (Figure 1a,b) holds a key position. It is among the first responders 

and regulates both signaling and damage responses to at least four types of extreme cellular 

stress: DNA damage at DSBs, stalled RFs, dysfunctional telomeres, and viral invasion. 

MRN also has a prime role in kinase [ataxia-telangiectasia mutated (ATM) and ataxia-

telangiectasia and RAD3-related (ATR)] signaling that helps orchestrate cell cycle 

progression and damage responses (2).

MRN functional significance in both signaling and repair is underscored by the observation 

that the core Mre11–Rad50 (MR) catalytic subcomplex is conserved across all domains of 

life, encompassing archaea (e.g., Pyrococcus furiosus), eubacteria (Escherichia coli 
SbcC/D), some phage (T4 phage gp46/47), and eukaryotes including homologs in 

Saccharomyces cerevisiae and Schizosac-charomyces pombe (3). The NBS1 (Xrs2 in S. 
cerevisiae) component is conserved only in eukaryotes. However, mutations in any of the 

genes encoding MRN components cause severe consequences in humans. Germline 

mutations (Figure 1a) in MRE11, NBS1, or RAD50 cause ataxia-telangiectasia (A-T)–like 

disorder (ATLD), Nijmegen breakage syndrome (NBS), or NBS-like disorder (4–10). A-T is 

caused by inherited mutations in ATM kinase. Aside from germline mutations, all 3 MRN 

complex components are mutated in >50 cancers, as assessed from the International Cancer 

Genome Consortium projects (Figure 1c and Supplemental Table 1). Furthermore, the 

MRN complex is frequently found absent in patients with epithelial ovarian cancer (11). 

MRN functional disruption may be a synthetic lethal combination with poly(ADP-ribose) 

glycohydrolase (PARG) inhibition (12) providing a possible strategy to target MRN-

defective cancers by inhibition of PARG, whose structure is defined (13). However, 

upregulation of RAD50 increases cellular radioresistance, and knockdown sensitizes some 

cancer cells to radiation, suggesting MRN may be a target for precision medicine (14). 

Overall, its conservation across all domains of life coupled to the catastrophic consequences 

of its mutations affirms the role of the MRN complex in maintaining essential aspects of 

genomic stability for all cells.

In this review, we consider exemplary recent developments and paradigm-shifting results 

linking MRN structural biochemistry to its biology to complement and build upon prior 

excellent reviews (2, 4, 15, 16). We integrate recent advances to delineate how MRN’s 

multidomain three protein composition enables its central enzymatic, sensing, signaling, 

architectural, and scaffolding functions in damage responses. MRN conformations are key to 

damage signaling through the ATM and ATR kinases, regulating the MRE11 nuclease and 

opening DNA for nuclease incision. By activating ATM, the MRN complex regulates 

phosphorylation of >900 sites on >700 proteins, including MRE11, RAD50, and NBS1 (17, 

18). NBS1 interacts with ATM kinase plus its N-terminal phosphopeptide-interacting 

domains that link MRN to other partners including the C-terminal binding protein (CtBP)-

interacting protein (CtIP) (19, 20). As it directly binds NBS1, DNA, and RAD50, the 
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MRE11 nuclease dimer is the core of the MRN complex (21–23). We therefore update the 

two-step MRE11 nuclease incision model to explain its endo- and exonuclease properties in 

light of recent structures, including the eukaryotic RAD50 Zn-hook and CtIP N-terminal 

domain. We describe factors affecting MRN functions at DSBs, stalled RFs, dysfunctional 

telomeres, and complexes combating exogenous viral DNA infection. We discuss how MRN 

acts more as a dynamic molecular machine for the expeditious formation of protein–nucleic 

acid functional scaffolds at DSBs, RFs, dysfunctional telomeres, and viral DNA than as part 

of linear pathways, as also proposed for nonhomologous end joining (NHEJ) complexes 

(24). As a multifunctional macromolecular machine, the structural biochemistry of the MRN 

complex initiates sensing of stalled forks and DSBs, cell cycle checkpoint signaling 

cascades, incision for and commitment to break repair pathways, reestablishment of 

posttranslational phosphorylations via ATM kinase, and functional regulation of chromatin 

remodeling. The collective results outlined here suggest how MRN conformations and 

interactions enable both its specificity and multiple functions in cells with implications for 

science and biomedicine.

MRN COMPLEX: STRUCTURAL BIOCHEMISTRY AND BIOLOGY

The MRN complex is an intriguing chemo-mechanical molecular machine that converts 

energy from binding to DNA, ATP, and protein partners into conformational changes that 

control nuclease activities and network assemblies (2). MRN binds DNA and acts as a 

sensor of DNA damage (25). It is furthermore the activator for ATM and ATR kinase 

cascades (26), a tethering scaffold for recognition and stabilization of protein interactions, a 

processor of RFs, a licensing factor for homologous recombination (HR), and a facilitator of 

fork restart and DNA repair processes (2, 27, 28). At the basic level, MRN consists of two 

RAD50 ATP-binding cassettes (ABC)–ATPase sub-units, two MRE11 subunits forming a 

DNA structure-specific endo/exo/hairpin nuclease, and the NBS1 regulatory docking protein 

with phosphopeptide-interacting forkhead associated (FHA) and BRCA1 C-terminal 

(BRCT) domains flexibly linked to an MRE11 interface and adjacent C-terminal ATM 

kinase interaction motif (16, 29) (Figure 1a,b).

The core MR complex exists as a hetero-tetrameric assembly (M2R2), whose dynamic 

morphology emerges from shifts in its modular head, coil, and hook domains (Figure 1b). 

The globular DNA binding head is formed by the two Rad50–ATPase domains and the 

Mre11 nuclease that bind to the base of the Rad50 helical coiled-coil domains (Figure 2a). 

The heart of the MR (in prokaryotes) and MRN (in eukaryotes) assembly originates from the 

Mre11 dimerization interface (29). Yet, RAD50 is the largest subunit: It belongs to the 

structural maintenance of chromosomes (SMC) protein family (30). Each Rad50 polypeptide 

assembles into a globular ATPase domain despite a large intramolecular antiparallel coiled-

coil sequence insertion. This coiled-coil domain extends far from the head domain (∼500 Å 

for eukaryotic Rad50 homologs) with a central CxxC motif forming a Zn-hook and reverse 

turn that caps its distal end and mediates Zn-dependent Rad50 subunit interactions (31–33). 

The resulting Rad50 bipartite ATPase dimerizes in a Mg2+and ATP-dependent manner (30). 

Notably, Rad50 conformation at the dimer interface is controlled by binding two ATP 

molecules: Each is sandwiched between signature motifs conserved in ABC–ATPases on 
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one subunit and the Walker A, Walker B, Q-loop, and D-loop motifs from the other subunit 

(34, 35).

MRE11 key features are an N-terminal core nuclease domain followed by a cap domain that 

restricts access to the nuclease active site and a flexibly linked RAD50 binding motif (21, 

22, 36–39). X-ray structures of P. furiosus Mre11 revealed the two-domain architecture for 

the catalytic core (40). The N-terminal calcineurin-like phosphoesterase domain bears the 

Mn2+-coordination and nuclease catalytic motifs. The phosphoesterase is further decorated 

by an alpha-beta fold C-terminal domain positioned to enforce DNA binding specificities 

(Figure 1a) (40). The ternary complex of P. furiosus Mre11 bound to Mn2+ and a 5΄҆-dAMP 

nucleotide hydrolysis product supports the biochemically observed 3΄–5΄ directionality of 

the Mre11 exonuclease activity. Yet, as noted below, Mre11 nuclease activity also enables 

5΄–3΄ resection of DNA ends to generate 3΄ single-stranded DNA (ssDNA) overhangs for 

template-mediated HR and homologous repair (27). The partly disordered MRE11 C 

terminus is regulated by posttranslational modifications (Figure 1a).

The NBS1 subunit is specific to eukaryotes. It has one FHA and two BRCT domains in its N 

terminus (Figure 1a). These FHA and BRCT domains bind multiple phosphorylated 

proteins to regulate MRN interactions (29). The rest of NBS1 is unstructured except for the 

functionally critical C-terminal MRE11 and ATM-binding subdomains and motifs (23, 41). 

The NBS1 ATM-binding motif resembles the C-terminal binding motifs of Ku80 and ATR-

interacting protein (ATRIP), which interact with and recruit the DNA-dependent protein 

kinase catalytic subunit (DNA-PKcs) and ATR, respectively (42), suggesting an interaction 

conserved across the three kinases (43). A recent DNA-PKcs crystal structure with bound 

Ku80 C terminus showed how Ku80 binds near DNA-PKcs autophosphorylation sites (the 

PQR cluster) (44). Interestingly, the NBS1 C terminus may also bind near ATM 

autophosphorylation sites (S367, S1893, and S1891) (42), suggesting that analogous modes 

of phosphorylation regulate DNA-PKcs and ATM activities. Yet, this NBS1 C-terminal 

region may not be critical for ATM-mediated checkpoint activation but helps in proper 

phosphorylation of some of the ATM substrates such as SMC1 and proapoptotic factor BID 

(45, 46).

The combination of at least two dimer states for structure-specific nuclease (MRE11) and 

ATPase enzyme (RAD50) activities, long-range allostery from NBS1 and the Rad50 Zn-

hook binding domains, and regulatory phosphorylation plus flexible interface linkages 

enables multiple MRN conformational states. Together, these functional characteristics make 

MRN a dynamic machine that not only can sense and process DNA damage but also can 

participate in different pathways and networks, such as NHEJ, alternative nonhomologous 

end joining (A-NHEJ), or HR, for DNA damage repair. Owing to its dynamic and extended 

nature, structural analyses of MRN have employed multiple combined methods and 

biophysical techniques, including X-ray crystallography, small-angle X-ray scattering, 

electron microscopy (EM), and atomic or scanning force microscopy. Furthermore, 

structural information on MR has emerged from prokaryotes that can provide more 

accessible structures than have been analyzed for their eukaryotic counterparts. In fact, 

prokaryotic Mre11 is used as a molecular avatar (an embodiment of human MRE11–

essential features) for design of inhibitors against human MRE11 (47). Excitingly, high-
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resolution structures of eukaryotic MRN protein domains are also being solved (33, 38, 39). 

For eukaryotes, CtIP is also emerging as a key player in MRN functions in HR on the basis 

of structural analyses of the CtIP N-terminal domain (48–50). From these collective MRN 

structural and biochemical results, we propose a testable integrated model for MRN 

structure–function relationships (Figure 2).

RAD50 forms a unique SMC-type structure in which subunits interact through a Zn-hook at 

the tip of antiparallel coiled-coil arms to form an M2R2N2 intralinked complex (Figure 1b) 

(30). In the ATP-free or hydrolyzed state seen in the Thermotoga maritima MR complex,the 

Rad50 ATPase subunits are flexible and relatively open with the arms relaxed (51, 52) 

(Figure 2b). In contrast, upon ATP binding, Rad50 closes into a single, more rigid 

conformation in which both head domains (N- and C-terminal) are interacting with each 

other in trans and form a central groove that can accommodate double-stranded DNA 

(dsDNA) (Figure 2a) (21, 38, 51). Notably, an added DNA binding site at the coiled-coil 

domain on Rad50 subunits is seen for the complex of Rad50 (nucleotide binding domain) 

and Mre11 (helix-loop-helix domain) with AMPPNP and dsDNA (53). Single-molecule 

imaging of the human MRN complex provided additional evidence for this DNA-binding 

mode. Fluorescence imaging of MRN on nucleosome coated DNA suggested that this 

binding mode facilitates an efficient search for DNA lesions via facilitated diffusion along 

chromatin (34). Also, as seen in EM images for human and P. furiosus MRN complexes, the 

coiled-coil domains can form interlinked complexes (two intralinked MRN complexes 

bridged through RAD50 Zn-hooks), where they may tether two distant DNA sites, and in 

this configuration, the arms can extend to 1,200 Å (32). This observation was supported by 

the crystal structure of the P. furiosus Rad50 Zn-hook domain with a small coiled-coil 

region, where the Zn2+-coordinating cysteines are arranged such that either intra- or 

interlinked complex coiled-coil domains can form (32). Recently, however, crystal structure 

and X-ray scattering analyses of human RAD50 Zn-hook with a portion of coiled-coil 

domain suggest that RAD50 predominantly forms an intralinked complex (Figure 1b) (33) 

having a novel interaction interface within the coiled-coil domain that supports a rigid rod-

shaped RAD50 dimer.

The Zn-hook and coiled-coil domain are critical for functional RAD50 DNA tethering and 

ATM activation (54–56). Yet, two Rad50 subunits are also held flexibly by the Mre11 dimer, 

whose subunits form a flexibly linked helix-bundle interface at the base of two Rad50 

subunits that allow the Rad50 dimer to open upon ATP hydrolysis and to expose the Mre11 

DNA-binding channel for nuclease excision. Although limited coiled-coil domain–length 

deletions are tolerated, mutations in the Zn-hook domain share the phenotype of a null 

mutation in yeast (32, 57), suggesting that long-range allostery connecting the MR core 

enzymatic activity with the Zn-hook is essential for MRN function in vivo.

Importantly, the closed-state (ATP-bound) Rad50 renders dsDNA inaccessible to the Mre11 

nuclease active site (Figure 2a) (21). However, ATP hydrolysis opens dsDNA so that 

flexible ssDNA may access the Mre11 active site (21). In another ATPase machine, FlaI 

(58), a structurally defined intermediate with bound phosphate ion (PO4
3–) released from 

ADP partially opens subunit contacts: This structure suggests that RAD50 conformational 

intermediates may allow MRE11 ssDNA endonuclease activity while restricting dsDNA and 
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MRE11 exonuclease excision. By analogy, this as yet unseen RAD50 state would involve 

binding of arginine on the ABC–ATPase signature helix to the PO43– released by ATP 

hydrolysis (35). After ATP hydrolysis, Rad50 forms a structurally defined and more open 

state that makes DNA accessible to Mre11 for 3΄–5΄ exonuclease activity. The switch 

between closed and open Rad50 states orchestrates conformational changes to the MRN 

complex and its bound DNA (Figure 2b) that result in end protection or processing, as 

supported by structure-guided mutations (52). Furthermore, functional analyses of the 

Rad50 mutants show that the correct Rad50 interface with ATP and Mre11 are required for 

appropriate DSB processing (35, 59). Moreover, RAD50 mutation L1237F resulted in an 

exceptional patient response to an otherwise failed clinical trial of a checkpoint kinase-1 

(CHK1) inhibitor combined with the DNA-damaging agent irinotecan (60). Our analyses 

suggest that this mutation promotes an open RAD50 that could activate MRE11 nuclease. 

We argue that matching the biochemistry of this mutation with a structure-based small-

molecule inhibitor suggests a strategy to generalize the exceptional clinical response to other 

patients for precision medicine.

Crystal structures of Mre11 core domain are solved for both the Mre11 alone and in 

complex with Rad50 from different prokaryotes and eukaryotes (21, 29, 38, 39). All crystal 

structures, irrespective of source, show dimer formation, yet angles for the protomer 

arrangement vary. The dimerization surface is in the N terminus of T4 phage Mre11, 

followed by a capping domain and an acidic linker to the Rad50 binding domain, where the 

linker can act as an auto-inhibitor when Mre11 is not bound to Rad50 (61). From the X-ray 

crystal structures of P. furiosus Mre11 bound to a two-ended dsDNA and to a one-ended 

DNA fork (36), MR rearrangements can reshape DNA to access the nuclease active site (62). 

Existing DNA complex structures suggest that the Mre11 interface helps distinguish two-

ended dsDNA breaks (symmetric dimer) from one-ended DNA forks (asymmetric dimer) 

(36) (Figure 2a). In fact, structure-guided small-molecule inhibitors (27), which bind 

adjacent to the dimer interface, show that blocking MRE11 endonuclease activity promotes 

DSB repair through NHEJ. An endonuclease nick distal to the DSB end licenses HR by 

initiating 3΄–5΄ MRE11 exonuclease activity back toward the DSB. Furthermore, the MRE11 

endonuclease provides an entry point for long-range EXO1- and DNA2-dependent 5΄–3΄ 
resection activity away from the DSB. Consequently, inhibition of MRE11 exonuclease 

activity led to a DNA repair defect owing to a DSB repair defect that could be partially 

rescued by inhibiting EXO1/BLM resection needed to form extended ssDNA as the 

committed step for HR (27). Thus, MRN enzyme activities can help determine pathway 

choice between NHEJ and HR.

Nbs1 structural analyses define the phosphoprotein binding sites and uncover their flexible 

linkage to the Nbs1 C terminus (19). Furthermore, the crystal structure of Mre11 fused with 

the Nbs1 C terminus indicates that the Nbs1 C terminus interacts across the Mre11 dimer 

interface and on the face opposite to the DNA binding groove (23). As the Nbs1 N terminus 

interacts with several phosphorylated proteins, its flexible connection to its C-terminal 

interface across the Mre11 dimer extends the reach and network of the MRN complex for 

orchestrating DDRs (16, 29). For example, comparison of Nbs1-bound versus free structures 

unveils a long-range conformational change transmitted from the FHA domain bound to the 
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phospho-CtIP-peptide through the BRCT domains, which may impact their binding to their 

phospho-serine protein targets, to drive an ∼30◦ domain rotation. These changes, which pull 

the linker to the Mre11 interface by ∼30 Å (19), are postulated to alter the Mre11 dimer 

symmetry thought to distinguish nuclease binding and activity for two-ended dsDNA breaks 

(symmetric dimer) and one-ended DNA forks (asymmetric dimer) (19). Overall, NBS1 

(Xrs2 in S. cerevisiae) acts a chaperone and adaptor coordinating interactions of the MR 

complex with other proteins (63, 64) and as a regulated activator of Mre11 nuclease (65).

Consistent with the implications from structures and biochemistry, CtIP binds to the NBS1 

FHA domains and evidently promotes resection in HR (50, 66–70) as one mode of 

conformational control for MRN. Recently, structure analyses of the N terminus for human 

CtIP and S. pombe Ctp1 reveal its assembly (48, 49). The full length and N terminus of the 

CtIP predominantly form a tetramer in solution. Furthermore, an extended Zn-binding motif 

in the coiled-coil domain adjacent to the N terminus extends the dimeric interface in both 

directions (Figure 2c). This CtIP interface resembles the MRN architecture and may tune 

the MRN complex in the interlinked complex that joins two sets of MRN–DNA complexes.

Using MRN’s structural biology, we propose a testable model for MRN endo- and 

exonuclease activity during HR (Figure 2d). Other nucleases, proteins, and spatial 

constraints likely impact this mechanism. Following initial recruitment to the damaged 

region by NBS1 N-terminal interactions (in eukaryotes) (71), ATP-bound MRN complexes 

load onto both sides of the DSB with RAD50 coiled-coil domains as intralinked complexes. 

Owing to their proximity, the Zn-hook and coiled-coil domains may switch into an 

interlinked complex, as seen in EM images (32). The ring-like conformation is suitable to 

permit MRN to move back from the break to allow access to other proteins, as the coiled-

coil domain spans ∼1,200 Å , or ∼300 base pairs (bp) (32). Alternatively, a recent single-

molecule imaging study (34) shows that the MRN complex can diffuse along the DNA, even 

in the presence of nucleosomes, to find the DNA end and carry out resection in association 

with EXO1. This study shows that Rad50 is critical for promoting facilitated diffusion along 

the nucleosomes-coated DNA, whereas Mre11 recognizes the DNA ends. This separation of 

function suggests one possible reason for the coevolution of Mre11 and Rad50 in all 

domains of life. Nbs1 is dispensable for both activities, allowing recruitment of the MR 

complex to the break in lower organisms for which Nbs1 is absent.

Through its interactions with both MRN and DNA (72, 73), the tetrameric CtIP 

configuration suggests a mechanical role in geometrically activating an MRE11 

endonuclease cut in the 5΄ strand of the duplex with possible associated or sequential ATP 

hydrolysis. Upon ATP hydrolysis, RAD50 opens to allow MRE11 to carry out 3΄–5΄ 
resection toward the break, and the arms may be freed from the interlinked complex. At the 

nick, other 5΄–3΄ enzymes, such as EXO1/DNA2, resect away from the break to form 

extended ssDNA as the committed step and 3΄ single-strand substrate for HR. Upon reaching 

the DSB end, the CtIP dissociation upon a posttranslational modification of MRN may 

regulate MRN off rate and avoid release of unprotected DNA ends. To gain sequence-level 

information to test this model and other possible MRN mechanisms, it will likely be 

necessary to employ cryo–electron microscopy (cryo-EM), as enabled by advances in 

sample preparation for large complexes, plus EM detection technology and data analysis 
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(74, 75). Integrated models of NHEJ from component structures have proved useful to guide 

both biochemical and cellular experiments (76), so we hope this may be the case for MRN.

MRN AND DOUBLE-STRAND BREAK REPAIR

MRN’s role in DDR is extensively studied for DSB repair. Unrepaired DSBs are toxic and 

can lead to chromosomal rearrangements (cancer hallmarks) and cell death through 

apoptosis (77). DSBs are caused by endogenous events (such as RF stalling; see Section 4) 

and severe damage from oxidation or ionizing radiation (IR) (78). MRN functions in both 

DSB sensing and repair: It is recruited to DSBs through interaction between NBS1 and cell 

cycle checkpoint protein RAD17 (71). RAD17 is phosphorylated by ATM and recruited to 

DSBs independent of the MRN complex (ATM-activation mechanisms are thoroughly 

reviewed in 79). Once at DSBs, the MRN complex recruits and activates ATM through its 

NBS1 interaction (Figure 3), with the likely participation of other unidentified interfaces. 

Activated ATM phosphorylates mediator of DNA damage checkpoint 1 (MDC1), which in 

turn recruits more MRN to DSBs and thereby amplifies MRN/ATM signaling (80).

MRN/ATM signaling is regulated in part by factors that influence the stability and loading of 

the complex to DSBs. Interestingly, ATM and NBS1 are protected by the molecular 

chaperone heat shock protein 90 (Hsp90) alpha from polyubiquitination-mediated 

proteasomal degradation (81). Similarly, PIH1D1, a subunit of Hsp90 cochaperone R2TP 

complex, stabilizes MRE11 through its C-terminal interactions (82). Ubiquitination of NBS1 

by the ring finger protein RNF8 promotes optimal binding to DSBs (83), whereas MRE11 

phosphorylation by Polo-like kinase 1 (Plk1) inhibits recruitment of the MRN complex to 

DSBs (84). In addition, ATM-interacting protein (ATMIN) competes with NBS1 for ATM 

binding, therefore decreasing DSB-related ATM signaling (85, 86). In contrast, the recently 

discovered MRN-interacting protein (MRNIP) promotes MRN loading onto DSBs, thus 

contributing positively to MRN/ATM signaling (87). Consequently, activated ATM 

phosphorylates many downstream substrates to regulate checkpoint signaling and allow cells 

time to repair damage (88).

There are two major pathways through which cells repair DSBs (89) (Figure 3): the error-

prone canonical nonhomologous end joining (C-NHEJ) and the error-free HR. NHEJ mends 

DSBs by end joining with minimal end processing. This process is initiated by Ku 

heterodimer (Ku70/Ku80) binding at DSB ends and recruitment of DNA-PKcs to 

phosphorylate various substrates and aid end processing and ligation by the DNA ligase IV 

complex (90). Two added pathways that repair DSBs with minimum end processing are 

resection-dependent NHEJ (rd-NHEJ) and microhomology-mediated end joining (MMEJ) 

(91, 92). In rd-NHEJ, an initial resection step involves MRE11 exonuclease, EXD2, Plk3-

phosphorylated CtIP/BRCA1, EXO1, and Artemis endonuclease before repair through C-

NHEJ occurs. MRE11 endonuclease activity may be dispensable in rd-NHEJ (92), whereas 

in MMEJ, initial resection involves both endo- and exonuclease activity of the MRN 

complex plus other enzymes, such as CtIP, PARP1, FEN1, and DNA ligases I and III (93, 

94). The minimum homology for ligation is ∼5 bp (94). However, Werner syndrome helicase 

(WRN) and Bloom syndrome helicase (BLM) regulate these alternative pathways by 
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blocking MRE11 and CtIP recruitment to DSB ends to promote repair through C-NHEJ (95, 

96).

In HR, DSB ends are extensively resected to generate 3 ssDNA overhangs that inhibit NHEJ 

repair (Figure 3). As noted above, the evolving general model suggests that the MRN 

complex can initiate and license resection through an MRE11 endonuclease cut (nicking 

several hundred base pairs back from the DSB). Subsequent MRE11 exonuclease (3΄–5΄ 
direction toward the DSB) acts in association with phosphorylated CtIP (Sae2 in yeast). At 

the nick, 5΄–3΄ nucleases, such as EXO1 or DNA2 in conjunction with BLM or WRN, 

promote extended resection away from the DSB to generate 3΄ ssDNA overhangs more than 

1,000 bp in length that constitute the committed step for HR (29). EXO1 catalyzes long-

range resection of MRN-processed DNA ends in human cells (97, 98). However, EXO1 is 

strongly inhibited by replication protein A (RPA) binding to the resulting ssDNA (99, 100). 

Single-molecule imaging identified an additional, noncatalytic role for MRN in long-range 

resection. Here, MRN physically interacts with EXO1, traveling with the resection 

machinery as a processivity factor that prevents RPA inhibition (34).

Via interaction with the MRN complex or CtIP, extended DNA resection is stimulated by 

additional enzymes, including RECQL4 helicase and possibly by EXD2 exonuclease (101, 

102), which has alternatively been localized to the cytoplasm and regulates translation in 

mitochondria (103). Regardless, the biochemistry for these regulating partners suggests 

changes in protein–DNA interaction stability and off rates. As described in the proposed 

model (Figure 2d), Sae2 (CtIP in humans) may dislodge the yeast MRX complex (Mre11–

Rad50–Xrs2, MRN in humans) from ssDNA ends after resection (104, 105). In the absence 

of Sae2, DSB repair is impaired due to prolonged MRX complex binding. This defect is 

rescued by depleting the yeast 53BP1-ortholog RAD9, as 53BP1 promotes NHEJ by 

inhibiting dsDNA resection for HR (106, 107). In humans, the tumor suppressor BRCA1 

inhibits 53BP1 at breaks in association with MRN and CtIP to promote HR over NHEJ 

(107–110). Extended RPA-coated ssDNA can activate ATR signaling (discussed in Section 

4). For HR, RPA is displaced from ssDNA by RAD51 that forms nucleofilaments after 

loading by BRCA2 (111). RAD51 filaments enable a homology search, subsequent strand 

invasion, and template-dependent HR repair, as reviewed previously (111–113). Besides 

contributing to HR pathway choice, the BRCA1–BARD1 complex also plays an 

indispensable role in stimulating RAD51 recombinase activity (114). On the basis of the in 

vitro EM imaging data, the MRN complex may support HR by clamping the invading strand 

and HR template independent of its nuclease properties (32). Also, Mre11 nuclease-deficient 

or null TK46 cells show delays in Rad51 foci resolution after IR-induced breaks compared 

with wild-type cells. This delay suggests that the MRN complex may function downstream 

(as well as upstream) of RAD51-filament formation for proper resolution of HR 

intermediates (115).

Key factors regulating pathway choice for DSB repair are the cell cycle (116) and the nature 

of DNA ends (69). Whereas NHEJ-based repair pathways are active throughout the cell 

cycle, HR requires a DNA template for the repair and is active in only the S and G2 phases, 

during which the homologous sister chromosome is present. The nature of the DSB ends 

also regulates the repair pathway choice (69). If the DSB ends are free of protein adducts 
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and damaged nucleotides, they are likely channeled through NHEJ for repair in human cells. 

Otherwise, they require processing through resection and the phosphatase activity of 

polynucleotide phosphatase/kinase (PNKP) (117). MRN biochemical endo- and exonuclease 

activities act on both 5΄ and 3΄ strands of DNA with protein adducts, and its endonuclease 

activity is stimulated by CtIP (72). In contrast, NBS1 inhibits the MR 3΄–5΄ exonuclease 

activity on clean DSB ends (72). The MRN complex can thus remove covalently linked 

topoisomerase complexes from genomic DNA in a mechanism requiring CtIP and BRCA1 

(115, 118, 119). The MRN complex in association with CtIP also protects genomic loci at 

common fragile sites and palindromic repeats (120). Indeed, DSBs occurring at these sites 

often lead to the formation of secondary structures that can attract structure-specific 

nucleases and result in chromosomal rearrangements (120). At such sites, however, MRE11 

nuclease activity promotes HR for error-free repair.

MRN AND REPLICATION FORK DYNAMICS

Accurate replication of genetic information is a prime genetic selection, and stress during 

replication can slow, stall, or collapse the RF (121). Sources for replication-induced stress 

include damaged DNA, chromatin compaction, non-B-DNA (i.e., DNA structures that do 

not conform to the canonical Watson-Crick double helix) forming sequences (G-quadruplex, 

small inverted repeats, trinucleotides repeats), covalent protein-DNA adducts, and 

DNA/RNA hybrids (121). Cells can overcome these barriers through RF stabilization, 

protection, remodeling, and restart (121–124) along with dormant origin firing in higher 

organisms (125–128). HR is implicated in fork transactions during fork recovery; however, 

HR protein responses at forks can be independent of dsDNA break repair (124). Although 

the HR response restores the replication robustness under stress, it can also contribute to 

genomic instability as a result of its intrinsic reliance on a homologous sequence (reviewed 

in 124). Given its HR-initiating roles, the MRN complex helps orchestrate RF stress 

responses (Figure 4). Its role at forks can be both beneficial and detrimental and thus 

requires regulation.

At forks, protein-coated ssDNA is a platform for binding by MRN and other DNA repair 

proteins that initiate damage signaling, fork protection, and repair (129). An encounter 

between the replication machine (or replisome) and a replication barrier can uncouple the 

replicative helicase and polymerase. This uncoupling results in long stretches of ssDNA, 

leading to an ATR checkpoint response that helps to stabilize the fork and allows time to 

resolve the replication barrier by arresting cell cycle progression (Figure 4) (121). Stretches 

of ssDNA are protected by ssDNA-binding proteins such as RPA or human single-stranded 

DNA binding protein 1 (hSSB1) (130, 131). RPA binding to ssDNA inhibits annealing of 

short homologous sequences (as in short repeats) through microhomology-mediated repair 

and reduces secondary structures recognized by nucleases (132). The resulting protein-

coated ssDNA not only is protected but also promotes binding of MRN and other DNA 

repair proteins (133). ATR, along with ATRIP, is recruited to ssDNA-RPA regions through 

ATRIP and RPA interactions (134). At the damaged forks, RAD9–RAD1–HUS1 (also 

known as the 9–1–1 clamp), is loaded onto the DNA end adjacent to RPA-bound ssDNA by 

the clamp loader RAD17–RFC complex (134). The 9–1–1 clamp recruits the ATR-activator 

protein topoisomerase-binding protein 1 (TopBP1) that assists ATR in phosphorylating its 
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downstream substrates, including CHK1 and RPA (Figure 3) (134). Notably, TopBP1 was 

recruited independently of the 9–1–1 complex to the ATR-activating sites at ssDNA-dsDNA 

junctions at the RFs through the MRN complex in Xenopus egg extracts (135). This result is 

consistent with the observation that the MRN-depleted Xenopus extracts show a decrease 

but not complete loss of CHK1 phosphorylation (136).

In fact, ATR activation is a critical function for MRN in damage signaling. MRE11 (in 

addition to ATM) is required for ATR activation upon IR-induced damage (137, 138). 

Furthermore, NBS1 activates ATR in vitro independently of MRE11 (139). Notably, for 

replication-associated DSBs, a substantial amount of RPA phosphorylation by ATR is 

dependent on the NBS1–RPA interaction and is independent of RAD17 (140). These 

functions are likely conserved in yeast, in which RPA recruits the MRX complex to stalled 

forks and DSBs (141). Upon recruitment, MRX-mediated sister-chromatid tethering is 

essential for survival of genomic stress at both forks and breaks.

ATR activation is also regulated by RAD50 (142). Once activated, ATR phosphorylates 

RAD50 at S635, which is required for cohesin complex (that holds together newly replicated 

chromatids) loading at the forks. Aside from phosphorylation, the neighboring Zn-hook 

sequence influences cohesin loading at replication sites to promote fork restart (143). These 

collective data suggest that multiple MRN components can orchestrate ATR signaling events 

that may themselves regulate the temporal sequence for MRN biochemical activities at RFs.

At forks, MRN-mediated resection plays a major functional role. MRN-mediated resection 

of nascent DNA likely frees the replisome from the stalled forks by promoting strand 

removal, fork inversion, and restart (123). MRE11 can generate 3΄ overhangs to initiate HR 

in association with DNA2/EXO1. For example, in a recent study in a Werner syndrome–

derived fibroblast cell line, the phosphorylation status of the S1133 of the WRN helicase 

influences the resection at breaks generated at the RF (144). Inhibition of S1133 

phosphorylation in WRN results in impaired interaction with MRE11, defective MRN foci 

formation, and resection at the forks. Consequently, breaks at the fork can be repaired 

through DNA fusion by NHEJ with associated genome instability.

Although the MRN nuclease function can help resolve stalled RFs, unregulated resection 

can be catastrophic and lead to fork degradation through MRE11 exonuclease activity (145, 

146). Thus, other proteins help regulate MRN-mediated nascent DNA degradation (147–

150). The Fanconi anemia and breast cancer protein BRCA2 blocks MRE11-mediated 

resection of nascent ssDNA by promoting formation of stable nucleofilaments of RAD51 on 

nascent DNA (147, 151). However, cyclin-dependent kinase 2 (CDK2)–dependent 

phosphorylation of the BRCA2 C terminus results in disassembly of RAD51 filaments 

(152). This CDK2 activity is controlled by a complex formation with large tumor suppressor 

homolog 1 (LATS1) as part of the regulation of BRCA2 phosphorylation. Similarly, WRN 

helicase interacting protein 1 (WRNIP1) can stabilize RAD51 and thereby inhibit MRN-

mediated degradation, a function independent of WRNIP1 ATPase activity (153). Like 

MRE11, WRN has an exonuclease domain with an associated coiled-coil region allowing 

assembly and partner interactions (154–156). Interestingly, the WRN exonuclease domain 

appears essential to inhibit MRE11/EXO1-dependent fork degradation under replication 
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stress induced with low doses of the TOP1 inhibitor camptothecin (157). MRN regulation at 

forks is thus enforced by protein interactions that block productive MRE11 nuclease 

binding.

By inhibiting Mre11 using endonuclease- and exonuclease-specific inhibitors, BRCA2 

deficiency is rescued in tumor cells lacking functional BRCA2. Although BRCA-defective 

cancer cells can be killed by PARP inhibitors (PARPi), resistance to PARPi arises in cancer 

cells from the inactivation of proteins (such as PTIP, CHD4, and PARP1) that recruit 

MRE11 protein for nuclease processing at stalled forks (158). This unraveled resistance 

mechanism underscores the critical role for MRE11 in the regulated and error-free fork 

restart and how loss of MRE11 or its regulation at forks can rebalance damage responses in 

cancer cells. In fact, this may be the basis for genome instability from p53 mutations (159).

MRN AND DYSFUNCTIONAL TELOMERES

MRN responds to the disfunction of telomeres, which protect linear eukaryotic chromosome 

ends from DSB-related DDR and suppress replication instability (160). Telomeres consist of 

long (thousands of base pairs in length) duplex-DNA repeats (-TTAGGG-in humans) with 

shorter (up to several hundred base pairs) single-stranded 3΄ overhangs and associated 

telomere protection–related proteins collectively termed the shelterin complex (161). Owing 

to the strict polarity restrictions of DNA polymerase, the 3΄-DNA end sequence from the 

lagging strand is not duplicated at telomere ends, leading to shortening of the net telomere 

length with each replication cycle (162). Conversely, duplication of the leading strand 

always results in a blunt-ended dsDNA owing to correct polarity (Figure 5). Both leading 

and lagging strand telomeres are processed by nucleases Apollo and EXO1 to generate 

functional 3΄ overhangs (163).

In addition to the shelterin complex, the reverse transcriptase telomerase maintains telomere 

length in budding yeast, stem cells, and many cancer cells (164). Yet interestingly, in most 

somatic cells, telomerase is inactive, leading to a limited number of replicative cycles and 

thereby regulating mutational accumulation and tumorigenesis (165–167). In budding yeast, 

the MRX complex may act in recruiting telomerase to telomeres (168). Also, telomere 

elongation may depend on X-ray repair cross-complementing protein 3 (XRCC3) and NBS1 

in stem cells (169). The MRX complex may also assist Rad6 and Bre1 ubiquitin-conjugating 

enzymes in successful telomere replication (170).

In humans, telomeres function in tumor suppression. Cells either enter a replicative 

senescence state or undergo apoptosis once telomere length becomes critical, to avoid losing 

essential genes from linear chromosome ends (166). This regulatory mechanism relies on 

MRN and other proteins that assist the shelterin complex to avoid DSB repair at functional 

telomeres (reviewed in 171, 172).

At functional telomeres, DNA ends are protected. Since telomeres are G-rich sequences, 

they can form non-B-DNA structures such as G-quadruplexes that protect against strand 

degradation (173). As a result, replication in telomeric regions may have more frequent fork 

stalling (174) that may require resolution by MRN, but this role is uncertain.
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In addition, the 3΄ overhang can fold back on to the dsDNA to form a T-loop similar to 

strand invasion in HR (161, 175) (Figure 5). The six-protein shelterin complex contains 

telomeric repeat-binding factors 1 and 2 (TRF1 and TRF2), repressor and activator protein 

(RAP1), TRF1-interacting nuclear protein 2 (TIN2), protection of telomeres 1 (POT1), and 

TIN2- and POT1-interacting protein (TPP1) (176). TRF2 binds to dsDNA, protects the T-

loop from helicases and resolvases (176), and inhibits ATM signaling, whereas POT1 

preferentially binds ssDNA and inhibits ATR signaling (177) (Figure 5). Shelterin defects 

and telomerase abnormalities lead to dysfunctional telomeres, promoting MRN damage 

signaling and repair within a few cycles of replication (178).

The MRN complex may thus play dual roles at telomeres, where it may cause or inhibit 

genomic instability at dysfunctional telomeres by either promoting or inhibiting the NHEJ 

pathway, respectively (171). NBS1 co-crystallizes with TRF2 (179). NBS1 phosphorylation 

at S432 residue inhibits this interaction and promotes C-NHEJ at telomeres lacking TRF2 

(179). Yet, NBS1 phosphorylation at the same site promotes A-NHEJ at telomeres lacking 

POT1–TPP1 (179). In addition to defective shelterin components, critically short or deleted 

ends lead to dysfunctional telomeres. Although most cancer cells use telomerase to replenish 

dysfunctional telomere lengths, some utilize MRE11-dependent and recombination-based 

alternative lengthening of telomere (ALT) for telomere maintenance (180, 181). Loss of both 

telomerase and the ALT pathway causes telomere dysfunction. In yeast cells with these 

characteristics, Mre11 opposes proliferation of cells lacking telomeres in the absence of 

Exo1 and checkpoint signaling (182).

In budding yeast lacking telomerase, the MRX complex promotes replicative senescence in 

association with Tel1 (ATM in humans) and RAP1-interacting factor 2 (Rif2) (183). Tel1 

promotes MRX recruitment, whereas Rif2 acts as a negative regulator by enhancing ATP 

hydrolysis that opens Rad50, facilitating MRX release from DNA (184). In line with insights 

from yeast experiments, changes in expression and posttranslational modification of MRN 

and telomeric proteins are associated with various diseases in humans (185–187). In mouse 

embryonic fibro-blasts, the MRN complex is required for the response to telomere 

dysfunction, consistent with the idea that initiating this response shares common elements 

with the response to interstitial DNA damage (188). Interestingly, in patients with 

rheumatoid arthritis for which T cell aging occurs prematurely, low MRE11 levels lead to 

telomeric damage, juxtacentromeric heterochromatin unravelling, and upregulation of 

senescence marker. MRE11 inhibition in healthy T cells induced the aging phenotype, 

whereas MRE11 overexpression in rheumatoid arthritis T cells reverses it. The observation 

that the premature T cell aging is linked to MRE11 and telomere deprotection suggests 

MRE11 as a therapeutic target for immune aging and suppressing dysregulated 

inflammation (189). We expect that further knowledge of MRN biochemical mechanisms 

will be key to an improved understanding and intervention in multiple diseases including 

immune system aging.

MRN AND THE INNATE IMMUNE RESPONSE

MRN functions that sense, signal, and defend against viral infection (190) underscore the 

importance of deciphering the biochemical basis for its multifunctionality. MRN and other 
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damage recognition receptors detect viral DNA and initiate a cascade of innate immune and 

DNA damage signaling (191) (Figure 6a). In the genome, activation of ATM by MRN is 

amplified over a mega-base region leading to formation of DNA damage foci, cell cycle 

arrest, and DNA repair (192). Upon viral infection, local but not global ATM activation and 

signaling are initiated by the MRN complex owing to the small size of viral DNA (193). 

This local ATM signaling avoids cell cycle arrest and global damage responses when a virus 

infects the cell (Figure 6a) (193). Thus, MRN biochemical responses allow cells to 

differentiate genome damage signaling (global ATM signaling) for DNA repair compared 

with foreign-genome signaling (local ATM signaling) to block viral replication in the 

nucleolus (193). As part of its repair-related activities, the MRN complex in association with 

NHEJ repair proteins can further limit viral DNA replication in the nucleus by forming long 

viral DNA concatemers (190, 194, 195), which are too large to be packaged. Concatemers 

also interfere with replication: Replication origins generally present at the viral DNA termini 

are buried inside heterogeneously fused viral DNA and mutated through error-prone NHEJ 

(190, 196, 197) (Figure 6a).

DNA in the cytoplasm is recognized as a potential viral infection and induces an immune 

response. MRN binding to viral DNA in the cytoplasm leads to production of type I 

interferons (IFNs) through activation of nuclear factor κβ (NF-κβ), a stimulator of 

interferon genes (STING), and interferon regulatory factor 3 (IRF3) (Figure 6a) (198). Both 

MRE11 and RAD50, but not NBS1, are essential for producing IFNs. A cell line derived 

from an ATLD patient containing an MRE11 mutation that abrogates its DNA binding 

properties has defects in IFN production (198). Interestingly, RAD51 absence can also 

induce an innate response (199). RAD51 protects DNA inside the nucleus from MRE11-

mediated nucleolytic degradation. Thus, in the absence of RAD51, MRE11 nuclease can 

degrade DNA, and the resulting DNA fragments are released into the cytoplasm where they 

activate the innate immune response. For interleukin-33 (IL-33), a member of the IL-1 

superfamily of cytokines whose structure has been defined (200), stimulation upon 

adenoviral transduction depends on MRE11 status (201). Similarly, upon encountering 

cytosolic DNA, RAD50 forms a complex with innate immune system adaptor protein 

CARD9 in dendritic cells (202), which are the antigen-presenting cells that link the innate 

and adaptive immune systems. The cytosolic dsDNA-induced signaling complex (dsDNA–

RAD50–CARD9) stimulates production of proinflammatory cytokine IL-1β through NF-κβ 
pathway activation (Figure 6a) (202). However, viruses encode specific proteins that bind 

MRN and other host DNA repair proteins rendering them inactive through protein 

relocalization and degradation (Figure 6b) by sumoylation and ubiquitination (190, 203). 

Yet, viruses can also rely on MRN and other host DNA repair proteins for successful lytic 

replication.

As a result, manipulation of MRN biochemistry by interactions with virus proteins is under 

active investigation, and several of these have been uncovered in human adenovirus (Ad) 

infection. Ad early region 4 (E4) encodes two proteins from open reading frame 3 (E4-

ORF3) and open reading frame 6 (E4-ORF6). These proteins (with viral protein E1b-55K) 

inhibit concatemer formation by the MRN complex via relocalization and degradation (190, 

204–207), avoiding MRN-mediated defects in late viral replication (205, 207). Upon 
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recognition, E4-ORF3 protein localizes the MRN complex to specific nuclear locations in 

the host cells known as promyelocytic leukemia protein domains (or PML bodies), rendering 

the complex inactive (Figure 6b) (208). X-ray crystallography and mutational analyses show 

that E4-ORF3 assemble into both linear and branched polymeric structures by C-terminal 

tail swapping (209). This polymeric network spans the entire nuclear volume, forming multi-

site interactions with PML bodies and MRN-binding interface in the C-terminal tail. Upon 

relocalization to PML, E4-ORF3 induces sumoylation of MRN complex components (210, 

211). The E4-ORF6 in association with E1b-55K recruits other cellular proteins, such as 

cullin 5, Rbx1, and elongin B and C to form an active ubiquitin ligase complex (212, 213). 

This activated ligase complex ubiquitinates the MRN complex for proteasome-dependent 

degradation (190).

Building upon the Ad results, MRN roles are increasingly being elucidated in virus infection 

associated with human diseases—for example, high-risk human papillomavirus (HPV) that 

is implicated in cervical cancer and as well as in genital, head, and neck cancers (214). 

HPV-31 increases MRN complex half-life for productive viral replication (215). HPV-16 

encodes transcription and replication factor E2 that interacts with RAD50-interacting protein 

1 (Rint1) (216). Overexpression of exogenous Rint1 enhances HPV-16 replication, and a 

truncated mutant that lacks a RAD50-interacting domain reduces HPV-16 replication. Thus, 

HPV-16 may target MRN complex inactivation through Rint1 for productive replication. 

Similarly, the MRN complex inhibits replication of Kaposi sarcoma herpesvirus (KHSV) 

(217), which is implicated in Kaposi sarcoma, the most common cancer in HIV-infected 

individuals (218, 219). KHSV encodes a cytoplasmic isoform of latency-associated nuclear 

antigen (LANA). This isoform inhibits the host innate immune response by neutralizing 

MRN and cyclic GMP-AMP synthase DNA sensors (217).

The relationship linking viral infection, DNA repair, and innate immunity has biomedical 

importance, as oncolytic virus-based therapies are implemented in several cancers. For 

example, a modified oncolytic adenovirus mutant that lacks an antiapoptotic gene (E1B19K) 

sensitizes pancreatic cells in association with DNA-damage drugs (220), and the proposed 

mechanism is MRE11 inactivation. For oncolytic adenovirus type 5 being used in ovarian 

cancer cells (221), virus cytotoxicity is proposed to enable its ability to redistribute MRN 

(and other HR components). Overall, our evolving knowledge of interactions between viral 

infection, DNA repair, and the immune response requires defining multiple roles for MRN 

biochemistry.

SUMMARY AND PERSPECTIVES

A key aspect of the DNA double-helical structure, initially absent in the Watson and Crick 

model, is that it contains information not only for replication but also for repair of genomic 

damage (222) that is recognized by biologically conserved complexes such as MRN. Thus, 

MRN-DNA biochemistry is uncovering primary origins of normal and pathological cellular 

activities for DNA stress responses. Yet, this requires a path for a comprehensive 

characterization of proteins and nucleic acids, including their biologically relevant 

complexes and conformations (223). These observations have motivated our efforts to 

develop high-throughput and objective X-ray methods for comprehensive measurements of 
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complexes and conformations and flexibility under near-physiological conditions (e.g., see 

224–229). Thus, X-ray scattering and diffraction methods coupled to cryo-EM and single-

molecule data are helping to define the MRN structural biochemistry described here.

At the cellular level, MRN defects can cause chromosome instability. At the systems level, 

we see the importance of maintaining the B-DNA double helix structure, as potential non-B-

DNA structures (PONDS) occur at high frequency in cancer as translocations and deletion 

break points (230). Furthermore, at RFs where the double helix is opened for processing, 

precise control of DNA ends is needed to avoid not only mutations but also template 

switching and large repeat expansions (231, 232). These and other data provide compelling 

support for the notion that DNA structures at forks, ends, and breaks are intrinsic risk factors 

that complexes such as MRN are under strong evolutionary pressure to tightly control.

Combined genetic and biochemical data suggest that MRN has evolved to coordinate 

cellular network responses to DNA damage linked to mutation, cancer, and cell death. Its 

modular components are integrated into complexes and pathway networks in different ways, 

but MRN core structures and activities are maintained and conserved across all domains of 

life. Collective data show that multiple DNA stress responses are dynamically interrelated by 

MRN in ways that depend on its interactions and conformations. These results have broad 

implications for damage responses, as we are learning that even direct damage reversal 

enzymes, such as ALKBH3 (233), surprisingly function within large complexes for DNA 

and RNA integrity (234).

The evolutionarily conserved MRN complex is thus decoding a biological language of 

dynamic shapes controlling chemistry, connections, and complex functionalities from self-

assembled, sequence-encoded building blocks whose fidelity is maintained by complexes 

such as MRN. For example, mutants modulating RAD50 dynamic conformations can switch 

biological outcomes from DNA excision to end joining (52). The data reviewed here 

demonstrate how MRN interactions and resulting activities feed into cellular decision 

making in DNA stress responses including viral defenses (typically considered to be only 

broadly related to the DDR). MRN subunit biochemical activities depend upon their three-

dimensional folds, but MRN biological functions are governed by its complexes and 

conformationally regulated interaction networks. Thus, HR and MMEJ are activated in 

irradiated human cells owing to phosphorylation-dependent formation of either NBS1 or 

XRCC1 repair complexes with MRE11–RAD50 (93). In fact, the use of the same MRN 

subunits in multiple response networks provides a physical means to coordinate sensing, 

signaling, chromatin remodeling, and repair processing. This helps ensure appropriate 

responses to DSBs and stalled forks that avoid destructive interference and thus chromosome 

breakage and aberrations. As its cellular selectivity and function are determined partly by its 

assembly with partners and damaged DNA, we have focused on what we know and would 

like to know about dynamic MRN complexes and their control of biological outcomes. From 

the results to date, we can expect that defining the biochemical activities of MRN 

components and their assemblies will provide a critical foundation for understanding 

multiple DNA stress responses.
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As a consequence of its dynamic conformations and assemblies, MRN responses are DNA 

structure specific rather than sequence specific. For example, MRN complexes confer 

specificity to distinct nuclease processing at DNA breaks and forks. These processes include 

an endonuclease nick and the initiation of exonuclease processing that is not adjacent to the 

DSB. Moreover, the resulting combined MRE11 endo- and exonuclease activities can act as 

go/no-go controls in the selection of HR versus NHEJ pathways (27). MRN can thus 

orchestrate DDRs as a sensor, regulator, and effector within distinct DSB repair, RF, and 

telomere rescue complexes as well as in viral response networks.

We propose that MRN conducts, coordinates, and connects responses to DNA stress largely 

by orchestrating three processes: assembly (localization and protection at damage), 

conformation (creation of a productive geometry for interactions and active site chemistry), 

and disassembly (controlling access and handoffs of DNA intermediates). In chemistry, 

transition state theory instructs us on the control of the reaction barrier as the expected rate-

limiting step. In the cellular biochemistry of DNA replication and repair, however, the rate-

limiting step is often not chemistry, which has been evolutionarily optimized for high 

efficiency. Instead, we see that protein and DNA binding energy is converted into 

conformational change to regulate network responses on the basis of the cell cycle state and 

the nature of the DNA damage. At the nanoscale of MRN, charge, chemical bonding, 

molecular mechanics, and thermal energy share similar scales: This allows their efficient 

interconservation to regulate specific activities within metastable MRN–DNA and MRN–

protein intermediates. We propose that this ability to transfer binding energy into 

functionally important conformational states is an evolutionarily optimized and emergent 

MRN property. In practical terms, targeting conformational switching, as proposed here for 

RAD50 on the basis of the exceptional patient response in an otherwise failed clinical trial 

(60), suggests a novel biochemical strategy for precision medicine.

More broadly, current and emerging MRN results are aiding in addressing grand challenges 

of the postgenomic era for biochemistry and cancer biology: (a) an accurate prediction of 

pathology for damage response sequence variants, (b) an actionable mechanistic 

understanding of oncogenic replication and repair stress for biology and medicine, and (c) 

an advanced assessment of functional biochemical complexes and networks controlling 

outcomes from molecules to cells (235). Existing insights are already changing our concepts 

of damage detection, signaling, and repair with implications for strategies of controlling 

MRN activities for cancer, T cell aging, immune responses, and viral infections. Going 

forward, we will increasingly need to link structures of intact dynamic assemblies from 

cryo-EM and X-ray scattering studies to outcomes in cells and furthermore test this 

multiscale understanding with separation-of-function mutations and activity-specific 

chemical inhibitors, as was done for MRE11 (27). Emerging robust methods for the 

coexpression of large, multiprotein complexes provide enabling technologies for examining 

functional assemblies(75). The resulting foundational knowledge defining how these 

molecular machineries act may allow control of DNA stress responses for biology and 

medicine. We suggest that targeting MRN biochemical activities in DNA damage and the 

innate immune response together may overcome the mutational phenotype that characterizes 

cancer cells (236), analogously to how antibiotic knockdown of pathogens allows their 

clearance by our immune system.
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Figure 1. 
MRN domains, complex assembly, and mutations. (a) Key domains of MRN subunits 

MRE11 (orange), RAD50 ( green), and NBS1 (cyan). Mutated sites (red arrows) for human 

inherited diseases (color coded for ATLD, NBS, and NBSLD; mutations corresponding to 

each disease are color coded with respective abbreviations) are shown on each subunit with 

respective substitutions, where X represents the stop codon. (b) Modeled assembly of MRN 

complex and dsDNA based on experimentally derived partial crystal structures (PDB IDs: 

5F3W, 5GOX, and 3HUE; color coding as in panel a) showing a dimer of a heterotrimer. 

The allosterically linked Zn-hook is highlighted in the inset along with CxxC motifs (red ) 

on two RAD50 monomers. (c) The extent of mutations (reported as mutation factor) in 

subunits of the MRN complex in cancers documented in the International Cancer Genome 

Consortium (ICGC) projects. A mutation factor is defined as a number of observed 

mutations multiplied by the fraction of mutation-positive cases. ICGC projects with high 
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mutation factors (>15 in total) include the following: #13, Breast Cancer, ER+ and HER2−, 

European Union/United Kingdom; #20, Esophageal Adenocarcinoma, United Kingdom; #28 

Liver Cancer, China; #31, Liver Cancer, RIKEN, Japan; #36, Malignant Lymphoma, 

Germany; #52, Skin Adenocarcinoma, Brazil; #53, Skin Cancer, Australia; and #55, Soft 

Tissue Cancer, Leiomyosarcoma, France. A complete list of the 58 projects is provided in 

Supplemental Table 1. Abbreviations: ABM, ATM binding motif; ATLD, ataxia-

telangiectasia-like disorder; BRCT, BRCA1 C-terminal domain; dsDNA, double-stranded 

DNA; FHA, forkhead-associated domain; MBM, MRE11 binding motif; MRE11, meiotic 

recombination 11 homolog 1; NBS, Nijmegen breakage syndrome; NBSLD, NBS-like 

disorder; PDB, Protein Data Bank; RAD50, DNA repair protein RAD50; RBD, RAD50 

binding domain.
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Figure 2. 
The Mre11–Rad50 (MR) heterotetramer: DNA-binding interface, ATP-mediated 

conformational changes, and a unified model for MRN’s functions in DSB resection (color 

coding as in Figure 1) are shown. (a) Crystal structures of ATPγS-bound Methanococcus 
jannaschii (Mj) Mre11—Rad50–DNA complex (PDB ID: 5F3W) and the symmetric (PDB 

ID: 3DSC) and asymmetric (PDB ID: 3DSD) Pyrococcus furiosus Mre11 DNA-bound 

states, highlighting the DNA-binding interface at the Rad50 and Mre11 dimerization 

interface. (b) Crystal structures of the MR complex in the nucleotide-free state (PDB ID: 

3QG5, Thermotoga maritima MR) and in the ATPγS-bound state (PDB ID: 3AV0, MjMR), 

highlighting the conformational switch in the MRN core complex. (c) Human CtIP model 

from the recent crystal structure of CtIP N-terminal tetramerization domain (PDB ID: 

4D2H). Plausible NBS1 binding sites on four CtIP and C-terminal DBMs, along with CxxC 

motifs and Zn coordination, are shown. (d ) A testable pathway for DSB resection by the 
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MRN complex. For clarity, only MRE11 (M) and RAD50 (R) subunits are shown. First, two 

molecules of MRN bind to DSB ends in an ATP-bound state, with MRE11 nuclease activity 

inhibited by the closed RAD50 conformation. Then, MRN forms an interlinked complex 

through a RAD50 coil swap. At this point, CtIP–NBS1 interaction allows MRN dimers to 

slide away from the break, and MRE11 makes the initial licensing cut through its 

endonuclease activity. Upon complete ATP hydrolysis, the RAD50 dimerization interface 

opens and dsDNA becomes accessible to the MRE11 exonuclease. DNA resection begins in 

the 3΄–5΄ direction and proceeds toward the break. Upon reaching the break, the MRN 

complex may be dislodged from DSB with the help of CtIP and NBS1 (NBS1 not shown for 

clarity). Because only M and R are shown in the model, NBS1 (N) is colored gray in MRN 

notation. Abbreviations: CTD, C-terminal domain; CtIP, C-terminal binding protein–

interacting protein; DBMs, DNA binding motifs; DSBs, double-strand breaks; dsDNA, 

double-stranded DNA; MRE11, meiotic recombination 11 homolog 1; MRN, MRE11–

RAD50–NBS1 complex; NBS1, Nijmegen breakage syndrome protein 1; NTD, N-terminal 

domain; PDB, Protein Data Bank; RAD50, DNA repair protein RAD50.
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Figure 3. 
The MRN complex activates possible (alternative) pathways at DSBs. The MRN complex 

can initially be recruited to a DSB by RAD17 and activates the ATM kinase. Once activated, 

ATM phosphorylates downstream substrates including MDC1, which in turn recruits MRN, 

and the ATM signal is further amplified at the DSB. ATM checkpoint signaling leads to cell 

cycle regulation through CHK2 activation ( far left). On the basis of the cell cycle phase and 

nature of the DSB ends, DSBs are channeled through either HR or NHEJ for repair (central 
paths). In HR, the MRN complex initiates the 5΄ resection followed by long-range resection 

by EXO1 or DNA2. The resulting 3΄ ssDNA overhangs are loaded with ssDNA-binding 

protein RPA. The RPA-coated ssDNA can activate a second checkpoint pathway: ATR 

signaling. ATR is recruited to the RPA-coated ssDNA through ATRIP and RPA interaction. 

Then the RAD17–RFC clamp loading complex loads the 9–1–1 (RAD9–HUS1–RAD1) 

checkpoint clamp at the ssDNA and dsDNA junction on the RPA-coated ssDNA arms. The 

ATR activator TopBP1 is loaded by RAD9, leading to activation of CHK1 kinase and cell 

cycle regulation. For high-fidelity DSB repair, the BRCA2–RAD51 complex nucleates the 

formation of RAD51 nucleofilaments and displaces RPA from ssDNA. RAD51 

nucleofilaments promote homology search and strand invasion in association with BRCA1–

BARD1 for error-free HR repair through the resolution of repair intermediates. The two 

NHEJ pathways (right) depend upon DNA-PKcs and MRN–CtIP. In C-NHEJ, DSB ends are 

bluntly fused through Ku70/80–DNA-PKcs complex tethering, Artemis-mediated end 

processing, ligase IV, and XLF-XRCC4 scaffolding factor–mediated ligation. The C-NHEJ 

is independent of the MRN complex; however, MMEJ operates through MRN–CtIP-

mediated resection followed by priming based on microhomology, flap removal, and gap 

filling. Abbreviations: ATM, ataxia-telangiectasia mutated; ATR, ataxia-telangiectasia and 
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RAD3-related; ATRIP, ATR-interacting protein; C-NHEJ, canonical nonhomologous end 

joining; DNA-PKcs, DNA-dependent protein kinase catalytic subunit; DSB, double-strand 

break; HR, homologous recombination; MMEJ, microhomology-mediated end joining; 

MRE11, meiotic recombination 11 homolog 1; MRN, MRE11–RAD50–NBS1 complex; 

NBS1, Nijmegen breakage syndrome protein 1; NHEJ, nonhomologous end joining; 

RAD50, DNA repair protein RAD50; RFC, replication factor C; RPA, replication protein A; 

ssDNA, single-stranded DNA.
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Figure 4. 
The MRN complex with RPA and ATR orchestrates replication fork protection, remodeling, 

and restart as well as HR rescue of collapsed forks. At stalled forks, the MRN complex 

participates in fork protection through non-nuclease functions (e.g., DNA tethering), and its 

ssDNA endonuclease activity is inhibited by RPA. RPA-coated ssDNA initiates ATR 

checkpoint signaling that provides cells time for repair and restart. Replication barriers are 

removed by remodeling through fork reversal that must then be processed for fork restart. 

The nascent ssDNA at reversed forks is protected against MRN exonuclease activity by 

RAD51 loading in association with BRCA2. For restart, MRE11 excision of one strand may 

facilitate fork reversal and restart. Unrepaired collapsed forks can become DSBs where the 

MRN complex initiates homologous recombination by initiating resection. Abbreviations: 

ATR, ataxia-telangiectasia and RAD3-related; ATRIP, ATR-interacting protein; MRE11, 

meiotic recombination 11 homolog 1; MRN, MRE11–RAD50–NBS1 complex; NBS1, 

Nijmegen breakage syndrome protein 1; RAD50, DNA repair protein RAD50; RPA, 

replication protein A; ssDNA, single-stranded DNA.
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Figure 5. 
Telomere structure and dynamics regulate MRN interactions and distinguish chromosome 

ends from breaks. Human telomeres consist of a long stretch of repetitive TTAGGG 

sequences and interacting proteins. Telomeres forming from the replication of a leading 

strand result in tails with blunt ends, whereas the replication of a lagging strand generates 

telomeres with 3΄ overhangs. The 5΄ resection of a blunt-ended telomere inhibits telomere 

fusion through NHEJ. The telomeres with 3΄ overhangs form transient T-loop structures. The 

shelterin complex, which helps protect telomere ends, consists of telomeric repeat-binding 

factors 1 and 2 (TRF1 and TRF2), repressor and activator protein (RAP1), TRF1-interacting 

nuclear protein 2 (TIN2), protection of telomeres 1 (POT1), and TIN2- and POT1-

interacting protein (TPP1). Abbreviations: ATM, ataxia-telangiectasia mutated; ATR, ataxia-

telangiectasia and RAD3-related; CtIP, C-terminal binding protein–interacting protein; 

MRE11, meiotic recombination 11 homolog 1; MRN, MRE11–RAD50–NBS1 complex; 

NBS1, Nijmegen breakage syndrome protein 1; NHEJ, nonhomologous end joining; 

RAD50, DNA repair protein RAD50; T-loop, telomere loop.
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Figure 6. 
MRN in host and virus responses. (a) The MRN complex inhibits viral replication via 

pathways linking DNA repair proteins and the innate immune response. The interaction 

between the MRN complex and viral DNA leads to local ATM activation that avoids cell 

cycle arrest and apoptosis, which is characteristic of global ATM signaling in DNA damage. 

The MRN complex promotes the formation of viral DNA concatemers (randomly fused long 

chains of viral DNA) in association with NHEJ proteins to help inhibit viral replication. 

MRN components furthermore promote the innate immune response by inducing interferon 

and cytokine production through pathways involving STING, IRF3, and NF-κβ. (b) Viruses 

neutralize the MRN complex by relocalization and/or degradation. The viral protein 

complex of E4-ORF6 and E1B-55K directs the MRN complex for degradation through 

ubiquitination (Ub). The viral protein E4-ORF3 relocalizes the MRN complex to the nucleus 

through sumoylation (Su) to promote viral replication by limiting MRN-promoted viral 
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DNA concatemer formation. Abbreviations: ATM, ataxia-telangiectasia mutated; CARD9, 

caspase recruitment domain-containing protein 9; DNA-PKcs, DNA-dependent protein 

kinase catalytic subunit; E1B-55K, a 55-kDa protein of adenovirus E1B gene; E4-ORF3, 

early region 4 of adenovirus open reading frame 3 protein; E4-ORF6, early region 4 of 

adenovirus open reading frame 6 protein; IFNs, type I interferons; IL-1β, interleukin 1 beta; 

IL-33, interleukin 33; IRF3, interferon regulatory factor 3; MRE11, meiotic recombination 

11 homolog 1; MRN, MRE11–RAD50–NBS1 complex; NBS1, Nijmegen breakage 

syndrome protein 1; NF-κβ, nuclear factor κβ; NHEJ, nonhomologous end joining; RAD50, 

DNA repair protein RAD50; STING, stimulator of interferon genes.
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