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Abraham Nitzan
School of Chemistry, the Sackler Faculty of Science, Tel Aviv University,
Tel Aviv, 69978, |srael

Abstract

Electron transmission through molecules and molecular interfaces has been a subject of
intensive research due to recent interest in electron transfer phenomena underlying the operation
of the scanning tunneling microscope (STM) on one hand, and in the transmission properties of
molecular bridges between conducting leads on the other. In these processes the traditional
molecular view of electron transfer between donor and acceptor species give rise to a novel view
of the molecule as a current carrying conductor, and observables such as electron transfer rates
and yields are replaced by the conductivities, or more generally by current-voltage relationships,
in molecular junctions. Such investigations of electrical junctions, in which single molecules or
small molecular assemblies operate as conductors constitutes a mgjor part of what has become
the active field of molecular electronics.

In this paper | review the current knowledge and understanding of this field, with
particular emphasis on theoretical issues. Different approaches to computing the conduction
properties of molecules and molecular assemblies are reviewed, and the relationships between
them are discussed. Following a detailed discussion of static junctions models, a review of our
current understanding of the role played by inelastic processes, dephasing and thermal relaxation
effects, is provided. The most important molecular environment for electron transfer and
transmission is water, and our current theoretical understanding of electron transmission through
water layers is reviewed. Finally, a brief discussion of overbarrier transmission, exemplified by
photoemission through adsorbed molecular layers or low energy electron transmission through
such layers is provided. Similarities and differences between the different systems studied are
discussed.



|. Introduction

Eledron transfer, a fundamental chemicd process underlying al redox readions, has
been under experimental and theoreticd study for many yeas.*® Theoreticd studies of such
proceses ek to understand the ways in which their rate depends on donor and acceptor
properties, on the solvent and on the dedronic coupling between the states involved. The
different roles played by these fadors and the way they affed qualitative and quantitative
aspeds of the dedron transfer processhave been thoroughly discussd in the past half-century.
This kind of processes, which dominates eledron transitions in moleaular systems, are to be
contrasted with eledron transport in the solid state, i.e. in metals and semiconductors.
Eledrochemicd readions, which involve both moleaular and solid state donor/acceptor systems,
bridge the gap between these phenomena.’ Here dedron transfer takes placebetween quasi-free
eledronic states on one side and bound moleaular eledronic states on the other.

The focus of the present discusson is another class of eledron transfer phenomena:
eledron transmisson between two regions of free or quasi-free éedrons through moleaules and
moleaular layers. Examples for such processes are photoemisson (PE) through moleaular
overlayers, the inverse process of low energy eledron transmisson (LEET) into metals through
adsorbed moleaular layers and eledron transfer between metal and/or semiconductor contads
through moleaular spaces. Figure 1 depicts a schematic view of such systems. the 'standard’
eledron transfer model in Fig. 1a shows donor and acceptor sites conneded by a moleaular
bridge. In Fig. 1b the donor and the accetor are replacal by continua of eledronic states
representing free space or metal eledrodes. (This replacanent can occur on one side only,
representing eledron transfer between a moleaular site and an eledrode). In Fig. 1c the
moleaular bridge is replacal by a molealar layer. A schematic view of the dedronic states
involved is $own in Fig. 2. The midde box represents the bridging moleaule or moleaular layer
and a set of levels{n} represents the relevant moleaular orbitals. In a 'standard' eledron transfer
system (Fig. 2a) this bridge @nnreds the donor and acceptor spedes, now represented by
potential surfaces associated with the vibronic structure of the @rresponding inramoleaular and

solvent nuclea motions. When the bridge cnneds two metal eledrodes (or separates a metal

substrate from vaauum) these nuclea baths are replacead by manifolds of eledronic states { 7}

and {r} that represent continua of free or quas-free déedron states in the substrates (or,
depending on the process in vaaum). In addition, coupling to the therma environment
(represented by the box ©) may affed transmisson through the bridge. The double arows in the
Figure represent the auplings between these different subsystems.



The first two of the examples given above, PE and LEET, involve dedrons of positive
energy (relative to zero kinetic energy in vaauum), and as such are related to normal scatering
processes. The third example, transmisson between two conductors through a moleaular layer,
involves negative energy eledrons and as such is closely related to regular eledron transfer
phenomena. The latter type of processes has drawn particular attention in recent yeas due to the
growing interest in conduction properties of individual moleaules and of moleaular assemblies.
Such processes have beamme subjeds of intensive reseach due to receit interest in eledron
transfer phenomena underlying the operation of the scanning tunneling microscope (STM) on
one hand, and in the transmisson properties of moleaular bridges between conducting leads on
the other. In the latter case the traditional moleaular view of eledron transfer between donor and
accetor spedes give rise to a novel view of the moleaule & a arrent carrying conductor, and
observables such as eledron transfer rates and yields are replacel by the conductivities, or more
generadly by current-voltage relationships, in moleaular junctions. Of primary importance is the
need to understand the interrelationship between the moleaular structure of such junctions and
their function, i.e. their transmisson and conduction properties. Such investigations of eledricd
junctions, in which single moleaules or small moleaular asemblies operate & conductors
conreding ‘traditiona' eledricd components such as metal or semiconductor contads,
congtitute amajor part of what has become the adive field of molealar eledronics.”*’ Their
diversity, versatility and amenability to control and manipulation make moleaules and moleaular
assemblies potentially important components in nano-eledronic devices. Indeed basic properties
pertaining to single dedron transistor behavior and to current redificaion have dready been
demonstrated. At the same time mgor difficulties lie on the way to red tednologicd
applications.’® These difficulties dem from problems as®ciated with the need to construct,
charaderize control and manipulate small moleaular structures at confined interfaces with a
high degree of reliability and reproducibility, and from issues of stability of such small
junctions.

It should be obvious that while the different processes outlined above crrespond to
different experimental setups, fundamentaly they are @ntrolled by smilar physicd fadors.
Broadly spe&king we may distinguish between processes for which lifetimes or rates (more
generally the time evolution) are the main observables and those that monitor fluxes or currents.
In this review we focus on the second class which may be further divided into processes that
measure airrent-voltage relationships, mostly nea equili brium, and those that monitor the non-
equili brium eledron flux, e.g. in photoemisson experiments.



Notations. A problem charaderistic to an interdisciplinary field such as the one we ae wvering
is that notations that became standard in particular disciplines overlap similarly standard
notations of other disciplines. The T operator of scatering theory and the temperature wnstitute
one example; the B parameter of of bridge mediated eledron transfer theory and the inverse
(temperaturexBoltzmann constant) is another. | have therefore used non-standard notations for

some variables in order to avoid confusion. Following is a list of the main notations used in this

article.

Notation Variable

T Scatering operator

T Transmisson coefficient

C) Temperature

p (ke®)*

S Range parameter in eledron transfer rate theory

g Conduction

o Used in different contexts for conductivity and for the
reduced system's density operator.

I Current

J Flux

p Used in different contexts for charge density and for the
density operator of the total system

Er Fermi energy (Er. and Err sometimes used for 'left' and
'right’ eledrodes)

U Eledron eledrochemicd potential (u. and pr sometimes
used for 'left' and 'right’ eledrodes)

F the thermaly averaged and Franck Condon (FC)
weighted density of nuclea states

F System-thermal bath interadion. In spedfic cases we
also use Hg-ph

\% Eledronic coupling between zero order moleaular states

H System's Hamiltonian

Hg Bridge Hamiltonian

Ho Hamiltonian of the thermal bath (in some spedfic cases
we ds0 use Hph

Z Overlap Matrix:  Z;=<i|j>

I EZ-H




Combined system+thermal bath Hamiltonian

S S matrix

v Spedl

() Potential or potential difference
z Sdf energy

r Width (decy rate)

Acronyms

MMM Metal-Moleaule-Metal (junction)
MIM Metal-1nsulator-Metal (junction)
EH Extended Huckel

HF HartreeFock

FC Franck-Condon

ST™M Scanning tunneling microscope
LEET Low energy eledron transmisson
PE Photo-emisson

2. Theor etical approachesto molecular conduction

The focus of this ®dion is eledron transfer between two conducting eledrodes through
a moleaular medium. Such processes bea strong similarity to the more nventional systems
that involve & least one moleaular spedes in the donor/acceptor pair. Still, important conceptual
issues arise from the fad that such systems can be studied as part of complete dedricd circuits,

providing current-voltage dharaderistics that can be analyzed in terms of moleaular resistance,

conductance and cgpadtance

2.1. Standard electron transfer theory

To set the stage for our later discusson we first briefly review the rate expressons for
'standard’ eledron transfer processes (Figs. 1a, 2a, 3a). We focus on the particular limit of non-

adiabatic dedron transfer, where the dedron transfer rate is given (under the Condon

approximation) by the golden rule based expresson
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Ke =7IVDA v (1)
where Vpa is the wupling between the donor (D) and acceptor (A) eledronic states and where

F=F(Ew)=3 Y Puleoo))|Vo V) 8(eava) ~8(vo) *Eo) ()

is the thermally averaged and Franck Condon (FC) weighted density of nuclea states. In Eq. (2)
vp amd  denote donor and acceptor nuclea states, Py, isthe Boltzamnn distribution over donor

states, &,(vp) and €,(v,) are nuclea energies above the crresponding eledronic origin and
Exp = EL—E, is the dedronic energy gap between the donor and acceptor states. In the
clasgcd limit F isgiven by

(M+Ejp ) 14210

JAmk,0 ©

where kg is the Boltzmann constant and © is the temperature, and where A is the reorganization

F(Ewp) =

energy, a measure of the dedronic energy that would be disspated after a sudden jump from the
eledronic state describing an eledron on the donor to that associated with eledron on the
accetor. If the donor (say) is replace by an eledrode,® ** 2° we have to sum over al occupied
eledrode states

IVou [ F O Z f(e)F (& —eP) Vi [ = [def (e) F(e —@)25(8—&) Vi [ (4)

where

1

©)

is the Fermi-Dirac distribution function with € measured relative to the dedron chemicd
potentia u in the dedrode, and ®, which determines the position of the accetor level relative

to p isthe overpotential. Defining
25(8—&) Vi =V (8) P (6)

the detcron transfer rate takes the form

~(A—ed+e)’ 14Akg©

JA4mkg®

Note that the reorganizaion energy that appeas in Eq. (7) is associated with the diange in the

vV (&)t (e) (7)

ket = %J’dg €

redox state of the moleaular spedes only. The nomina change in the 'oxidation state' of the



maaoscopic dedrode does not affed the polarization state of the surrounding solvent becaise
the transferred eledron or hole do not stay locdized.

Much of the ealy work on eledron transfer have used expressons like (3) and (7) with
the dedronic coupling term Vpa used as a fitting parameter. More recant work has focused on
ways to charaderize the dependence of this term on the dedronic structure of the
donor/acceptor pair and on the environment. In particular, studies of bridge mediated eledron
transfer, where the donor and acceptor spedes are rigidly separated by moleaular bridges of well
defined structure and geometry have been very valuable for charaderizing the interrelationship
between structure and functionality of the separating environment in eledron transfer processs.
As expeded for atunneling process the rate is found to deaease exponentialy with the donor-
acceptor distance

ke = ko0 (®)
where f' is the range parameter that charaderizes the distance dependence of the dedron
transfer rate. The smallest values for 3 are found in highly conjugated organic bridges for which

B is in the range 0.2-0.68"%32 |n contrast, for free space taking a charaderistic ionizaion

barrier Ug =5eV we find B'=8mUg /7% =2.4A™ (m is the dedron masg Lying between
these two regimes are many motifs, both synthetic and natural, including cytochromes and
docked proteins,***' DNA,***° and saturated organic moleaules®*®’ Each displays its own
charaderistic range of B values, and hence its own timescdes and distance dependencies of
eledron transfer. A dired measurement of f' adong a single moleaular chain was recenttly
demonstrated.®

In addition to bridge asssted transfer between donor and acceptor spedes, eledron
transfer has been studied in system where the space is a well charaderized Langmuir-Blodgett

film.>%%! The scanning tunneling microscope provides a natural apparatus for such studies.®® %

77-79 80-84
S

¢ Other approaches include bre&k junction: and mercury drop contads.

Simple theoreticd modeling of Vpa usually relies on a single dedron (or hole) picture in
which the donor-bridge-accetor (DBA) system is represented by a set of levels
|D>|A>{|1>,...|N >} asdepicted in Fig. 3. In the &sence of coupling of these bridge states
to the therma environment, and when the energies E, (n=1,...N) are high relative to the energy
of the transmitted eledron (the donor/acceptor orbital energies in Figs. 1a, 2a aad 3a or the
incident eledron energy in Figs. 1b-c, 2b and 3b), this is the super-exchange model for eledron

transfer. % Of particular interest are situations where {n} are locdized in space, so that the state



index n corresponds to position in space between the donor and acceptor sites (Fig. 3a) or
between the two eledron reservoirs (Fig. 3b). These figures depict generic tight binding models
of this type, where the states n=1,...,N are the bridge states, here taken degenerate in zero order.
Their locdized nature makes it possble to assume only neaest neighbor coupling between
them, i.e., Vi n» =V n+19nns1- We recdl that the gpeaance of Vpa in Eq. (1) is a low-order
perturbation theory result. A more genera expresson is obtained by repladng Vpa by Tpa Where
the T operator is defined by T(E) =V +VG(E)V , with G(E) = (E-H + (1/2)i") ! and where I
stands for the inverse lifetime matrix of bridge levels. Asauming for smplicity that the donor
level |D> is coupled only to bridge state |1> and that the accetor level |JA> is coupled only to
bridge level N, the dfedive mupling between donor and acceptor is given by
Tpa(E) =Vpa +Vpi1Gin (E)Vna 9)

This naturally represents the transition amplitude & a sum of a dired contribution, Vpa, which is
usualy disregarded for long bridges, and a bridge mediated contribution. In using Tpa instea of
Vba in EQ. (1) the energy parameter E in (9) should be taken equal to Ep=Ea at the point where
the aorresponding potential surfaces cross (or go through an avoided crossng). For the level
structure of Fig. 3a that corresponds to the DBA system in Fig. 1a, making the tight binding
approximation and in the wee&k coupling limit, max |V |« min(Eg - E) ,* the Green's function
element in (9) isgiven by

( ) ] N—l Vn’n+1 ( O)

For a model with identicd bridge segments E, and Vnn+1 are independent of n and will be
denoted E,=Eg and V,n+1=Vs. Using thisin Eq. (1) leadsto

D ul
o =2 MoVl Ve (11
h Vs DAEB L

where AE; = E; —E. Similarly, for a bridge esdsted transfer between a moleaule and an

eledrode, Eq. (7) appli&ewith IV()]? given by

DV

V(e) = m 3 olee )vlkaA

(12

B

These results imply a simple form for the distance parameter 3 of Eqg. (8)

2 For agenerali zaion of Eq. (10) that does not assume weak coupling seeRef. #and &', Seealso %8,
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where a measures the segment size, so that the bridge length is Na. The exponential dependence
on the bridge length is a manifestation of the tunneling charader of this process For typicd
values, e.g. AEg/Vg =10 and a=5A, Eq. (13) gives B'=0.928*. More rigorous estimates of the

eledronic upling term in eledron transfer processs involve dedronic structure cdculation
for the full DBA system. Such cdculations, in the @ntext of moleaular conduction, will be
discussed later.

2.2. Transmission between conducting leads

Egs. (1), (7) and (11) are expressons for the rate of eledron transfer between donor and
acceptor moleaules or between a moleaule and a metal eledrode. As aready mentioned, for
eledron transfer in metal-moleaule-metal (MMM ) junctions, the primary observable is the
current-voltage characteristics of the system. Putting another way, while the primary observable
in 'standard’ charge transfer processes involving moleaular donors and/or acceptors is a transient
quantity,” in MMM junctions we focus on the steady state current through the junction for a
given woltage diff erence between the two metal ends.

Consider first a smple model for a metal-insulator-metal (MIM) system, where the
insulator is represented by a mntinuum charaderized by a diledric constant €.2° For spedficity
asuume that the dedrode surfaces are infinite parallel planes perpendicular to the x diredion. In
this case the transmisson problem is essentially 1-dimensional and depends only on the incident

particle velocity in the x diredion, v, =./2E,/m. In the WKB approximation the transmisson
probability is given by

T(E,) =exp E—%Ij @m(UB(x)—EX)QMdXE (14)

where Ug(x) is the barrier potential that determine the turning points s; and s, and m is the mass
of the tunneling particle. The tunneling flux is given by7 (E,)n(E,)+/2E,/m, where n(E,) is

the density per unit volume of eledrons of energy Ey in the x diredion. n(Ey) is obtained by

® In addition to rates, other observables are the yields of different products of the dedron transfer reaction.
Furthermore, for light induced eledron transfer processes, the steady state aurrent under a constant ill umination can
be monitored.
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integrating the Fermi-Dirac function with respect to E, and E,. When a potential ® is applied so
that the right electrode (say) is positively biased, the net current density is obtained in the form®

J :}dExT (Ex)é(Ey) (15)
0
where
_2mte O, % _ 4rmme ©
E(E)) = oy? _J;duy_J; du,[f(E)- f(E+ed)] = (27Th)3£dEr [f(E) - f(E+ed)]

(16)
and where E, =E-E, =(1/ 2)m(uy2 +u22) is the energy in the direction perpendicular to x. In
obtaining this result it is assumed that the electrodes are chemically identica. At zero
temperature and when @ - 0, f(E)- f(E+e®)=ed®d(E-Er). Egs. (15) and (16) then lead
to an expression for the conduction per unit area, i.e. the conductivity per unit length

2 Er

= AT [ BT () (17)
0

 (m)?

Ox

For finite ® these expressions provide a framework for predicting the current-voltage
characteristics of the junction; explicit approximate expressions were given by Simmons. .
Here we only emphasize,®, that the dependence on @ arises partly from the structure of Egs.

(15) and (16), for example, at zero temperature

Armmze? U Er —e® Er C
J= o) %CD J' dE,T(E,)+ J' dE, (Er —E,)7 (E,)L, (18)
0 Er—ed

but mainly from the voltage dependence of 7. The smplest model for a metal-vacuum-metal

barrier between identical electrodes without an externa field is a rectangular barrier of height
above the Fermi energy given by the metal workfunction. When a uniform electric field is
imposed between the two metals a linear potential drop from Er on one electrode to Er-ed on
the other is often assumed (see fig. 4). In addition, the image potential experienced by the
electron between the two metals will considerably modify the potential barrier. For a point
charge e, located at position x between two conducting parallel plates that are a distance d apart,
the image potentia is

Vi =SB ft Y O (19)
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where € isthe dieledric constant of the space. For x=d/2 this becomes

__€In2
! 2red

This negative cntribution to the eledron’s energy reduces the potentia barrier (Fig. 4), and has

(20)

been invoked to explain the lower than expeded barrier observed in STM experiments.®® %

Some points ould however be kept in mind. First, the dasgcd result (19) fails close to the
metal surfacewhere quantum mechanicd and atomic size dfeds change both the position of the
reference image plane and the functional form of the image potential.’*°® Seand, consideration
of the dynamic nature of the image response should be part of a mmplete theory.?”° 1099 The
timescde of eledronic response of metals can be roughly estimated from the plasma frequency
to be ~10™"%. This sould be mmpared to the time during which a tunneling particle can respond
to interadions locdized in the barrier. For transmitted perticles this is the traversal time for
tunneling'®" 1%2 (see Sedion 3.1) that, for an eledron traversing a 108 wide 1eV barrier is of the
order of ~1fs. This comparison would justify the use of the static image gproximation in this
context, but this approximation beames questionable for degoer tunneling or narrower barriers.

The planar geometry implied by the assumption that transmisson depends only on the
energy of the motion paralel to the tunneling dredion, as well as the explicit form of Eq. (14)
are not valid for a typicd STM configuration that involves a tip on one side and a structured
surfaceon the other. To acmunt for these structures Tersoff and Hamman'®® have gplied the
Bardeen's formalism'®* which is a perturbative gproach to tunneling in arbitrary geometries.
The Bardeen's formula for the tunneling current is®

| :4%62[1:(5)(1— f(Er +e<D))—(1— f(EI))f(Er +eq))]|er |2 5(E| _Er) _
: (21
ZTITeZ[f(EJ‘ f(E "'e<13)]|MIr F 3(E -E)

where

M, =[Sy 0w, ~w0y;) (22

© This is just the Golden rule rate expresson (multiplied by the dedron charge &, with M playing the role of
coupling. In Ref.» only the first term in the square brackets of the first line appears. This gives the partial current
from the negative to the positive dedrode. The net current is obtained by subtracting the reverse arrrent as siown
in Eq. (21). Also, compared with Ref!®® Eq. (21) contains an additional factor of 2 that acoounts for the spin
multi pli city of the dedronic states.
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is the transition matrix element for the tunneling process In these euations (, and Y are

eledronic agenstates of the negatively biased (left) and positively biased (right) eledrodes,
respedively, ® is the bias potentia and the integral is over any surface separating the two
eledrodes and lying entirely in the barrier region. The wavefunctions appeaing in Eq. (22) are
eigenfunctions of Hamiltonians that describe eat eledrode in the &sence of the other, i.e
interfaced with an infinite space medium. These functions therefore decay exponentialy in the
spacebetween the two eledrodes in a way that refleds the geometry and chemica nature of the
eledrodes and the space. For ® - 0 Eqg. (21) yields the conduction

g=|__4ne2
T® K

le\/hr I 0(E - E:)O(E, —E) (23

Tersoff and Hamman'®® have used substrate wavefunctions that correspond to a @rrugated
surfaceof a generic metal while the tip is represented by a sphericd s orbital centered about the
center rq of the tip curvature. In this case they find

1 0°S o (r0)* 8(E, - E¢) (24)

Ther.h.s. of (24) is the locd density of states of the metal. While this result is useful for analysis
of gpatia variation of the tunneling current on a given metal surface the contributions from the
coupling matrix elements in (23) can not be disregarded when comparing dfferent metals and or
different adsorbates.?°

2.3. The Landauer Formula

The results (14)-(17) and (21)-(23) are spedal cases of a more systematic representation
of the mnduction and the arrrent-voltage charaderistic of a given junction due to Landauer.'®>
106 ) andauer's original result was obtained for a system of two 1-dimensional leads conneding
two maaoscopic dedrodes (‘eledron reservoirs) via a scdtering objed or a barrier

charaderized by a transmisson function Z(E). The zeo temperature conductance, measured as

the limit ® - 0 of the ratio |/® between the arrent and the voltage drop between the reservoirs,

was found to be®

4 The crresponding resitance, g™, can be represented as a sum of the intrinsic resistance of the scatterer itself,

-1 -1
gezlm‘q)(T /(1—’7))5 and a contribution (62 /nh) from two contact resistances between the leads and

the reservoirs. SeeChapter 5 of *°” for a discusson of this point.
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.
=—7T(E 2
g T (Er) (29)
This result is obtained by computing the total unidiredional current carried in an ided lead by
eledrons in the energy range (0,E)=(0,7%ke?/(2m)). In a 1-dimensional system of length L the

density of eledrons, including spin, with wavevedors in the range between k and k+dk is
n(k)dk =21/ L)(L/2m) f (E,)dk = f (E,)dk/m. The corresponding velocity is v =hk/m.
Thus

I(E) = eJ’:E dku(k)n(k) = eJ’:E dk (72k/m) f (E, )/ = %J’OEdE' f(E) (26
At zero temperature, the net current carried under bias @ is
:iI“dE(f(E)—f(E+e¢))D %ﬁﬁicb 27)
1Th Jo 1Th

Thus the mnductance of an ided 1-dimensional led is I/<D:e2/nh:(12.9KQ)_1. In the

presence of the scaterer thisisreplaced by
2
_ e _ -6, €
== dET (E)(f(E)- f(E+e®)) D BOATro. =7 (Ep)o (28)

which leads to (25). This result is vallid for 1-dimensional leads. When the leals have finite size
in the diredion normal to the propagation so that they support traversal modes, a generalizaion
of (25) to this case yields'*®
e e’
:E;Tij(EF):ETr (ss )E (29

F
where Tij:|sj|2 is the probability that a carier coming from the left (say) of the scaterer in

transversal mode i will be transmitted to the right into transversal mode j (S;, an element of the
S matrix, is the crresponding amplitude). The sum in (29) is over al traversal modes whose
energy is snaler than Er. More generdly, the arrent for a voltage difference ® between the

eledrodesis given by

| =}dE[f(E)— f(E+e¢)]@ (30

® The analog of Eq. (29) for the microcanonical chemical reaction rate was was first written by Mill er*®®. Similarly,

Eq. (34) was first written in asimilar context in Ref. 1%,
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2
9(E) =~ 7 (E) (31)
nh; J

As an example mnsider the cae of a smple planar tunnel junction (see Egs. (14)-(17)),
where the scatering process does not couple different transversal modes. In this case the

transmisson function depends only on the energy in the tunneling dredion

S T (E) = zT,,(E)— ZIdkyIdkT% (h2/2m)(k K, )E

L (32
Z’sz IdE T(E-E,)
@m? h
E; isdefined below Eq. (16). Using thisin Eqg. (29) yields the conductivity per unit length
2 Er
9 -g-mme f dE, T (E,) (33

in agreament with Eq. (17).

Similarly, Egs. (21) and (23) are ealy seen to be euivalent to (25) or (31) if we
identify M, with Ty, in Eq. (37) below. An important difference between the results (29) and (31)
and results based on the Bardeen's formalizm, Egs. (21)-(23), is that the former are valid for any
set of transmisson probabilities, even close to 1, while the latter yields a weak coupling result.

Another important conceptual differenceis the fad that the sumsover ¢ and r in Egs.(21)-(23) is

over zero order states defined in the initial and final subspaces, while the sums in Egs. (29)-(31)
IS over scdtering states, i.e. eigenstates of the exad system's Hamiltonian. It is the essesnce of

104

Bardeen's contribution " that in the weg coupling limit (i.e. high/wide barrier) it is possble to

write the transmisson coefficient 7 in terms of a golden rule expresson for the transition

probability between the zeo order standing wave states || > and |r > locdized on the left and

right eledrodes, thus establishing the link between the two representations. (For an alternative
formulation of thislink seeRef. 119

To explore this connedion on a more formal basis, we can replacethe expresson based

on transmisson coefficients 7 by an equivalent expresson based on scatering amplitudes, or T

matrix elements, between zero order states locdized on the dedrodes. This can be derived

direaly from Egs. (29) or (31) by using the identity
S 7; (E) :4nzzm * 5(E-E)3(E-E) (34)
1] ,r
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On the left sde of (34) a pair of indices (i,j)) denote a exad scatering state of energy E,
charaderized by an incoming state i on the left (say) eledrode and an outgoing state j on the
right eledrode. On the right, | and r denote zeo order states confined to the left and right
eledrodes, respedively. T is the orresponding transition operator whose particular form
depends on the details of this confinement. Alternatively we can start from the golden-rule-like

expresson

| :e%zaf(a)(l—f(a +ed))- H(E +ed)(1- f(E))HT, F 5(E -E) =
47'[e’r (39
== Y [(E)= (€ +e@)]IT, F 5(E -E)

(An additional fador of 2 on the r.h.s. acmunts for the spin degeneragy). It is convenient to
recast thisresult in the form

4me” 2
| :%e‘([dE[f(E)—f(E+e‘D)]Z|-ﬁr| S(E-E)O(E-E)=

(39)
_ _ 9(E)
—‘([dE[f(E) f(E+ed)] T
where
g(E)E“’;e S 1T, [ (E-E)S(E-E) (37)

Note that Egs. (34) and (37) imply again Eqg. (31). For ® - 0 Egs. (36) and (37) leadto | = g®
with

9=9(E) (39)
The analogy of this derivation to the result (23) is evident.

2.4. Molecular conduction

Egs. (36)-(38) provide a onvenient starting point for most treaments of currents
through moleaular junctions where the coupling between the two metal eledrodes is wedk. In
this case it is convenient to write the system's Hamiltonian as the sum, H =Hy +V , of a part Ho
that represents the uncoupled eledrodes and space and the wupling V between them. In the
week coupling limit the T operator

T(E)=V+VG(E)V ;  G(E)=(E-H+ig)™" (39)
is usualy replacel by its foond term only. The first ‘dired’ term V can be disregarded if we

asume that V couples the states ¢ and r only via states of the molealar space. Consider now a
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simple model where this gace is an N-site bridge mwnneding the two eledrodes  that site 1 of

the bridge is attadhed to the left eledrodes and site N - to the right eledrode, a variant of Fig. 3b.

In this case we have T, =V,,G,\V,, , SO that at zero temperature'*> 112

> T (E) =G (E-) F TV (BT (Ee) (40)
and (using Egs. (36) and (37))
_ € g 2 (L R
I(¢)—EEF__[@dEIGlN(E,¢)I FP(E)F\(E +ed) (41)

with
(=213 Naf 6E-E) i MPE)=213 IV, [ 5(E,-E) (42

The Green's function in Eq. (40) is itself reduced to the bridge's sibspaceby projeding out the
metals degrees of freedom. This results in a renormalization of the bridge Hamiltonian: in the

bridge subspace
(E-H+in)™ ~ (E-Hg -Zg(E))™ 43
where Hg = HQ +Vg isthe Hamiltonian of the isolated bridge entity with

N
Hg:zEn|n><n|; vB=ZZVn,n-|n><n'| (49
=1 =

and where in the basis of eigenstates of H{

%o (E) =80 (81 + 80 )[An(E) — W/ 2)iT (E)] (45)

Fa(B)=2my Vi P 8(E-E)) (46)
_PP > . Th(E)

An(E) = Zn_[_de (E-£) (47)

In EQ. (46) the sum is over both the right and the left manifolds, i.e., j goes over all states {1}
and {r} in these manifolds) so that ', ="+ ™ ; h=1,N . The transmisson problem is thus

reduced to evaluating a Green's function matrix element and two width parameters. The first

cdculation is a simple inversion of a finite (order N) matrix. The width ' and and the asciated

shift A\, represent the finite lifetime of an eledron on a moleaule asorbed on the metal surface

113 114 In

and can be estimated, for example,” using the Newns-Anderson model of chemisorption.
the simple tight binding model of the bridge and in the we&k coupling limit, Gy is given by Eq.

(10) modified by the inclusions of the self energy terms
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Vi NIV
E-E-%(E))(E-Ey —Zn(E)) j=2 E~E;

G (E) = ( (48)

Eqgs. (40)-(48) thus provide a @mplete smple model for moleaular conduction, equivalent to

115116 and references

similar approximations used in theories of moleaular eledron transfer.(e.g.
therein) For applications of variants of this formalism to eledron transport in spedfic systems

seeRefs, 887117118 Baow we discussmore general forms of this formulation.

2.5. Relation to electron transfer rates

It is interesting to examine the relationship between the conduction of a moleaular
spedes and the dedron transfer properties of the same spedes.” We should ke in mind that
because of tunneling there is always an Ohmic regime nea zero bias, with conduction given by
the Landauer formula. Obvioudly this conduction may be extremely low, indicaing in pradice
an insulating behavior. Of particular interest is to estimate the dedron transfer rate in a given
donor-bridge-accetor (DBA) system that will trandate into a measurable conduction of the
same system when used as a moleaular conductor between two metal leads. To this end consider
a DBA system, with a bridge that consists of N identicd segments (denoted 1,2,...N) with
neaest neighbor coupling Vs. The dedron transfer rate is given by Eqg. (11) that we rewrite in
the form

21T
Kp_.a= 7[\/D1VNA|2 Gin (ED)|2 F (49

where, in the week coupling limit, |Vg| <| Eg —E | (cf. Eq. (10))

|\/B|N—1
B)=—"—x (50
R Tr=
and where F is the Franck-Condon-weighted density of nuclea states, given in the dasscd

limit by Eq. (3). The gpeaance of F in Eq. (49) indicaes that the processis dominated by the

change in the nuclea configuration between the two locdizaion states of the dedron. Suppose
now that the same DBA complex is used to conned between two metal contads such that the

donor and acceptor spedes are demisorbed on the two metals (denoted 'left' and 'right'

"Nitzan A. To be published. Such an estimate was given before in Ref.*°, but the procedure given thereis limited
to a 1-dimensional model, and has disregarded the Franck-Condon factor in the dedron transfer rate. The
procedure outlined here is more general.
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respectively). We wish to calculate the conduction of this junction and its relation to kp _ a-
First note that the conduction process does not involve localized states of the electron on the

donor or the acceptor, so the factor F will be absent. (We will disregard for the moment energy

loss arising from transient distortions of the nuclear configuration associated with transient
populations of electronic states of the DBA complex). Assuming as before that states of the
molecular complex are coupled to the metal only viathe D and A orbitals, and that the latter are
coupled only to their adjacent metal contacts, the conduction is given by an equation similar to
(40), except that the bridge (1,...,N) is replaced by the complex DBA=(D,1,...,N,A)
e2
9(E) = %IGDA(E) FriY(E)rd(e) (51)
where, in analogy to Eq. (48)
Vb1iVha
E-Ep -Zp(E))(E-Ea-Za(E)

Gpa(E) = ( )GlN (E) (52)

Since the donor and acceptor species are chemisorbed on their corresponding metal contacts,
their energies shift closer to the Fermi energies. We assume that this shift occurs uniformly in
the DBA complex, without distorting its internal electronic structure (strictly speaking this can
happen only in the symmetric case of identica donor and acceptors and identical metal
electrodes, but the result of Eg. (53) below is probably a good approximation for more general
cases because Gin(E) is often not strongly dependent on E). Assuming therefore that the
denominator in (52) is dominated by the imaginary parts of the self energies 3, we get

6e” |VD1VNA |2

1 2
=q(E.) = G, (E Er=E, =E 33
g g( F) 7Th F(DL)(EF)FEAR)(E,:)I lN( F)I F D A ( )
Comparing to Eq. (49) we get
2
e” k 8h
g=—-—2=4 (54)

m FoagOr®
It has been argued that, provided the energy spacing Eg-Er between the bridge levels and the

Fermi energy is large relative to ksT, EQ. (54) holds aso when the electron transfer process
involves thermal activation into the bridge states (and not only for the bridge assisted tunneling

implied by Eq. (53)).**° Using the classical expression for F, Eq. (3), we have in the present

case F = ( [4TA kT )_1 exp(=A/4kgT). For atypical value of the reorganization energy ~0.5€V,

and at room temperature this is ~ 0.02(eV)™. Taking dso 'Y =r'®-~0.5ev leads to
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g~ (ezlm‘q)(lo_BkDﬁ A(s_l)) O %0_17 kp .. A(s_l)ElQ_l. This sts a aiterion for observing

Ohmic behavior for small voltage bias in moleaular junctions: With a arrrent detedor sensitive

to pico-amperes, kp . a has to exceal ~10°s* (for the estimates of F and I given above) before

measurable arrent can be observed at 0.1V voltage acoss sich ajunction.

2.6. Quantum chemical calculations
The simple models discussed above ae useful for qualitative understanding of moleaular
conductivity, however the Landauer formula or equivalent formulations can be used as a basis

for more rigorous moleaular cdculations using extended Huckel cdculations’®’? 79 124135

or
Hartree Fock*®%°. These gproaches follow similar semiempiricd and ab-initio cdculations of
eledron transfer rates in moleaular systems,**° however instead of focusing on the cmputation
of the dedronic coupling Vpa nealed in Egs. (1), the sum in Eq. (34) is cdculated dredly.
Structural stability considerations suggest that useful metal-moleaule-metal bridges $ould
involve strong chemisorption bonding between the moleaule and the metal substrate, implying
large dedronic coupling between them.**! It is therefore preferable to use a'supermolealle
approad, in which the quantum chemicd cdculations are caried for a spedes that comprises
the moleaule and two clusters of metal atoms, so that the reduction that introduces the self
energy 2 (Eg. (43) is done & some degrer metal-metal contad. Such atomic level cdculations
usudly start from a (non-orthogonal) basis st of atomic orbitals, so the formalism described
above has to be generdlized for this stuation.? We dso relax the assumption that the moleaule-

metal contad is represented by coupling to a single moleaular orbital. Defining the operator

H(E)=EZ-H with z; =<i| j > (59
the Green's function is G(E)=H(E)™. In Eq. (55), i and j denote @omic orbitals that may be

assgned to the supermoleaule (M), the left metal (L) and the right metal (R) subspaces.
Denoting formally the wupling between the subspace M and the subspaces K=L,R by the

corresponding submatrices Hivk, the Grean's function for the supermoleaule subspaceis

M () = (& -z -z ® )_1 (56)

9 Alternatively, it has been shown by Emberly and Kirczenow™****3that one @n map the problem into anew Hil bert
spacein which the basis dates are orthogonal.
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with"
50 = By (H ™)k Him (57
Using also
Ir = z H\nGpnH ¢ (58)
n,n'

(I and r in the metal L and R subspaces, respedively; n,n" in the supermoleaule subspace in Eq.
(37) leadsto

2
9(E) :%w g‘,(M’(E)r(R’(E)G(M’ (E)F(L)E (59

where, e.g. for the 'left' metal

rﬁh)] = 2712 HyH,,0(E-F) (nandn'inthe moleailar subspace (60)
I

In pradice ~ and I = -2Im(XZ) can be @mputed by using closure relations based on the

symmetry of the metal lattice’? The trace in Eq. (59) is over al basis dates in the
(super)moleaular subspace The evaluation of the Green's function matrix elements and of this
traceis draightforward in semi-empiricd single dedron representations uch as the extended
Huckel (EH) approximation, and can be smilarly done & the HartreeFock (HF) level using,
after convergence, the Fock rather then the Hamiltonian matrix in Expressons (55)-(60).

An important attribute of the gproac described above is that, within the gproximation
used, it provides the total current caried by the system, both through the unoccupied moleaular
levels (eledron conduction) and the occupied ones (hole conduction). This results from the faa
that the tracein (59) is over al the @omic orbitals that comprise the (super)moleaular basis <,
that upon diagondizaion in the (super)moleaular Hamiltonian will yield both occupied and
unoccupied moleaular orbitals. In a 1-eledron theory such as the extended Huckel
approximation both types of orbitals contribute in the same way. For example, the termsin Eq.
(59) that describe an eledron moving from the highest occupied moleaular orbital (HOMO) into
empty states of the anode, followed by an eledron moving from the cdhode into the HOMO

h 5(K)is a marix in the molealar subspace and Eq. (57) is a compact notation for
K — -1 . .
(Z( ))n,n' = zk,k'an(H )k H oy wherek and k' are statesin the metal K subspace

' Note that the Fock operator depends on the ground state dedronic configuration. The latter istaken in Refs, 136139,

to be that of the isolated supermoleaule, asaiming that the ntact with the bulk eledrodes does not affed it

appredably. In particular, the supermoleaule is usuall y assumed neutral in these @lculations.
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("hole transport™), and an eledron moving from the cahode to the lowest unoccupied moleaular
orbital (LUMO) then moving on into the cdhode ("eledron transport”) are similar (their values
depend on the energies of the moleaular orbitals involved with respeds to the Fermi energies),
irrespedive of whether the corresponding orbitals are occupied or not. The same is true in the

HF cdculation if the Koopmans theorem,**

stating that the HF orbital energies represent the
adual energies involved in removing an eledron from an occupied orbital or putting an eledron
into an unoccupied one, holds. The Koopman's theorem is acarate only for large systems, and
the gproximation involved in applying it to smal systems is one reason why HF is not
necessrily superior to EH for cdculating the onduction properties of smal moleaular
junctions!

In spite of these limitations, EH and HF based cdculations have provided important
insight into the @nduction properties of moleaular junctions. Fig. 5 shows a remarkable
example. The (EH) cdculation is done for a single a,a’-xylyl dithiol moleaule adsorbed between
two gold contads. The eperiment monitors the arrent between an STM tip (obtained by
cutting a Pt/Ir wire) and a monolayer of such moleaules deposited on gold, and it is assumed that
lateral interadion between the moleaules is unimportant. Two unknown parameters are used for
fitting. The first is the position of the metals Fermi energy in the unbiased junction relative to

the moleaular energy levels expressed by Epy =Ef —Ejomo - The seand describes the

eledrostatic potential profile dong the junction, represented by a parameter # that expresses the
distribution of the voltage drop between the two metal leads (seeFig. 6 and Eq. (71) below). As
sea in Fig. 5, good agreament between theory and experiment is obtained for Er3=0.9eV and
n=0.5.

I Thisis true particularly for LUMO dominated conduction, because the HF is notoriously inadequate for eledron
affiniti es.**>28, See'*for further discusson of this point. Another potential (but in principle avoidable) problem in
these @lculations is associated with the finite, relatively small basis of atomic orbitals used. Close to resonance
when the dedrode dedrochemical potential p= Er+ed approaches the HOMO or LUMO energies, the
corresponding HOMO or LUMO orbitals dominate the dedron transfer and a small basis that describe @rredly
these orbitalsis sufficient. When Er is a distance AE away from Epomo O ELumo, @l moleadlar orbitalsin the range
AE below Eomoand in asimilar range abowve E_yvwo, €an contribute to the transmisson probability and cannot be
ignored, implying the neel for a larger molealar basis.***'%. We note in passng that the recently discussed
transmisson antiresonances™%**° assciated with the non-orthogonality of the atomic orbital basis ts, have been

shown'!! to be sometimes artifacts of a small basis calculation.
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In view of the other unknowns, associated both with the uncertainty about the junction
structure and with the simplified computation, the main value of these results sould be placed
not in the &solute numbers obtained but rather in highlighting the importance of these
parameters in determining the junction conduction behavior. We return to the issuie of the
junction potentia profile below. Other qualitative issues that were investigated with these types
of cdculations include the dfed of the nature (length and conjugation) of the moleaular bridge,
128 129 the dfed of the moleaule-dledrode binding and of the moleaular binding site,**? the
relation of conductance spedra to moleaular eledronic structure’® and the dfed of bonding

molealar wires in parallel.**° (See 4so Ref. 1)

2.7. Spatial-grid based pseudopotential approaches

Another way to evaluate the expressons appeaing in Egs. (34) and (37) as well as
related pertidl sums is closely related to the discrete variable representation of readion
probabili ties as formulated by Seideman and Mill er.*>**>* We have drealy seen that the sum

S(E) = ZITn [ S(E-E)S(E-E) (61)

which is related to the cnduction by g(E) = (4r1e” / h)S(E) (c.f Eq. (37)) can be represented by
(c.f. Eq. (59)

S(E) = #Tr M Er®eEc™ (ertL (62)

If instead of considering transitions from 'left' to 'right' eledrode we think of Eq. (61) as
expressng a sum over transition probabili ties from all initial (i) states of energy E in the rea¢ant
gpaceto al fina (f) states of the same energy in the product space S(E) is also asciated with

152154

the so cdled cumulative reaction probability, which in terms of the readion S matrix is

defined by N(E) =Y, IS¢ (E) I = 4ms(E) , i.e. N(E) = ZTif(E). Eq. (62) now expreses

the important observation that the amulative readion probability for a readive scatering
process can ke expressed as a traceover states, defined in a finite subspace that contains the
interaction region, of an expresson that depends on the reduced Green's function and the
asociated self energy defined in that subspace Following Seideman and Miller we can use a
gpatial grid representation for the states in this sibspace so that the tracein (62) becomes a sum
over grid points. Also, in this representation the overlap matrix Z is zero. In general, any
subspaceof position spacethat separate readants from products (i.e. that encompasses the etire
interadion region; the moleaular bridge in our applicaion) can be used in (62), provided that the
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consequences of truncating the "rest of the universe”, expressed by the crresponding = and I
can be computed. The asorbing boundary condition Green's function (ABCGF) method of
Seideman and Miller is based on the recognition that if this sibspaceis taken large exough so
that its boundaries are far from the interadion region, the detailed forms of < and I' are not
important; the only requirement is that scatered waves that approad these boundaries will be
absorbed and not refleded badk into the interadion zone. In the ABCGF method this is
acomplished by taking > =-(1/2)ilr =-ig(r), a locd function in position space taken to be
zeo in the interadion region and gradually increasing from zero when approacding the subspace
boundaries. Its particular form is chosen to affed complete asorption of waves approacing the
boundary to agood numericd acarragy. EQ. (62) then becomes

S(E) = 4Tr [6"°(E) £, G"*" (B) e, |- (63)

where G"BC(E) = (E~H +ig)™"; £ =g, +¢,_and where & and & are different from zero only

on grid points nea the the right side (more generally the product side) and the left (readant) side
of the inner subspace respedively.
A similar development can be done for the partial sum

S(E)= YT, Fo(E-E) (64)

which, provided that | is taken as an eigenstate of the Hamiltonian describing the left eledrode
(or the reatant sunspace, isrelated the 'oneto all’ rate, k(E) to go from an initial state of energy
E on the left eledrode (or in readcant space to al possble states on the right one (product

space acording to k = (271/h)s ¥ We use the same definition of the @upling V between our

subspace(bridge) and the reatcant and product (eledrode) states. Putting T=VGV in (64) we get

5(E) = % <1 IvaMrPgMry || > (65)

K The “microcanonical  rate’ is  defined by  K(E) = p_ (E)Z ko(E-E) =

(2hp, (E)) " 4m*S(E) = (2rthp, (E)) " N(E).
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Using again a position grid representation of the intermediate states used to evauate this
expresson, and applying the same methodology as above, Eq. (65) can be recat in the form
S(E)= <1V G"™C(D)e, 6" (B)V |1 >

1 (66)
=<l |£,G"EC (E) e, G"BC" (E)e, |1 >

The results (63) and (66) are very useful for computations of transmisson probabilities in
models where the interadion between the transmitted perticle and the moleaular space is given
as a position dependent pseudo-potential. Applicaions to eledron transmisson through water
and other moleaular layers are discussed in Sedion 4.

2.8. Density functional calculations

Density functional methods provide a o©nvenient framework for treaing metalic
interfaces. ' Applications of this methodology to the problem of eledron transport through
atomic and moleaular bridges have been advanced by several workers. In particular, Lang's

approa
wavefunctions ¢p(r) and the dedron density ng(r) for two bare metal (jellium) eledrodes is

162 163 ;

ch?% 125161 in which the single dedron

is based on the density functional formalism

computed, then used in the Lippman-Schwinger equation

W) =y,(r) +Idr "dr "GO (r,r )V (rr My (r") (67)
to get the full single dedron scatering wavefunctions (/(r) in the presence of the alditional
bridge. (Lang's ealier cdculations’® *®* use arelated density functional approach to cdculate
the tunneling current between an atomic tip and a jellium eledrode without an atomic or
molealar bridge). In Eq. (67) G° is the Green's function of the bare dedrode system and 8V is
the difference between the potential of the full system containing an atomic or a moleaular

gpace and that of the bare dedrodes. In atomic units (|e,z,mF1) it is

on(r") )[

(68)
r=r"]

V(1) =V, 0.1+ ) Vi) [

' The seond part of Eq. (66) is obtained by using the identity & |l >=0to write €RG*V 1> =
es+G V)|l >=£,G (G T+V)[I >,  which, together with G T=E-Hy-V +ie,

(E-=Hp) |l >=0 and €|l >=¢& || >, yieldsthe desired result.



25

where Vs is the sum of non-local pseudopotentials representing the cores of the spacer atoms
and V,. isthe LDA of the exchange correlation potential. n is the electron number density for the
full system (electrodes and atoms) and dn=n-ny. Eqg. (67) yields scattering states that can be
labeled by their energy E, momentum k| in the direction (yz) parallel to the electrodes and spin.
In addition, Lang distinguishes between wavefunctions that in the electrode regions carry
positive (+) or negative (-) momentum in the tunneling direction. Denoting by 1 and ur the
electron electrochemical potential in the left and right electrode, respectively, the zero
temperature electrical current density from left to right (for x >ug) isthen

J(r) = -2 I:LR dE[ d’K, im{y.0y.} (69)

The factor 2 accounts for the double occupancy of each orbital. This approach was used
Recently™® to calculate current through a molecular species, Benzene 1,4-dithiolate molecule
(as used in the experiment of Ref.?"), between two jellium surfaces. The result demonstrates the
large sensitivity of the computed current to the microscopic structure of the molecule-metal
contacts.

A smilar density functional approach, using an atomic-level description of the
electrodes, was described by Di ventra and Pantelides.'® These authors use density-functional
based ground state molecular dynamics'®’ in order to get the relaxed structure of the metal-
atomic system-metal junction, then evaluated the current through the relaxed structure.

The density-functional based calculations described above where done for small applied
potential bias between the electrodes. In contrast, the density functional approach of Hirose and
Tsukada'® calculates the eectronic structure of a metal-insulator-metal system under strong
applied bias. The main difference from the density functional approaches described above
comes in the way the effective 1-electron potential is calculated. The potential used in this work
contains the usual contributions from the Coulomb and the exchange-correlation interactions as
well as from the ionic cores. However the Coulomb (Hartree) contribution is obtained from the
solution of a Poisson equation

0%, (r) = =4[ p(r) - p, ()] (70)
in the presence of the applied potential boundary conditions. p.(r) is the fixed positive charge
density, and the electron density p(r) is constructed by summing the sguares of the

wavefunctions over the occupied states. At the same time the exchange-correlation potential is
calculated in the standard local density approximation, neglecting the effect of the finite current
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that exists in the steady state system. The resulting formalism thus accounts approximately for
non-equilibrium effects within the density functional calculation.™

To end this brief overview of density functional based computations of molecular
conduction we should note that this approach suffers in principle from problems similar to those
encountered in using the Hartree Fock approximation, namely the inherent inaccuracy of the
computed LUMO energy and wavefunctions. The errors are different, for example HF
overestimates the HOMO-LUMO gap (since the HF LUMO energy is too high'#4° 170 171
while DFT underestimates it.'** 2 Common to both approaches is the observation that
processes dominated by the HOMO level will be described considerably better by these

approaches than processes controlled by coupling to the LUMO.'%* 17

2.9. Potential profiles

The theoretical and computational approaches described above are used to compute both
the Ohm-law conduction, g(EF) of a molecular bridge connecting two metals, Eq. (37) or (59),
and the current-voltage characteristics of the junction, aso beyond the Ohmic regime, Eq. (36).
We should keep in mind that these calculations usually disregard a potentially important factor —
the possible effect of the imposed electrostatic field on the nuclear structure as well as on the
electronic structure of the bridge. A change in nuclear configuration under the imposed
electrogtatic field is in fact not very likely for stable chemisorbed molecular bridges. On the
other hand, the electronic wavefunctions can be distorted by the imposed field, and this in turn
may affect the electrostatic potential distribution along the bridge," the electronic coupling
between bridge segments and the position of the molecular energy levels vis-a-vis the metals
Fermi energies. These effects were in fact taken approximately into account by Hirose and
Tsukada **® and by Mujica, Roitberg and Ratner’® by solving simultaneously the coupled
Schrédinger and Poisson equations. The latter yields the electrostatic potential for the given
electron density and under the imposed potential boundary conditions.

The importance of the electrostatic potential profile on the molecular bridge in
determining the conduction properties of a meta-molecule-metal junction was recently

discussed by Tian et a® in conjunction with the current-voltage characteristics of a junction

™ A simplified version of the same methodol ogy has recently been presented by Mujica et al. **°.
" In a single electron description this local electrostatic potential will be an input, associated with the underlying
many el ectron response of the molecular bridge, to the position dependent energies of the bridge electronic statesin

the site representation.
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comprised of an STM tip, a gold substrate and a moleaule with two bonding sites (e.g. a,a'-
xylyl dithiol) conreding the two. Fig. 6 dsplays svera possble potentia profiles between
eledrode 1 (substrate) and eledrode 2 (tip) when the potential bias is p;-p=®. The linea ramp,
A1A; represents a ommonly made assumption for metal-moleaule-metal junctions with a strong
chemicd bonding of the moleaule to both metals. The aumption that the dedrostatic potential
on the moleaule is pinned to that of the substrate so that al the potential drop occures between
the moleaule and the tip (profile A;CA,) is often made in analyzing STM experiments where the
moleaule interads grongly with the substrate and wely with the tip. Because the moleauleis a
polarizéble objed we exped that the linea ramp potential should be replaced by the dashed line
in the figure, that is adually better approximated by the profile A1B1B,A,.”? Inded, the recent
model cdculation by Muijica & al*®® suggests that this is indeed a good approximation. In this
model, the cnduction properties of the junction are determined by the position of the moleaular
bridge states relative to the metals equili brium Fermi energy, and by the voltage division factor
7 that determines the voltage drops at the moleaule-substrate and the moleaule-tip contads by

AB_ N (71)

If n=0, al the potential drop occurs at the moleaule-tip interface In this case dchanging the
voltage acoss the junction amounts to changing the energy difference between the moleaular
levels and the tip eledrochemicad potential. Enhanced conduction is expeded when the latter
matches either the HOMO (when the tip is positively biased) or the LUMO (when the tip is
negatively biased) energies. However, becaise the HOMO and the LUMO states are usually
coupled dfferently to the metas (for example, in the aomatic thiols the HOMO is a sulfur-
based orbital that couples drongly to the metal while the HOMO is a ring-based orbital that
couples we&ly to it), this implies 4rong asymmetry, about zero voltage, in the arrent-voltage
dependence, i.e. redificaion. In contrast, the observed dependence is essentidly symmetric
about ®©=0, a behavior obtained from Eq. (36) for a symmetric voltage division fador n=0.5."
Lamoen et a'’® have caried out a density-functional based cdculation of the
equilibrium structure and the dedrostatic properties of Pd-doped porphyrin and perylene
moleaules adsorbed on gold dabs under an external eledric field imposed in the diredion of the
moleaule-metal axis. The observed behavior is qualitatively smilar to a rounded, one-sided
version, of the dashed line of Fig. 6. To what extent the dedrostatic potential cdculated in this
work and in Ref.’*® are relevant for single dedron models of moleaular junctions dill remains
to be darified. In particular, in other treagments of excess eledrons at the insulator side of a
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metal-insulator interface the image potential attracting the electron to the interface plays an

important role if the insulator dielectric constant is not too large!™*"®

and experimental
implications of this potential are well known.!”®*®* The observation™ that details of the
electrostatic potential distribution across a metal-molecule-metal junction can significantly
affect qualitative aspects of the junction electrical properties, makes further theoretical work in

this direction highly desirable.

2.10. Rectification

The possibility to construct molecular junctions with rectifying behavior has been under
discussion ever since Aviram and ratner'® suggested that an asymmetric donor-bridge-acceptor
system connecting two metal leads can rectify current. The proposed mechanism of operation of
such a device is shown in Fig. 7. When the left electrode is negatively biased, i.e., the

corresponding electrochemical potentials satisfy p, > g as shown, electrons can move from

this electrode to the LUMO of molecular segment A as well as from the HOMO of molecular
segment D to the right electrode. Completion of the transfer by moving an electron from A to D
is assisted by the intermediate bridge segment B. When the polarity of the bias is reversed the
same channel is blocked. This simple analysis is valid only if the molecular energy levels do not
move together with the metal electrochemical potentials, and if the coupling through the
intermediate bridge is weak enough so that the orbitals on the D and A species maintain their
local nature. Other models for rectification in molecular junctions have been proposed.’® As
discussed above, the expected rectifying behavior can be very senstive to the actua potential
profile in the ABD complex, which in turn depend on the molecular response to the applied
bias.”> ¥ This explains why rectification is often not observed even in asymmetric molecular
junctions.®®”  Still, rectification has been observed in a number of metal-molecule-metal

junctions as well asin several STM experiments involving adsorbed molecules,® ¢ 188192

2.11. Carrier-carrier interactions

The models and calculations discussed so far focus on processes for which the
probability that a charge carrier populates the bridge is low so that carrier-carrier interactions
can be disregarded. Electron-electron interactions were taken into account only in so far that
they affected the single electron states, either in constructing the molecular spectrum (in the ab-
initio HF or DFT calculations) or in affecting the junction electrostatic potential through the
electronic polarization response of the molecule or the metal contacts. When the density of

carriers in the space between the metal contacts becomes large, Coulomb interactions between
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them have to be taken into acmunt explicitly. Here we briefly discuss the dfed of such
interadions.

In classcd (hopping) transport of cariers through insulating films separating two
metals, inter-carier interadions appea as sippresson of current due to film charging.*®* **% In
nano-junctions involving double barrier structures, increassed eledron population in the
intermediate well under resonance transmisson should affed the transport process for similar
reasons. For example, consder a small metal sphere of radius R in the spacebetween two metd
eledrodes (Fig. 8), and assume that both sphere and eledrodes are made of the same metal of
workfunction W. Negleding possble proximity effea of these dedrodes, the dasscd energy
for removing an eledron from the sphere to infinity is W+e?/2R and the dasscd energy for the
opposite process is W-e*/2R.° Here the sphere plays the role of a moleaular bridge in asdsting
eledron tunneling between the two eledrodes, and these energies now play the same role & the
corresponding HOMO and LUMO energies of the bridge. This implies that a finite voltage
difference is needed before arrent can flow in this phere asssted mode between the two
metals, a phenomenon known as Coulomb Hockade. For a larger potentia bias, other
conduction channels, corresponding to more highly charged states of the sphere give rise to the
phenomenon of Coulomb steps.'®® For experimental manifestations of such and related
phenomena see e.g. Refs'®?% The posshility to observe such phenomena in eledrochemicd
systems was discussed by Kuznetsov and Ulstrup?® and possbly demonstrated by Fan and
Bard.?®®

When the junction consists of a moleaule or a few moleaules conneding two metal leads,
such Coulomb Hockade phenomena ae not expeded to appea so clealy. The first Coulomb
threshold is replaced, as just described, by the gap associated with the position of the metals
Fermi energies relative to the moleaular HOMO and LUMO levels (modified by appropriate
eledron correlations). However, the discreteness (in the sense that AE»kgT) of the moleaular
spedrum implies that for any given charging state of the moleaule, e.g., a moleaule with one
excess eledron or one excess hole, there will be severa distinct conduction channels that will
appea as deps in the aurrent vs. voltage plot. It will be hard to distinguish between this
structure and between ‘genuine’ Coulomb bockade structure. It should be emphasized that for

° From experimental and theoretical work on ionization potentials of small metal clusters'®® we know that the actual
energies are approximately W+0.4e?/R and W-0.6€?/2R, respedively; with the diff erences arising from quantum size
effeds).
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potential applications, e.g. using the molecular junction in single electron transistor devices, the
distinction between the origins of these conduction structure isin principle not important.

Still, understanding the role played by electron-electron interactions (in particular
correlation effects beyond the HF approximation) remains an important challenge in the study of
molecular nano-junctions. Several recent theoretical works have addressed this problem within
the Hubbard model with®®?®or without®®® the mean field approximation. In particular,
Malysheva and Onipko have derived a tight binding analog of the model for negative
differential resistance originally proposed by Davydov and Ermakov?™® (see also #* and %1% 213).
Numerical simulations”® can assist in gauging the performance of the mean field
approximations used in these calculations. Such models may be relevant to the understanding of
recent experimental observation of negative differential resistance in a metal-self assembled
monolayer-metal junction with the SAM containing a nitroamine redox center.?*

We conclude this discussion by emphasizing again that understanding correlated carrier
transport in molecular junctions continues to be an important experimental and theoretical

challenge. Recent work by Gurvitz et a*®**®

, using exactly solvable models of electron
transport in two and three barrier structures, have indicated that new phenomenology may arise
from the interplay of inelastic transitions and inter-carrier interactions in the barrier. In fact,
dephasing trangitions in the barrier may prove instrumenta in explaining the charge quantization

that give rise to the single electron transport behavior of such junctions (**°, Section 6.3).

2.12. Some open issues

This section discusses some subtle difficulties that are glossed over in most of the
treatments of electron transmission using the formalisms described above. These should be
regarded as open theoretical issues that should be addressed in future developments. The source
of these problems is our smplified treatment of what is actually a complex many body open
system. In particular, common ways of incorporating many body effect using single body
effective potentials become questionable in particular limits of timescales and interactions
strengths.

One such issue, aready mentioned, is the use of static image to account for the effect of
metal polarizability (namely the response of the metal electrons) on charge transfer processes at
metal surfaces. The timescales estimated in Section 3.1 below are of the same order as metal
plasma frequencies that measure the electronic reponse time of metals. Still static image theory
has been used in the analysis of Section 2.2 and in other treatments of electron injection from



31

metals into insulating phases.?® To what extent dynamic image effects are important is not
known, though theories that incorporates such effects have been developed. 9% 10@

Assuming that image interactions at metal surfaces should be accounted for in the static
limit, namely that the metal responds instantaneoudy to the tunneling charge, opens other
questions. Many calculations of electronic processes near metal surfaces (e.g. * (See Sect. 2.2
above) assume that the metal electrons respond instantaneoudly to the position of the tunneling
electron. Other calculations use atomic or molecular orbitals,” or more general electronic charge
distributions, and computing these under the given potential boundary conditions (see, e.g. Ref
169 implies that the corresponding orbitals or charge distributions are well defined on timescales
shorter than the metal response times.® Examination of the energies and timescales involved
suggests that assuming instantaneous metal response to the electron position is more suitable in
most Situations than taking instantaneous response to the charge distribution defined by a
molecular orbital, but the corresponding timescales are not different enough to make this a
definite statement.

A smilar issue appears in attempts to account for the electronic polarizability of a
solvent in treating fast electronic processes involving solute molecules or excess electrons in this
solvent. For example, in treating electron transmission in MIM junctions, the potential barrier
that enters into expressions like (14) depends on the electronic structure of the insulating spacer.
For vacuum tunneling a rectangular barrier, whose height above the metal Fermi energy is the
metal workfunction, modified by image interactions as discussed above and in Section 2.2,
seems appropriate. For a dielectric spacer the barrier should be further modified by the fast
(electronic) dielectric response of this spacer in the same way that it is modified by the
electronic response of the metal, raising issues similar to those discussed above. We return to
this point in Section 4.

P Computing molecular orbitals self-consistently with image interactions is the common practice in quantum
chemistry calculations for solvated molecules using reaction field (cavity) models. Again we have a choice: either
imposing the reaction field on the eectronic Hamiltonian in the position representation, thus modifying all
Coulomb interaction terms, then calculate the electronic wavefunctions under the new potential, or compute the
€l ectronic wavefunctions with the original Hamiltonian under the imposed dielectric boundary conditions. The fact
that the two representations are not equivalent is associated with the approximate nature of the approach which
replaces a detailed treatment of the electronic structure of the solvent by its electronic dielectric response. (See also
footnote ).

9 These two approaches are not equivalent, because the Schrsdinger equations derived from them are non-linear in

the e ectronic wavefunctions.
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Finally, an interesting point of concern is related to the way the Fermi distribution
functions enter into the arrent equations. For example, the Bardeen's transmisson formula (21)
is based on we& coupling between states locdized on the two eledrodes, the partia or
unidiredional currents contain a product, f(1-1f), i.e. the probability that the initia state is

occupied multiplied by the probability that the final state is not. In this viewpoint the transitions
occur between two wedly coupled systems, ead of them in internal thermal equili brium, which
are out of equili brium with eat other becaise of the potentia hias.

Alternatively, we oould work in the basis of exad eigenstates of the whole system
comprising the two eledrodes and the space between them. This g/stem is in an internal non-
equili brium state in which transmisson can ke described as a scatering problem. The relevant
eigenstates correspond to incident (incoming) waves in one dedrode and transmitted waves in
the other. The flux assciated with those scatering states arisng from an incident state in the
negatively biased eledrode is proportional to f(E), while that assciated with incoming waves in
the positively biased eledrode is proportional to f(E+e®). The net flux is therefore found again
to proportional to the difference f(E)- f (E+e®). This argument cannot be made unlessthe

process can be described in terms of coherent scatering states defined over the whole systems.
When inelastic scatering and dephasing processes take placethe description in terms of exad
scatering states of the whole system beames complicated,?*® 22! although kinetic equations for
eledron transport can be derived for relatively smple situations.?*®%!® On the other hand, it
appeas that for wegly coupled contads the perturbative gproach that leals to Eq. (21) is
valid. This approach describes the transmisson in terms of eledron states locdized on the two
eledrodes where unidiredional rates appea with f(1-f) fadors, and can in principle be caried
over to the inelastic regime. (See 4s0 Sed 3.4). The ead correspondence between these
different representation needs further study.

3. Dephasing and relaxation effects

The theoreticd treaments of eledron transmisson and conduction through insulating
barriers reviewed in the last sedion have asumed that the barrier nuclea configuration is gatic.
The oonduction of such junctions was thus assumed to be determined by the dedronic structure
of static interfadal configurations. Nuclea reorganizaion does play a dominant role in the
analogous theory of eledron transfer in moleaular systems, however here aain the dedronic
coupling itself is computed for static structures, while aupling to nuclear motion is assumed to
be assciated with the initial and final localized states of the transferred eledron. As discussd
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in Sed. 2.5, the @rresponding nuclea reorganizaion energies are unimportant in an MMM
junction, because the transferred eledron does not stay locdized on the moleular spedes.
Disregarding thermal interadions also during the transmisson processtherefore leads to a rigid
junction model. While we cannot rule out the possble validity of such amodel, it isimportant to
consider possble scenarios where thermal relaxation on the bridge is important for two reasons.
First, dephasing processes asociated with eledron-phonon coupling are the primary source for
converting the transmisson process from coherent transfer to incoherent hopping. Therefore
ignoring nuclea dynamics disregards a potentialy important transfer medamism. Seoond, as
discus=ed in the introduction, an important fador in desiging moleaular conductors is their
structural stability, therefore understanding hea generation and dsspation in moleaular
conductors is an important issie.?** 2> This naturally motivates a study of indlastic efed and
thermal relaxation during eledron transmisson. Indedl, the dfed of dephasing and relaxation
on carier transport through moleaular junctions (as well as other microscopic charge transport
devices), on its temperature and system-size dependence and on possble interference dfeds has
recently attracded much attention.

3.1. Tunneling traversal times

The underlying asuumption in the treaments of eledron transfer and transmisson
described in Sedion 2 is that the junction ruclea structure is rigid. The validity of this
asuumption should be scrutinized. Obvioudly, whether the barrier appeas rigid to the tunneling
eledron, and to what extent inelastic transitions can occur and affed transmisson and
conductance depend on the relative scdes of barrier motions and the transmisson traversal time,
properly defined.

A framework for discussng these isaes is the theory of tunneling traversal times.
‘Straightforward' timescaes for tunneling, such as the rate for probability buildup on one side of
a barrier following a wllision of an incoming particle on the other side, or the time asciated

with the tunneling splitting in a symmetric double well potential, are important measures of the

101, 102, 224-227 228230

tunneling rate. Following the work of Landauer and Buttiker and others, it has
been recognized that other timescades may be relevant for other observables associated with the
tunneling process The question 'now long does the tunneling perticle ac¢ualy spends in the
clasgcdly forbidden region of the potential' is of particular interest. This traversal time for
tunneling is useful in estimates of the relative importance of processes that may potentialy
occur while the particle is in the tunneling region. Energy exchange with other degrees of

freedom in the barrier and interadion with external fields focused in the barrier region (e.g.
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deflection of a tunneling electron by an electrostatic field induced by a heavy ion) are important
examples.

The Biittiker-Landauer approach to tunneling timescales is based on imposing an internal
clock on the tunneling system, for example a sinusoidal modulation of the barrier height.*®* At
modulation frequencies much smaller than the inverse tunneling time the tunneling particle sees
a static barrier that is lower or higher than the unperturbed barrier, depending on the phase of the
modulation. At frequencies much higher than the inverse tunneling time the system sees an
average perturbation and so no effective change in the barrier height, but inelastic tunneling can
occur by absorption or emission of modulation quanta. The inverse of the crossover frequency
separating these regimes is the estimated traversal time for tunneling. For tunneling through the
1-dimensional rectangular barrier

; < X<
Vig=[e T REXEX

. (72
1o otherwise
and provided that d=x,-x; is not too small and that the tunneling energy E is sufficiently below

Ug, this analysis gives

p=do [ m (73)
U, 2U; - E)

for a particle of mass m and energy Eq < Ug. v, defined by (73), is the imaginary velocity for the

under-barrier motion. A similar result is obtained by using a clock based on population transfer
between two internal states of the tunneling particle induced by a small barrier localized
coupling between them.'® Using the same clock for electron transfer via the super-exchange
mechanism in the model of Fig. 3 (equal donor and acceptor energy levels, Ea=Ep, coupled to
opposite ends of a molecular bridge described by an N-state tight binding model with nearest-
neighbor coupling Vg, with an energy gap AEg=Eg — Ep »Vg), yields™!

AN
T =
AE,

(74)

Nitzan et a have shown?™!

that both results (73) and (74) are limiting cases (wide and narrow
band limits) of a more general expression:

r= AN (75)

ZVB\/AUB . UBé
VB NB
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where AU, = E; -2V, — E, is difference between the initial energy Ep and the bottom of the
conduction band, Eg-2V, see Fig. 9. When V; - 0, AU, - AE; and the r.h.s of Eq. (75)
becomes that of Eqg. (74). In the opposite limit, V; — o wh A Ug kept constant, Eqg. (75)
becomes

P\ (76)

2 V,AU,

if we express Vg in terms of the effective mass for the band motion, m=#?/2V,a® with
a=d/N, Eq. (76) yields the Biittiker Landauer result, Eq. (73).

The interpretation of 7 defined above as a characteristic time for the tunneling process
should be used with caution. An important observation made by Buttiker, ' is that the
tunneling time is not unique, but depends on the observable used as a clock. Still, as shown in
Ref.’, for a proper choice of clock the traversal time provides a useful measure for the
adiabaticity or non-adiabaticity of the interaction of the tunneling particle with barrier degrees of
freedom. The calculation that leads to Egs. (74)-(76) uses a clock based on two internal states,
1> and [2>, of the tunneing particle with a smal barrier-localized coupling,
AM|1><2|+]|2><1]), between them. The incident particle is in state |1>. The population of
state |2> in the transmitted wavefunction can be related to the duration of the interstate coupling,
i.e. to the traversal time. Writing the transmitted state in the form ¢; |[1> +c, |2 > this procedure

yields

I = Aliino%jl_l‘&E (77)

For the 1-dimensiona rectangular barrier model, Eq. (72), and in the limit kd >>1, this leads
again to Eq. (73). Galperin et a®* have applied the same approach to compute traversal times
through water layers (see Sect. 4).

For tunneling through a molecular spacer modeled as a barrier of width ~108 (N=2-3)
and height Ug-E UAE ~ 1eV, Egs. (73) and (74) yield T [J0.2fs and 1 U 2fs, respectively, both
considerably shorter than the vibrational period of molecular vibrations. When the barrier is
lower or when tunneling is affected or dominated by barrier resonances, the traversa time
becomes longer, and competing relaxation and dephasing processes in the barrier may become
effective. This is expected to be the rule for resonance transmission through molecular bridges,
because the bandwidth associated with the bridge states (i.e. the electronic coupling between
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them; see Fig. 9) is considerably smaller than in metals. As a consequence thermal relaxation
and dephasing are expeded to dominate dedron transport at and nea resonance This issue is
discussed next.

3.2. Nuclear relaxation during electron transmission
It has long been recognized that tunneling eledrons interad, and may exchange energy,
with nuclea degrees of freedom in the tunneling medium. One redization of such processes is

inglastic dedron tunneling spedroscopy,””® 2%

where the opening of inelastic channels upon
increasing the dedrostatic potential difference between the source and sink metals is manifested
as a pe& in the second derivative of the tunneling current with resped to this potential drop.
Recent applicaions of this phenomenon within scanning tunneling spedroscopy hold gea
promise for making the STM a moleaular analyticd tool.?** Inelastic dedron tunneling may
aso cause dhemicd bond bre&king and chemicd rearangement in the tunneling medium, either
by eledron induced conseautive excitation or via transient formation of a negative ion.” 2323

As discussed by Gadzuk,?*°, the phenomenology of inelastic dedron transmisdon is also
closely related to other eledronic processs in which transent occupation of an intermediate
state drives a phonon field. Intramoleaular vibrational excitation in resonant eledron
scatering,?*® phonon excitation in resonant eedron tunreling in  quantum-well
heterostructures”** and eledron induced desorption®** 23 can al be described using similar
models. A prototype Hamiltonian describing these modelsis (seeFig. 3b)

H=Hg+H, +Hqy_, (78

where Hq is the dedronic Hamiltonian
Hel = Z Enc:nc:n + Z Vn,n'CnCn' + Z EkaCk + Z Z (Vk,anCn +Vn,kCan) (79)
n n,n'(n#n’) n
Hpn is the Hamiltonian of the phonon beth
Hy =Y habh, (80)

and He-ph isthe dedron-phonon interadion, usually written in the form

Ham =3 3 Aty (b +b) (81)

" While our language refer to eledron transport and eledron tunneling, hole transport and nuclear excitation via

transient positive ion formation are ejually posshle.
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Here ¢; and ¢; (j=n,n'k) creade and annihilate an eledron in eledronic state j, while b, and b,

smilarly creae and annihilate aphonon of mode v, of frequency w,. In Eq. (79) the states (k)

are taken to be different manifolds of continuous <atering states, denoted by a @ntinuous

index k (Fig. 3b shows two such manifolds, k={ ¢}, {r}), while the set of states {n} are discrete

eledronic states of the observed moleaular system. The dedronic Hamiltonian (79) can describe
a scdtering processin which the dedron starts in one mntinuous manifold and ends in another
and the states {n} belongsto the target the caises the scatering process These states may be the
eigenstates of the target Hamiltonian, in which case V,n, in Eq. (79) vanishes, or some zeo-
order representation in which the basis tates are mutually coupled by the ead target
Hamiltonian. Egs. (80) represents the thermal environment as a harmonic phonon baeth. The
coupling between the dedronic system and this bath is assumed in Eqg. (81) to originate from a
target-state dependent shift in the eguili brium position of ead phonon mode. An exad solution
to this catering problem can be obtained for the particular case where the target is represented
by a single state n=1 and the phonon beth contains one oscill ator of frequency w. In this case it
is convenient to consider the oscill ator as part of the target which is therefore represented by a

set of states |m> with energies E, + miw (the zeo point energy can be set to 0). If the

oscillator is initialy in the ground state (m=0) the aosssedion for eledron tunneling (or
scatering) from the left to the right side in Fig. 1 is given by?3® 240244

T(E, E)~TOr® Y 5(E -E, -m'hw) <m|m><m|0> 82)
m'=0

&E -E.-N,(E)+(i/2r.(E)
where |m> are states of the shifted harmonic oscillator that corresponds to the temporary
negative ion (eledron residing on the target) and E,, = E, + miw—-A*/hw. A, and I, are the

shifts and widths of the dressed target states associated with their coupling to the @ntinuous
manifolds and

F(K)(E)ZZHZIVMIZC‘E(E—EK) . K=Lk=lo K=R,k=r. (83

The exad solution (82) can be obtained because of the smplicity of the system, which was
chraderized by a single intermediate eledronic state and a single phonon mode. In more
redistic Situations charaderized by many bridge dedronic states and many phonon modes one
need to resort to approximations or to numericd simulations. We discuss sich systems next.

To get the proper perspedive on the nature of this problem consider again the standard
eledron transfer processin a donor-bridge-acceptor (DBA) system without metal eledrodes. As
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drealy emphasized (see Sedion 2.5), nuclea dynamics and conversion of eledronic energy to
nuclea motions, resulting from solvent reorganization about the donor and accetor sites upon
changing their charge state, are essential ingredients of this process The reason for the
prominent role of nuclea dynamics in this case is that the transferred charge is locdized on the
donor/acceptor orbitals, consequently affeding dstortion of their nuclea environments
(represented by the parabolas in Figs 2a and 3a). Standard eledron transfer theory assumes that
nuclea motion is coupled to the donor and acceptor eledronic states only, and the dedronic
coupling itself is taken independent of the nuclea configuration (the Condon approximation).
This assumption is smetimes questionable, in particular when intermediate dedronic states are
involved, as in Figures 1-3. The possble role of nuclea motion on such intermediate dedronic
potential surfaces has been discused by Stuchebrukhov and coworkers.?*> 2*® Focusing on
bridge asgsted eledron transfer processs, these authors sparate the nuclea degrees of freedom
into two groups. The first include those nuclea modes that are strongly coupled to the donor-
acceptor system (solvent polarization modes and vibrational modes of the donor and acceptor
speaes). In the dsence of the other modes this coupling leas to the standard eledron transfer
rate expresson dueto Marcus (c.f. Egs. (1), (3) and (9))

e—(/\+EAD Y 142kg@

JAmk,0

where A is the reorganizaion energy, Eap is (fre@ energy difference between the initial (eledron

21
ka = 7 ITDA |2 (84)

on donor) and final (eledron on acceptor) equilibrium configurations and T,, is the non-
adiabatic dedronic coupling matrix element that incorporates the dfed of the bridge via, e.g.
Egs. (9) and (10). The other group of degrees of freedom, 'bridge modes, are cupled relatively
we&ly to the dedron transfer process and it is assumed that their effed can be incorporated
using low-order perturbation theory. This is acamplished by considering the modulation of the

eledronic coupling To, by these motions, Tp, =Tpa({X,}), where {X,} is the set of the

corresponding nuclea coordinates. It is important to note that the separation of nuclea modes
into those @mupled to the donor and acceptor states (schematicaly represented by the Marcus
parabolas in Fig. 2a and 3a) and those asciated with eledronic coupling between them is done
for convenience only, and is certainly not a rigorous procedure. Within this picture the dedron

transfer rate is obtained®*® as a cnvolution
k:IdepB(s)ko(EAD +£) (89

where
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&t < TDA (t )TDA (0) >
<Ty,” >

P (€) = _[dtei (86)

and
TDA(t) - eiHBt/hTDAe—iHBt/h (87)
where H; is the bridge Hamiltonian including the thermal environment (© of Fig. 2).

Calculations based on this formalism indicate®*® that inelastic contributions to the total eledron
transfer flux are substantial for long (>10 segments) bridges.

It should be emphasized that dynamicd fluctuations in the bridge can considerably affed
aso the dastic transmisson probability. For example, a substantial effea of the bridge nuclea
motion on the dedron transfer rate has been observed in smulations of eledron transfer in

P46 247 in agreament with ealier theoretica predictions.*® **° There ae some experimental

aaurin
indicaions that eledron transfer rate in proteins is indeed substantialy affeded by the protein
nuclea motion.?*°

The Medvedev-Stuchebrukhov theory®*® corresponds to the lowest order corredion,
asociated with intermediate state nuclea relaxation, for bridge mediated eledron transfer rate.
On the other extreme side we find sequential processes that are best described by two or more
conseautive dedronic transitions. For this to happen two conditions have to be satisfied. First,
the intermediate state(s) energy should be dose to that of the donor/acceptor system, so these
states are physicdly populated either diredly or by therma adivation. Sewond, nuclea
relaxation and dephasing should be fast enough so that the bridging states can be treaed as well-
defined thermally averaged eledronic configurations. Obviously, intermediate Situations can
exist. Bridge mediated eledron transfer can be dominated by two (donor-acceptor) eledronic
states coupled via intermediate high-lying states that are only virtualy populated, by red
participation of such intermediate states in a wherent way (when thermal relaxation and
dephasing are dow), or by sequential transfer through such states. This issuie was extensively
discus®d®¥2*3 for three state models of eledron transfer that were recently used to describe
primary charge separation in baderial photosynthesis. The possbhility to observe smilar effeds
in STM studies of moleaules adsorbed at eledrochemicd interfaces was discussed by
Schmickler.24 25

Closely related to this phenomenology is the process of light scatering from noleaular
systems where the donor and acceptor states are replacel by the incoming and outgoing photons.
Elastic (Rayleigh) scatering is the analog of the 2-state 'standard’ eledron transfer process
Inelastic (Raman) scatering is the analog of the process analyzed by by Stuchebrukhov and
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coworkers.?46

, except that our ability to resolve the energy of the scatered photon make it
possble to separate the tota rate (or flux), the analog of Eq. (85), into its elastic and dfferent
indlastic components 2°°. Resonance Raman scatering and resonance fluorescence ae the
processes that take placewhen excited moleaular states are physicdly, as opposed to virtualy,
occupied duing the light scatering process The former is a wherent processthat take placein
the asence of dephasing and therma relaxation while the latter follows thermal relaxation in
the excited moleaular state. Re-emitting the photon after dephasing has occurred, but before full

thermal relaxation takes place is the processknown as hot luminescence

3.3. Thermal interactions in molecular conduction

Coming bad to eledron transfer and transmisson, the importance of dephasing effeds
in the operation of microscopic junctions has long been reagnized.**® 2*° The Landauer formula
for the conduction of a narrow constriction conneding two maaoscopic metals, Eq. (25) or (29),
is derived by assuming that the transmisson is elastic and coherent, i.e. without dephasing and
energy changing interadions taking placein the constriction. If the congtriction is gnall relative
to the mean free path of the dedron in it, these dfeds may indeed be disregarded. When the
constriction becomes maaoscopic multiple scattering and dephasing are essential to obtain the

219,

limiting Ohm's law behavior. A smple demonstration is obtained(““p. 63) by considering a
conductor of length L as a series of N maaoscopic scaterers, ead of the type that, by itself,

would yield Eqg. (25). At ead scaterer the dedron can be transmitted with probability 7, or
refleaded with probability R=1-7. Let the the total transmisson through N such objeds be 7y, so

that 7=7;. Provided that the phase of the wavefunction is destroyed after each transmission-

reflection event, so that we can add probabilities, the transmisson through an N scaterers
system is obtained by considering a wnredion in series of an N-1 scdterers g/stem with an

additional scatterer, and summing over all multiple scatering peths

— 2 — ﬁN—l
TN = TN—l (l+ RRN—l 'H(R N—1) -E') = m (88)
with R=1-7 and Rn=1-7y. Thisimplies
1-T, _1-Ty, 1-T _ 1-T (©9)

7. T.. T T

S0 that
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T=—t =L (90
NI-T)+T L+L

where Ly =7 /v(1-T) and v = N/L isthe scetterers density. Using this in Eq. (25) yields
2

g(E):e%L-IL-OL ey

that gives the inverse length dependence daraderistic of Ohm's law as L — . (Seehowever 1%,
p. 107).

A more detalled treament of the role played by dephasing in quantum charge transport
in microcopic junction was given by Biittiker.?*” He has introduced phase destruction processes
by conceptualy attaching an eledron reservoir onto the nstriction (Fig. 10), under the
condition that, while dharge cariers are exchanged between the arrent-carrying system and the
reservoir, no net averaged current is flowing into this reservoir. Biittiker has observed that such
a ontad, esentialy a voltage probe, ads as a phase bre&king scaterer. By adjusting the
coupling strength between this device and the system, a controlled amount of incoherent current
can be made to be caried through the system. This approach hes been very useful in analyzing
conduction properties of multi-gate junctions and conneded nano-resistors.

In moleaular systems, a very different approadc to dephasing was considered by Bixon

and Jortner,258‘ 259

who pointed out that the irregular nature of Franck Condon overlaps between
intramoleaular vibrational states associated with different eledronic centers can lead to phase
erosion in resonant eledron transfer. Consequently, bridge asssted eledron transfer, which
proceals via the superexchange medanism in off resonance processes, will become sequentid
in resonance situations. For a finite temperature system with an eledronic energy gap between
donor and bridge that is not too large relative to kg©, the thermally averaged rate from a
canonicd distribution of donor states results in a superpostion of both superexchange and
sequential medhanisms.

While ooupling to the thermal environment is implicit in the models described above,
usng moleaular bridges embedded in condensed environments as conductors immediately
suggests the need to consider the @wupling to intramoleaular and environmental nuclea motions
explicitly as in the Hamiltonian (78)-(81). The models of Figures 2 and 3, where transition
between the two eledron reservoirs or between the donor and acceptor spedes is mediated by a
bridge represented by the group of states {n} is again the starting point of our discusson.
Several workers have receitly addressed the theoreticd problem of eledron migration in such
models, where the dedron is coupled to a zeo temperature phonon bath. Bonéa and
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Trugman®®® 2°! have provided an exad numericd solution for such a problem. Their model is
smilar to that described by Eqgs. (78)-(81), except that the metal leads conneded to the
moleaular target are represented by 1-dimensional semi-infinite tight binding Hamiltonians:

H=Hg+H, +Hqp (92
Hy = Z E.c.C, + Z E.c.cC + I;Vn,n.cnqq. + ’Z.V"""C"Ck' + E;Vn,quck +hec E(%)
H,, :ghama (99)

Ham =3 5 MG (b +h) (95

Here, Hg desribes both the metal leals (represented by the manifold(s) of states {k} ) and the
moleaular target (with states {n}). The wupling to the phonon field is assumed to vanish on the
metal sites. The dedron transport problem is treded as a 1-particle multichannel scatering
problem, where eat of the (one incoming, many outgoing) channels corresponds to a given
vibrational state of the target. A finite basis is employed by using a finite number of phonon
modes and limiting the number of phonons quanta asciated with ead site, and by projeding
out leads that cary only outgoing states, however the size of this basis can be increased until
convergence is achieved. Yu et al®®% ?°® have studied the same 1-dimensional eledronic model
with a different eledron-phonon interadion: instead of the Holstein type interadion taken in
Egs. (81) and (95), they use amodel similar to the Su-Schrieffer-Heeger (SSH) Hamiltonian,?**
where Egs. (93)-(95) are replaced by

e| el ph — Z E C Cn + Z{ nn+1 nn+1 n+1 )a: Cn+1+hc} (96)

N-1

1 .
K nZ n+l n + E nZl n]wunz (97)

1

I\)IH

where u, (n = 1,...,N) are displacements of the target atoms. The segment of the lattice between
n=1 and n=N represents an organic oligomer, conneding between two metals, and the model for
the Oligomer is the same & that used in the SSH theory of conducting conjugate polymers, with
the nuclea degrees of freedom treaed classcdly. The eledron-phonon coupling is again
asumed to vanish outside the bridge, i.e., in EQ. (96) ayn+1 IS taken zero unlessn=1,2,...N-1. A
speaal fedure (in the mntext of this review) of this cdculation is that it is done using the exad
many eledron ground state of the metal-oligomer-metal system, which takes into acount the

265

Peierl's distortion®® that leads to a dimerization in the Oligomer's gructure.”** However, the

energy of the transmitted eledron is taken far above the Fermi energy and eledron-eledron
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interactions are neglected, so issues associated with Pauli excluson can be disregarded. The
model is used to study the time evolution of an excess electron wavepacket that starts in the
metal lead in the direction of the oligomer segment. This time evolution is computed using the
guantum-classical time dependent self consistent field (TDSCF) approximation, whereupon the
electron wavefunction is propagated under the instantaneous nuclear configuration, while the
latter is evolved classically using the expectation value of the Hamiltonian with the
instantaneous electronic wavefunction.® This approximation for the time evolution conserves the
total system energy, so energy exchange between the electronic and nuclear subsystem can be
studied as a function of time in addition to the total transmission and reflection probabilities. It
is found that lattice dynamics can be quite important at an intermediate window of electron
energies, where the electronic and nuclear timescales are comparable. Of particular interest is
the energy left in the nuclear subsystem after the electron has traversed the oligomer.

A fully quantum analog of this model was studied by Ness and Fisher.”® Their
Hamiltonian is

Ha =Y EGo+ 3 hahh + Zmyv,n,m(a +h,)c,c, (98)
where, again, the distinction between the metal leads and the molecular system enters through
the values of the site energies E,, and through the fact that coupling to phonons exists only at the
oligomer sites. The ground state of the neutral N electron dimerized chain is the reference
system. Electron-electron interaction is disregarded and the time evolution in the corresponding
N+1 or N-1 electron system is studied a zero temperature using the multichannel time
independent scattering theory approach of Bor¢a and Trugman.®®® %! The result of this
calculation is a considerable increase in the tunneling current when the electron-phonon
interaction is switched on, in particular for long chains. The origin of this behavior seems to be
the existence of a polaron state below the conduction band edge of the molecular segment that
effectively lower the barrier energy experienced by the tunneling electron. Close to resonance
however, the effect of electron-phonon coupling may be reversed, leading to a smaller total

overall conduction.?®’

® An open issue in this caculation is the validity of the TDSCF approximation. This
approximation is known to be problematic in tunneling and scattering calculations where the
guantum wavefunction splits to several distinct components.
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The Borka Trugman approach?®® 2°! has aso been used receitly by Emberly and
Kirczenow,?*! also for a 1-dimensional tight binding model described by the SSH Hamiltonian.
These aithors attempt to take into acmunt the Pauli exclusion principle in caculating the
inelastic contributions to eledron transmisson and refledion. While the formalism can in
principle be gplied to finite temperature processes, the implementation is done for a low
temperature system. The result again indicaes that inelastic processes can substantially modify
eledron transport for long moleaular chains and large potential drops.

3.4. Reduced density matrix approaches

The works described above use models for quantum transport that yield pradicdly exad
numericd solutions at the st of model simplicity: 1-dimensional tight binding transport model,
only a few harmonic oscillators and esentidly zero temperature systems. An dternative
approadh uses the madiinery of non-equilibrium statisticd medianics, starting from an
Hamiltonian such as (92) and projeding out the therma bath part. The resulting reduced
eguations of motion for the dedronic subsystem contain dephasing and energy relaxation rates
that are related explicitly to properties of the thermal bath and the system-bath coupling.

Such approaches to bridge mediated eledtron transport were made by several workers.***
120268273 For gmplicity we limit ourselves to the tight binding super-exchange model for bridge
mediated eledron transfer (see Sedion 2.1). Also, for smplicity of notation we wnsider N
bridge states between the two eledrodes, without assgning spedal status to 'donor’ and
‘accetor' states as in Fig. 3b. (It should be obvious that this makes only a notational difference).
The Hamiltonian for the ahermal system is

H=Hy+V (99
N
Ho= SE,[n><n|+SE |l ><I|+ S E, |r><T] (100
n=1 | r
N-1
V= Z Ml ><y+v><i)) + > (V.. dn><n+3+V,, In+1><n)
i (101

+3 (Vi adr >< NI+V N ><r])

where {I} and {r} are again continuous manifolds corresponding to the 'left' and right' metal
leads and {n} is a set of bridge states conneding these leads in the way spedfied by the
corresponding elements of the aupling V. In the d&sence of thermal interadions, and when the
left and right eledrodes are oupled only to levels 1 and N of the bridge, respedively, transport
inthis gystem is descibed by the conduction function (c.f. Egs. (31) and (40))
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9(E) = |G (E) F IV (B P (E) (102)
with
M@ =2my Vif 6E-E) 5 MP(E)=2my [Vy [ 6(E-E) (103

In general G(E) is evaluated numericdly by inverting the corresponding Hamiltonian matrix.
For En=Es and Vhn+1=Vg, identicd for al bridge levels and for all mutual couplings,
respedively, and in the superexchange limit, |Vg|«|Es-E|, the Green's function element is
V. 1AEL"N (cf. Eq. (10)), with AEg=E-Eg. In this case g depends exponentialy on the bridge
length N acaording to g ~ exp[-B'N] with 8" =2In(|AE, /V; |) (c.f. Eq. (13)).

Weak thermal coupling. To see how this dynamics is modified by thermal relaxation
and dephasing effeds, we follow the formulation of Ref.**® The Hamiltonian H is suppdemented
by terms describing athermal bath and a system-bath interadion

H=H+Hy+F (104)
where Hg is the Hamiltonian for the thermal environment or bath, and where the system-bath
interadion F is assuumed week . In this case thermal coupling between different bridge levels is

negleded relative to the internal coupling V between them, so

N
F=SSF |[n><n]| (105
n=1

where F, are operators in the bath degrees of freedom that satisfy < F, >=Trg (e‘BH@ Fn) =0(Tre
is atraceover al thermal bath states). F is charaderized by its time @rrelation function. As a
simple model we postulate

<Fp()F, (0>= £ (1)0n (109
The Fourier transform of the remaining correlation functions satisfies the detailed balance

condition
J’dte““ <F,(t)F,(0) >=¢&" J’dte““ <FROF®> ; B=0kO)" (107
where @ isthe temperature and 3 — the Boltzmann constant. For spedficity we sometimes use

(1) :%exp(—ltllrc) (109

[

which becomes kd(t) in the Markovian, 1.- 0, limit. Note that (105 is a particular model for

the therma interadions, sufficient to show their general consequences, but by no means
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adequate for quantitative predictions. In particular, the aumption (106) will be replaced by a
more redistic model below.

Galperin et a''! have shown that the cnduction properties of a system like that
described by the Hamiltonian (99)-(104) can ke obtained by studying a steady state in which the
amplitude of one state |O> in the initial {I} manifold remains constant and the amplitudes of
other states evolve under this restriction. Segal et a''® have generalized this approach to
thermal systems of the kind described by the Hamiltonian (104), using, in the we& thermal
coupling limit, the Redfield approximation.?®® 274 27> This approximation combines two steps
that rest on the weak coupling limit: an expansion up to second order in the coupling F and the
asumption that the thermal bath is not affeded by its coupling to the moleaular system. In this
approach one starts from the set of states |0>, |1>,..., |n>, {|I1>}, {|r>}, where |C> is the incoming
state in the {1} manifold, and projeds out the cntinuous manifolds {1} (except |0>) and {r}).
This amounts to repladng H of Egs. (99)-(104) by an effedive Hamiltonian, H*", in the space
spanned by states |0>, |1>,..., |[n> in which the energies E; and Ey are modified by adding self

energy terms whose imaginary parts are respedively MV/2 and TP /2. This effedive

Hamiltonian of order N+1 is then diagonalized and the resulting set of N+1 states (originating
from N bridge states and one incoming state) is used to represent the Liouville equation for the
density operator p of the overal eledrode-bridge-bath system, p=-i[#/,p]. This Liouville

eguation is expaned to seand order in F and tracel over bath degrees of freedom using the
approximation p(t) = p,o(t) with p, =e " and o(t) =Tr,p(t). This leads to an equation of

motion for the reduced density matrix oft) for the dedrode-bridge system that takes the form
t
Oy = =i Eiou —T k0 _Idt I Z{<Fjl (t-t) Flm(0)>e_lE'k(Hl)amk (t)
0 m
~(Fu(OF, (t-t)) ™0, (t) (109
~(Fut=t)F, (0))e Vo, (t)
+(FL (OF, (t-t))e™ g, (1)}
where Ej=E-E, and F(t) = €"e'Fe o' | Here the indices j k,|,m refer to moleaular states that

diagondlize the dfedive Hamiltonian H*". The damping terms I originate from the decay of
states |1> and [N> distributed into these egenstates. At steady state dl o elements are @nstant
and Eqg. (109 beamme
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0=-E,0y —T 0+ Z{
|mmd F. (O)F; "5+ (FL (DF, (0 E
o ‘([ T(< 0) (r)>e +< (T)F, ( )>e ) o
_GW} dr (F, @Fn(0)e"™ ~a jm}dT<lfm (O)F(1))e"™}

Transforming (1100 badk to the locd bridge representation {0, n=1,...N} leads to a a set
(N+1)(N+1) equations of the form

_iEnn'ann' _i[v1a]nn' + z z Rlﬂ'nlnzo-”lﬂz :%(rn +rn')ann' 1 n1nl :O1"'1N (111)
non

where the dements of R are linea combinations of the integrals appeaing in Eq. (110 and
where [, =18,  +TV0,, . Again, at stealy state the first (n=n'=0) equation is replaced by
the boundary condition ogg=constant. The remaning (N+1)(N+1)-1 equations congtitute aset of
linea non-homogeneous algebraic equations in which the terms containing oo constitute source
terms. Thus, al elements o,y, and in particular ony, can be obtained in the form g,,,. =U .0,
in terms of the fixed population gy in the incoming state |O> of the {I} manifold, where the
coefficients U,y are related to the inverse of the (N+1)(N+1)-1 order matrix of thermal rates. The
steady state flux into the {r} manifold is '’ o, , and the wrresponding rate is
ko_r =T O/ Oo0 =T WU (119
While the general expresson for Uy IS very cumbersome, involving the inverse of an
(N+1)(N+1)-1 order matrix, numericad evaluation of the resulting rate and its dependence on
coupling parameters, bridge length and temperature is an eassy numericd task for reasonable
bridge lengths. A final tedhnicd point stems from the observation that the resulting ko_.gr must be
proportional to [Vigf, the squared coupling between the first bridge level and the left continuous
manifold. We therefore rewrite Eq. (112) in terms of new variables k', ; and U ', , defined by
Kor =K' r Vi = TROU "y Vo F (113
We can make ontad with results obtained in the ahermal case by writing |0>=|k, k> where X is

the diredion of transmison, k; is the momentum in the yz plane ad

(h2/2m)(k”2+kxz) =E,+E, =E,. The transmission coefficient 7(Eo k) for electron incident

from the left electrode with total energy Eo in channel kis related to ko—.x by
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Ky
mL

Ko g =T (Ep.k) = (20(E,)) " T (Es. k) (114

where p(Ey) is the 1-dimensional density of states for the motion in the x diredion. Therefore
T (Ey k) = 2MP(E )k . = 1K' g (119
and the dl-to-all transmisgon at energy Eo is the sum over all chanrels with energy E, < E,
T(E) =T "K' =1 T "y (116
Comparing to Eq. (102, we seethat Eq. (116 is the analog of Eg. (40), where, in the thermal
case, U’y has replacel [Ginf.
In the ahermal case the cnduction of a junction charaderized by a given transmisson
coefficient is obtained from the Landauer formula (29). Here the issue is more mmplex since

while 7(Eo) is the probability that an incident eledron with energy Eo will be transmitted

through the moleaular barrier, it is obvious that the transmitted eledron can cary energy
different from Eo. As an example consider the cae where the bridge has only one intermediate
state, i.e. N=1. Within the same model and approximations as outlined above it is possble' to
obtain the energy resolved transmisson. In the Markovian limit (zz—0 in Eq. (108)) the result is

(k12m)e &™) O

70
(E.-E)+(r,/2) g

O
T(EE) = T(E) B(E, - ) (117

(we use 7 ' to denote the differential (per unit energy range) transmisson coefficient) where
M, =rY+1r® and 7o is eleastic transmisson coefficient

riL)riR)
(E - Eo)2 + (r1/2)2

The total transmisson coefficient, including inelastic contribution is given by

14(E) =

: K e -gyU
T(E) = [dET (B, B = Ty i+ (e ™ (119
1

In the asence of thermal interadions (k =0 in Eq. (108) 7isreduced to 7y, and the dedronis

transmitted with E=E,. For a finite k we get an additiona, thermally adivated, component
peeked about the energy E; of the bridge level.

'D. Segal and A. Nitzan, Chem. Phys.,, in press
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How will this affed the mnduction? It has been argued (se€*® chapter 2.6) that smple
expressons based on the Pauli principle (e.g. Egs. (21), (35)) are not valid in the presence of
inelastic processes including thermal relaxation. It may still be used however in the we& metal-
bridge coupling limit (see discusson in Sedion 2.12). Proceeading along this line, an equation
equivalent to (35) can be written

| = nth‘dEOJ‘dET'(EO, E) Ef (E)) (1~ f(E+e®)) - f(E, +ed) (1~ f(E)E (119

For smal bias and low enough temperature (so that f(E+e®)~ f(E)-ed®d(E-E;)) this
leads to"

o(E) = o= S TE) Eﬁ (1- f(El))rile‘“EfE“E (120

The equivalent result for eledron transfer rates is familiar: at zero temperature the rate is
determined by a tunneling probability, and at higher temperature an adivated component takes
over. For an experimental manisfestation of this behavior see e.g. ’®. It is also interesting to
examine the bridge length dependence of the transfer rate and the associated conduction. Here
analyticd results are cmbersome but numericd evaluation of the rate, Eq. (112, and the
transmisson coefficients (115 and (116 in terms of the system parameters (Hamiltonian
couplings and the parameters « and 7. of Eq. (108)) is graighforward.**® Figure 11 shows the

conduction (in units of €*/rnh) obtained from such a model cdculation using Vs=0.05eV,

AEg=EgEr=0.2eV, " =T’ =0.1eV , 1.=0, ©4@V  and T=300K and 500K, plotted against
the number of bridge segments N for two different temperatures. An exponential dependence on

N, characteristic of the superexchange model, is seen to give way to a weak bridge length
dependence at some cross-over value of N. Further analysis of this results'® %° reveals that the

dependence on bridge length beyond the cross-over may be written in the form (ku'; + kghlcf N)_l,

where kyp is the rate associated with the thermal activated rate from the Fermi-level into the
bridge, while kg corresponds to hopping (diffusion) between bridge sites. As N increases, the
conduction behaves as N, indicating Ohmic behavior. This inverse length dependence should
be contrasted with non-directional diffusion, where the rate to reach a distance N from the
starting position behaves like N2, Furthermore, if other loss channels exist, so carriers may be
redirected or absorbed with a rate 'y once they populate the bridge, the bridge length

dependence again becomes exponential and may be written g ~ (ku‘; +K & N)_le“’N , where o is
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related to this lossrate.*® 278281 Taple 111° summarizes these results for the Markovian limit of

the thermal relaxation process

Table 1 Bridge length dependenceof the transmisson rate™™®

Physical Process Bridge
length  (N)
dependence
Super exchange e B'=2In(v, / AE, )
(small N, large AEg/Vg, large
AEg/ks0)
Steady state hopping N7
(large N, small AEg/Vs, small
AEg/ks0)
Non-directional hopping N~
(large N, small AEg/Vs, small
AEg/ks©)
Intermediate ran - _ -1 2 2 -AEg /kg€
(intermediate N,gsmall AEs/Ve) (kug + Kaif N) Kup ~ &B k/BE )e o
Kyt ~ (NBZ/K)E—AEB/kBe
Steady state hopping + competing | e" Y
Iossa%/every brigpggsi?e PEne “ rB(rB+K)/2VB

Observing the behaviors indicated by this Table experimentally is not easy sinceit is usualy not
possble to change the length of a moleaular bridge without affeding its other properties, e.g. the
positions of moleaular HOMOs and LUMOSs relative to donor and acceptor energies or an
eledrode Fermi energy.?®® A nice eample of a qossover behavior observed in a LEET
experiment (see sedion 6) as a function of thickness of an absorbed moleaular layer is e in
Fig. 12. Here dedrons are injeded into N-hexane films adsorbed on a polycrystaline Pt foil at
energies below the bottom of the cnduction band (~0.8eV). The role of bridge states is here
asumed by impurity states in the hydrocarbon band gap. Since the energy and locdizaion
position of these states is not known, the observed results cannot be quantitatively analyzed with
the model described above. However a aosover from tunneling to hopping behavior is clealy

sea.

Srong thermal coupling. The we& system-thermal bath coupling model discussed
above rests on two approximations. (a) The system-bath interadion can be considered in low
order, and (b) the bath degrees of freedom are essentially unaffeded by the dedronic process
Using these asaumptions has enabled us to obtain the general charadersitics of eledron
transmisgon through moleaular barriers in the presence of barrier-locdized thermal interadions.
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When the interadion between the dedronic system and the underlying bath is gronger these
asumptions bre&k down, and dstortions in the bath configuration induced by the dedronic
process can play an important role. One example is the analysis of Nessand Fischer?®® discussed
below Eq. (98), where mupling to phonons increases the overal transmisson because of the
existance of polaron state below the @nduction band edge of the eledronic system. However,
becaise the overall transmisson efficiency depends both on energetics (the polaron state lowers
the dfedive barrier height) and coupling strength (small nuclea overlaps between distorted and
undistorted nuclea configurations deaeases the dfedive mupling) the isale is more involved
and, depending on detalls of coupling and frequencies, both enhancement or reduction of
transmisgon probabilities can occur. Similarly, at finite temperatures, the relative importance of
the two transmisson routes, tunneling and the adivated hopping, is sngtive to these details.
Relatively simple results are obtained in the particular limit where the thermal coupling is grong
while the bare dedronic coupling Vg is weak.' In this case it may still be assumed that the bath
degrees of freedom remain in thermal equili brium throughout the process Taking the bath to be

a system of harmonic oscill ators, Hy = zagpazlzm,)+ (mawjlz)ij and taking Fn in Eq.
(105 to belinea in the aordinates x4

F,=(1/2)Y CuX, (129)

(so that the Hamiltonian (104) is smilar to the polaron-type Hamiltonian used in Egs. (78)-(81)
and (92)-(95)), asmall polaron transformation is applied in the form

H'=UHU™

Uu=uu,.U,

U, =exp(~In><n|Q,) (122
: _ CuPs

Q, :ZQM ;o Q= 2rrn:a)02

leading to the transformed Hamiltonian
H'=H+Hg;+F'+Eg;

N-1

F'=Vp§ (In><n+1| €@+ n+1><n|e’ @) (123
n=1
_ 1 sz
Eqin = gz;wwaz|n><n|

where H is given by Egs. (99)-(101. If Vg is snal the procedure based on the Redfield
approximation, that lead to Eq. (111), can be repeaed. Note that keging only terms up to
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seoond order in F ill includes terms of arbitrary order in the system-bath coupling. This
procedure leads to'

Oy =—lw, 0y —1Vy z (< Flim >0~ <F'u >ajm)

m

'y %"Im}dr (Fu(@F, @)™ +(Fu@)F, @)™ (129

—a,midrﬁ-. (1)Fim(0)) €5 —o,-midr<F”m. (O)Fi(r))e ™"

where F =F'-<F'>, Thetermsin the first line of Eq. (124) acount for coherent motion with
a modified coupling operator, while the terms proportional to Vs? describe incoerent hopping
between lridge sites. An important new element in this formulation is the themperature
dependent renormalization of the wupling responsible for the wherent transmisson. Using Eq.
(123 resultsin

<F'>=exp(-5)
S =2y d, (2m, +1)

M, = (exp(e, /ksT)-1)" (125
d 2= (Cm _Cn+1,a )2
na 8maw0,3

so that coherent transfer becomes less important at higher temperatures. This reduction in the
coherent hopping rate is asociated with the small overlap between bath degrees of freedom
acomodating the dedron at different sites. In fad <F'> is reagnized as the thermally averaged
Franck Condon fador asociated with the dedron transfer between two neighboring bridge
gtes. Interms of the spedral density

(Cm B Cn+1,a )2
mw,

a~ra

I(w) = g ) 5(w-w,) (126

(independent of nif the bridge Sites are equivalent) we have

1 7 J(w)coth (w!2kgT) keT = J(w) doo

I 0> dw0 m:ﬁ - H‘([ W°

8rrd

S =

(127)

Depending on the spedral density this integral may diverge. More spedficdly, if J(w) ~ w®
with s<2, Sy diverge & any finite temperature and the wherent route is blocked. In other cases
the wherent route quickly becomes insignificant with increasing temperature.
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We have gone with some length into this discussion of thermal relaxation and dephasing
effects in bridge assisted electron transport both because these effects are inherently important in
determining transport and conduction properties of molecular junctions, and because the issue of
heat generation in these current carrying nano-structures is intimately related to these relaxation
phenomena. As we have seen this problem is far from being solved and more research along
these lines should be expected.

4. Electron tunneling through water

Electron tunneling through water is obviously an important element in all electron
transfer processes involving hydrated solutes, and in many processes that occur in water based
electrochemistry. Still, only a few systematic experimental studies of the effect of the water
structure on electron transfer processes have been done.”® 7 8 283290 porter and Zinn® have
found, for a tunnel junction made of awater film confined between two mercury droplets, that at
low (<1nm) film thickness conduction reflects the discrete nature of the water structure. Nagy "®
288, 289 have studied STM current through adsorbed water layers and has found that the distance
dependence of the tunneling current depends on the nature of the substrate and possibly
indicates the existing of resonance states of the excess electron in the water layer. Vaught et al®®’
have seen a non-exponential dependence on tip-substrate distance of tunneling in water, again
indicating that at small distances water structure and possibly resonance states become
important in affecting the junction conductance. Several workers have found that the barrier to
tunneling through water is significantly lower than in vacuum for the same junction geometry.”
283286 28991 Tha ohserved barrier is considerably lower than the threshold observed in

photoemission into water?®? 23

and, in contrast to tunneling in vacuum, can not be simply
explained by image effects.®

The present section focuses on attempts™*%? to correlate these observations with
numerical and theoretical studies. In the spirit of most calculations of electron transfer rates (as
in Sect. 2) and of earlier dielectric continuum modes that neglect the water structure altogether,
we assume at the outset that in films consisting of a few monolayers transmission is dominated
by elastic processes. The discussion of Sect. 3 emphasizes the need to justify this assumption.
Since we are dealing with negative energy (tunneling) processes, electronic excitations of water
molecules by the transmitting electron can be ruled out. In addition, photoemission through thin

water films adsorbed on metas indicates that inelastic processes associated with the water
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nuclear motion contributes relatively weakly at such energies.*® 3** Numerical simulations of
sub-excitation electron transmission through 1-4 water monolayers adsorbed on Pt(1,1,1)** are
in agreement with this observation." Theoretical calculations of inelastic tunndling®® similarly
show that sufficiently far from resonance the overall transmission is only weakly affected by
inelastic processes. In both cases this can be rationalized by the short interaction times (see Ref
3% and Section 3.1). In such cases a static medium assumption appears to provide a reasonable
starting point for discussing the overall transmission, i.e. we assume that the transmission event
is completed before substantial nuclear motion takes place. The computation of the transmission
probability can therefore be done for individual static water configurations sampled from an
equilibrium ensemble, and the results averaged over this ensemble. This assumption is critically
examined below. It should be emphasized that while solvent nuclear motion is sow relative to
the transmission timescale, solvent electronic response (electronic polarizability) is not. We
return to thisissue aso below.

In section 2 we have summarized theoretical and computational approaches available for
studying electron transfer and electron transmission. The following account (see also 3%
summarizes recent computational work on electron transmission through water that use the
pseudo-potential method. 2°43% 392 Here the detailed information about the electronic structure
of the molecular spacer is disregarded, and replaced by the assumption that the underlying
electron scattering or tunneling can be described by a one electron potential surface. This
potential is taken to be a superposition of the vacuum potential experienced by the electron and
the interaction potential between an excess electron and the molecular spacer. The latter is
written as a sum of terms representing the interaction between the electron and the different
atomic (and sometimes other suitably chosen) centers. The applicability of this method depends
on our ahility to construct reliable pseudopotentials of this type. In the work described below we
use the electron-water pseudopotential derived and tested in studies of electron hydration,**° and
a modified pseudopotential that includes the many-body interaction associated with the water
electronic polarizability. Other electron-solvent pseudopotentials have been used for water,*!*
ammonia®? methanol,**? rare gases®* and hydrocarbons. 3*°

With such a potential given, the problem is reduced to evauating the transmission
probability of an electron when it is incident on the molecular layer from one side, say the left.

“ 1t should be kept in mind that energy transfer from the transmitting electron to water nuclear degrees of freedom,

the mechanism responsible for capturing and localizing the electron as a solvated species must play an important

role for thicker layers.353%,
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In recent yeas various time dependent and time independent numericd grid techniques were
developed for such cdculations. In the time dependent mode an eledron wavepadet is sent
towards the moleaular barrier, and propagated on the grid using a numericd solver for the time
dependent Schrodinger equation. This propagation continues until such time t; a which the
‘collision’ with the barrier has ended, i.e. until the probability that the dedron is in the barrier

region, L arrier|¢l(r,t)|2dr, has falen below a predetermined margin. Since only the result at the

end of the time evolution is nealed, a propagation method based on the Chebychev polynomial

3163175 particularly useful.

295299, 302 318 319

expansion of the time evolution operator

In the time independent mode, Nitzan and coworkers have gplied the
gpatial grid based absorption boundary condition Green's function (ABCGF) tedhnique
described in Sedion 2.7 (Egs. (63) and (66)). Taking x be the tunneling dredion, periodic
boundary conditions are used in the y-z plane parallel to the moleaular layer, and the asorption
function, £(r)=g(x), is taken to be different from zero nea the grid boundaries in the zdiredion,
far enough from the interadion region (i.e. the tunneling barrier), and gradualy diminishing to
zao as the interadion region is approadied from the outside. The stability of the computed
transmisson to moderate variations of this function provides one @nfidence test for this
numericd procedure. The amulative microcanonicd transition probability and the one-to-all
transition rates are cdculated as outlined in Sed. 2.7. In addition, exad outgoing and incoming

wavefunctions W and W, which correspond to initial and final states (eigenfunctions of Hg

with energy E) @ and @, respedively, can be computed from

. 1 .
Wi =]
YT ET O

and provide aroute for evaluating state seleded transition probabilities, Si= <Yr|;"™>. The
evaluation of these expressons requires (a) evaluating the Hamiltonian matrix on the grid, and
(b) evaluating the operation of the crresponding Green's operator on a known vedor. In the

implementation of Refs 296299 71"

order finite-differencing representation is used to evaluate the
Kinetic energy operator on the grid. As in most implementations of grid Hamiltonians the
resulting matrix is extremely sparse, suggesting the goplicability of Krylov spacebased iterative
methods sich as the Generalized Minimum Residual method (GMRES),*?° or Quasi Minimal

Residual method (QMR). ¥%*
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While considerable sensitivity to the water structure is found in these studies, water
layers prepared with different reasonable water-water interaction models had similar
transmission properties.®®” 2*® On the other hand the results are extremely sensitive to the choice
of the electron-water pseudopotential. Most previous studies of electron solvation in water
represent the electron-water pseudopotential as a sum of two-body interactions. Studies of
electron hydration and hydrated electron spectroscopy show that the potential developed by
Barnett et a*° as well as that developed by Schnitker and Rossky®* could account semi-
quantitatively for the general features of electron solvation structure and energetics and in water
and water clusters. Taking into account the many-body aspects of the electronic polarizability
contributions to the electron-water pseudopotential®*? have lead to improved energy values that
were typically different by 10-20% from the original results. In contrast, including these many-
body interactions in the tunneling calculation is found (see below) to make a profound effect, an
increase of ~ 2 orders of magnitudes in the transmission probability of electron through water in
the deep tunneling regime. There are two reasons for this. First, as aready noted, tunneling
processes are fast relative to characteristic nuclear relaxation times. The latter is disregarded,
leaving the electronic polarizability as the only solvent response in the present treatment.
Secondly, variations of the interaction potentials enter exponentialy into the tunneling
probability, making their effects far larger than the corresponding effect on solvation. It should
be kept in mind that including the solvent electronic polarizability in simulations of quantum
mechanical processes in solution raises some conceptual difficulties. The smulation results
described below are based on the approach to this problem described in references 2*° and 2. In
what follows model B refers to the the corrected electron-water pseudo-potential used in these
papers while model A refers to the original pseudopotential of Barnett et al.>"° (see the original

publicationszg5'299’ 301

for details of the water-water and water-metal potentials used in these
calculations.

The results described below illustrate the principal factors affecting the transmission
process. (a) the dimensionality of the process, (b) the effect of layer structure and order, (c)
effect of resonances in the barrier and (d) signature of band motion. The simulations consist of
first preparing water layer structures on (or between) the desired substrates using classical MD
simulations; secondly, setting the Schrodinger equation for the electron transmission problem on
asuitable grid and, finally, computing the transmission probabilities.

Figure 13 shows results of such calculations for the transmission probability as a

function of the incident electron energy. The results for the polarizable model (B) are seen to be



57

in remarkable agreement with the expectation based on lowering of the effective rectangular
barrier by 1.2eV, while those obtained using model A, which does not take into account the
many-body nature of the interaction associated with the water electronic polarizability, strongly
underestimates the transmission probability. In fact, model A predicts transmission probability
in water to be lower than in vacuum, in qualitative contrast to observations.

Next consider the effect of orientational ordering of water dipoles on the metal walls.
Water adsorbs with its oxygen on the metal surface and the hydrogen atoms pointing away from
it, leading to net surface dipole density directed away from the wall. Simulations yield ~5110™*
Coul/m for this density.” This is an important factor in the reduction of the surface work
function of many metals due to water adsorption.?%% 3% 324 Fig. 14 compares, for Model A, the
transmission probabilities computed with two water configurations (sampled as described in Fig.
13). One is the same as the model A result shown in Fig. 13 and the other is obtained from a
smilar model in which the attractive oxygen-metal wall interaction, therefore the preferred
orientational ordering, was eiminated.”® We see that the existence of surface dipole in the
direction that reduces the work function is associated with a larger transmission probability as
expected.

Traditional approaches to electron transfer are based on continuum dielectric picture of
the solvent, where the issue of tunneling path rarely arises. Barring other considerations, the
exponential dependence of tunneling probabilities on the path length suggests that the tunneling
process will be dominated by the shortest possible, i.e. 1-dimensiona, route. A closer look
reveals that electron tunneling through water is inherently 3-dimensional (see e.g. Fig. 7 of Ref.
29) An interesting demonstration of the importance of the 3-d structure of the water layer in
determining the outcome of the tunneling process is shown in Fig. 15. This Figure compares,
using the configuration of Fig. 13 and model B at room temperature, tunneling through the
given water layer and tunneling through another water configuration that was prepared in the
presence of a strong electric field pointing along the tunneling (x) axis. In the resulting layer
structure the water dipoles point on the average aong this axis. This structure is frozen and the
electric field used to generate it is removed during the tunneling calculation. The computed one-
to-al transmission for electrons incident in the x direction shows several orders of magnitude
difference between the probabilities calculated for electron incident in the direction of the

induced polarization and against this direction. Microscopic reversbility implies that the

V1. Benjamin and A. Nitzan, unpublished results
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corresponding 1-dimensional process should not depend on the tunneling direction, positive or
negative, along the x axis. The observed behaviour is therefore associated with the 3-
dimensional nature of the process. it shows that the angular distribution associated with the
transmission through such layer depends strongly on the transmission direction, and suggests
that asymmetry in current-voltage dependence of transmission current should exist beyond the
linear regime.

Next consider the possbility of resonance assisted tunneling. Fig. 16 shows such
resonances in a range of ~1eV below the 5eV vacuum barrier. The existence of such resonances
correlates with the observation of weakly bound states of an electron in neutral configurations of
bulk water. Mosyak et a®*® have found that such states appear in neutral water configurations in
both models A and B, however only model B shows such states at negative energies. Moreover,
these states are considerably more extended in systems described by model B compared with the
corresponding states of model A.*® The possible effect of bound eectron states in water on
electron transmission probability through water was raised by several workers in the past.*2>3%’
Peskin et al**? have recently identified the source of the resonances seen in our simulations as
transent vacancies in the water structure. We emphasize again that because these results were
obtained for static water configurations, their actual role in electron transmission through water
is yet to be clarified.

The effective barrier to electron tunneling in water has been subject to many discussions
in the STM literature.” 2% 2%0. 328 \Whjle the absolute numbers obtained vary considerably
depending on the systems studied and on experimental setups and conditions, three observations
can be made: (@) Tunneling is observed at large tip-surface distances, sometimes exceeding
208.7% 20 32 (1) The barrier, estimated using a 1-dimensional model from the distance
dependence of the observed current, is unusualy low, of the order of 1eV in systems involving
metals with work-functions of 4-5eV. (c¢) The numbers obtained scatter strongly: the estimated
barrier height may be stated to be 11eV. (d) The apparent barrier height appears to depend on
the polarity of the bias potential.

It should be kept in mind that even in vacuum STM the barrier to tunneling is expected
to be lower than the workfunctions of the metals involved because of image effects associated
with the fast electronic response of the electrodes.”® Nevertheless, the reduction of barrier height
in the aqueous phase seems to be considerably larger. Taking the vacuum barrier as input in our
discussion lets consider the possible role of the solvent. These can arise from the following

factors: (1) The position, on the energy scale, of the "conduction band" of the pure solvent. By
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"conduction band" we mean extended electronic states of an excess electron in the neutral
solvent configuration. (2) The effect of the solvent on the electrode workfunction. (3) The hard
cores of the atomic constituents, in the present case the water oxygens, which make a substantial
part of the physical space between the electrodes inaccessible to the electron. (4) The possibility
that the tunneling is assisted by resonance states supported by the solvent. Such resonances can
be associated with available molecular orbitals - this does not appear to be the case in water- or
with particular transient structures in the solvent configurations as discussed above.

Factors (2)-(4) are usualy disregarded in theories of electron transfer, while a common
practice is to account for the first factor by setting the potential barrier height at a value, below
the vacuum level, determined by the contribution of the solvent electronic polarizability. This
value can be estimated as the Born energy of a point charge in a cavity of intermolecular
dimensions, say a radius of a~5au, in a continuum with the proper dielectric constant, here the
optical dielectric constant of water, €,=1.88. This yields €(2a)[&, *-1]~-1.3eV, same order as
the result of a more rigorous calculation by Schmickler and Henderson,*?® and in agreement with
experimental results on photoemission into water.?%* 324 |t should be noted that this number was
obtained for an infinite bulk of water, and should be regarded as an upper limit for the present
problem.

The simulations described above shed some light on the roles played by the other factors
listed above. First, we find that lowering the metal workfunction by the orientational ordering of
water dipoles at the metal surface does affect the tunneling probability, see Fig. 14. Secondly,
the occupation of much of the physical space between the electrodes by the impenetrable
oxygen cores strongly reduces the tunneling probability. In fact, if these two factors exist alone,
the computed tunneling probability is found to be considerably lower than in the corresponding
vacuum process, see Fig 7 of Ref. **. Even including the effect of the water electronic
polarizability (i.e. attractive r* terms) in the two-body electron-water pseudopotential (model A)
is not sufficient to reverse this trend, as seen in Fig. 13. Taking into account the full many body
nature of this interaction was found to be essential for obtaining the correct qualitative effect of
water, i.e. barrier lowering relative to vacuum.

The estimate of the magnitude of this lowering effect in our simulations can be done in
two ways. One is to fit the absolute magnitude of the computed transmission probability to the

result obtained from a 1-dimensional rectangular barrier of width given by the distance s
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between the dedrodes. 2°” This is done in Figure 17 for systems with 1-4 monolayers of water
(s=3.6, 6.6, 10.0, 13.3R)." The following points sould be noted:
(@) The dfedive barrier to tunneling computed with the fully polarizable model B is reduced
by a least 0.5eV (from the bare value of 5eV used in these simulations) once a'bulk’ has
been developed in the water layer, i.e. oncethe number of monolayersis larger than 2.
(b) The eguivalent cdculation done with model A, in which water polarizability is acounted
for only on the 2-body level, yields an effedive barrier higher than the vaauum barrier.
(c) For the very thin layers gdudied, the dfedive barrier height depends on the layer
thickness This behavior (which support a recett experimental observation by Nagy?®?) is
expeded to saturate once awell-defined bulk is developed.
Following common pradice in STM studies, another way to discuss the dfedive smulated
barrier is to fit the distance dependence of the observed tunneling probability to the analyticd
result for aredangular barrier. This pradice can yield very low apparent barriers in cases where
tunneling is influenced by resonance structures.*®* Moreover, sincethe eistence ad energies of
these resonances in water depend on locd structures that evolve in time, it is possble that the

charaderistic scatter of data that appeas in these measurements’ 286 290 328

may arise not only
because of experimental difficulties but also from intrinsic system properties.

The eistence in water of transient structures that support excesseledron resonaces and
the possble implicaions of these resonances in enhancing the tunneling probability and the
apparent barier height raises again the issue of timescdes. In particular, the lifetimes of these
resonance states is of considerable interest, since they determine the duration of the dedron
‘cgpture’ by the water film and, as a @nsequence the posshility that water dynamics and
thermal relaxation becme important on this timescde. Peskin et a®*°? have determined these
lifetimes by a dired evaluation of the complex eigenvalues assciated with the @rresponding
resonance structures, using a filter diagonalizaion method with the imaginary boundary
conditions Hamiltonian. The resulting eigenvalues have imaginary parts of the order ~0.0%eV,
implying lifetimes of the order <10fs. An aternative way to probe the dynamics of eledron
tunneling in water is by evaluating the corresponding traversal times (see Setion 3.1). Here the
timescde for possble interadion between the excess eledron and barrier motions can be

* It should be anphasized that these results were not statisticdly averaged over many water
configurations, so the @solute numbers obtained should be taken only as examples of a general
qualitative behavior.
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determined both rea and away from resonance eergies. Galperin et a®*? have gplied the
interna clock approad of Sed. 3.1 to this problem, starting from the one-to-all transmisson
probability, Eq. (66), written in the form

0= 2 <, (E)16,G uGenlgn(E)> (129

where @, denotes an incoming state in the readant region and €, and &y, are the asorbing
boundary functions in the read¢ant (incoming) and product (outgoing) regions, respedively. In
the present applicaion the dedron is taken to have two interna states, so that if x is the

tunneling  dredion, (gn:(e”‘x/\/vx(l)). The Greens operator is given by

G= (E —Hg +i(ein +£out))_1 with H, replaced by

H:H% 2%%(@% é% (130

where A isa ongtant and where F(X)=1 in the barrier region and O outside it. The gproximate

scatering wave function,

(E
W(E) >=iG(E)es, |gn(E) >= ﬁ ((E))E (131

is evaluated using iterative inversion methods,®?® 32%, The transmisgon probabili ties into the |1>

and |2> states are obtained from

Ti(B) =<ui(B) | &ou @i (B) > =12 (132

Z are auivalent to |c]> where ¢ (i=1,2) are defined above Eq. (77). Accordingly

_p On [L(E)C
T(E)—Ilmbo%)\—| ﬁ% (133

Figs. 18 and 19°? display some results of this cdculation. Fig. 18 shows cdculated
traversal times as functions of incident eledron energy for an eledron transmitted through a
layer of threewater films between two platinum eledrodes (the distance between the dedrodes
is d =189au). Shown is /1, for several configurations of this g/stem, where 1, is the tunneling

time assciated with the bare vaauum barrier (same geometry with no water). The transient
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nature of the water structures that give rise to the resonance feaures is e here. Note that the
difference between different configurations pradicdly disappeas for energies sifficiently
below the resonance regime, where the ratio between the time computed in the water system and
in the bare barrier is pradicdly constant, approximately 1.1. Fig. 19 shows, for one of these
configurations, the tunneling time and the transmisson probability, both as functions of the
incident eledron energy. We seethat the energy dependence of the tunneling time follows this
resonance structure dosely. In fad, the times (3-15 fs) obtained from the pe&s in Figs. 18 are
consistent with the resonance lifetimes estimated in Ref. 3%2

We mnclude this discusson with two more omments. First, in the dove analysis the
posshility of transent 'contamination’ of the tunneling medium by foreign ions has been
disregarded. Such ions exist in most systems used in underwater STM studies, and the geaance
of even one such ion in the spaceof 10-208 between the dedrodes can have aprofound effed
on the tunneling current. This may add another source of scater in the experimental results.
Sewndly, as drealy discussed, changes in the water structure between the dedrodes may
appea aso as bias dependent systematic efeds. Thus, the asymmetry in the bias dependence of
the barrier height observed in Refs.?®¢ and™ 2°° may be related to the asymmetric transmisson

properties of orientationally ordered layers.

5. Overbarrier transmission

Our discusson so far has focused on eledron transmisson processes that at zeo
temperature can take placeonly by tunneling. The present sedion provides a brief overview of
transmisson proceses where an eledron incident on a moleaular barrier caries a postive
(above ground state vaauum) energy. It should be emphasized that this in itself does not mean
that transmisson can take place tasscdly. If the incident energy is in the bandgap of the
moleaular space, zero temperature transmisson is gill a tunneling process Still, this type of
phenomena is distinct from those discussed in the other parts of this review for several reasons:
first, positive energy transmisson (and refledion), essentially scatering processs are anenable
to initia state wntrol and to final state resolution that are not possble in regative energy
processs. Semnd, a postive energy eledron interads with a large density of medium states,
therefore the probability for resonance or nea resonance transfer is considerably larger,
implying also a larger crosssedion for dephasing and inelastic energy loss Third, at this range
of energies conventional quantum chemistry approadies, as well as pseudopotentials derived
from low-energy eledronic structure data can be very inacarate. Finally, at high enough
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energies elecronic excitations and secondary electron generation become important factorsin the
transmission mechanism. For the last two reasons the numerical approaches described in Section
2.6-8 are not immediately applicable.

The effect of adsorbates on photoelectrons emitted from surfaces has been studied for
dmost a century.®®> ¥ These experiments were partially motivated by their practical
ramifications whereby the surface workfunction was modified by the adsorbate.®** 3** Recently,
the development of tuneable UV light sources has enabled studies of energy resolved
photoelectron  spectroscopy.®* This eventaully lead to studies of photoelectron energy
distribution for photoelectrons produced from metal surfaces covered with self assembled

monolayers (SAMSs) of organic molecules, or organized organic thin films (OOTFs).3!8: 319. 335349

These films are prepared either with the Langmuir Blodgett technique®® 3!

or by self assembly
from vapor or solution. One of the earlier experiments of this kind was the measurement of
transmitted electron energy distribution for photoelectrons produced from a Pt(111) surface
covered with several layers of water.>®* It was found that the transmission probability decreases
exponentialy with increasing number of water layers, however this numebr does not affect the
energy distribution of the emitted electrons, indicating that transmission in this system is
independent of the electron energy and that inelastic energy loss is small. These results however
should be regarded with caution in view of low energy electron transmission (LEET, see below)
data®® that indicate that energy loss from a transmitted electron to water nuclear motion may be
quite efficient. The latter observation is supported by estimates™” of the distance (20-50R)
traversed by electrons photogjected into water at subexcitation energies before their capture to
form the precursor of solvated electrons.

Unlike water, the electron affinity A = -V of hydrocarbon layers is negative, i.e. their
LUMOs, or in the language of solid state physics, the bottom of their electron condition band is
above vacuum energy (Vo=0.8eV for bulk hydrocarbons®™®). Indeed a threshold for electron
photoemisson from slver covered with a monolayer of cadmium stearate
CH3(CH,)16CO0 ,Cd** or arachdic acid CH3(CH,):sCOOH is observed.** Above 0.8eV
photoemission from these surfaces proceed with efficiency close to 1, turning down again at
higher energies. Oscillations in the transmission probability through similar films as function of
the initial electron energy were interpretted in terms of the electronic band structure of the
film.3!8 3% This interpretation gains further support from the observation of the large sensitivity

343, 346

of the transmission probability to the film structure in the lateral dimension and from the

strong effect of film ordering.>*® This does not exclude what is often taken to express a single
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molecule effect — a strong preference of the phtoemission to be directed aong the axis of the
molecular adsorbate®° The latter manifestation of ordering effect was invoked for the
interpretation of the observed dependence of the photoemisson yield on substrate
temperature.®** Recently, vibrational structure was observed in the photoemission spectra from
gold covered with molecular layers containing benzene, naphthalene and anthracene rings.>*®
These structures are usualy associated with resonances related to temporary electron capture in
the film, however unlike the usua assignment to temporary ion formation (see below),
experimental data offer evidence to an interesting collective shape resonance, resulting from a
two dimensional quantum well associated with the ordered aromatic rings in the direction
paralel to the substrate surface. Finally, using chiral molecular SAMs (L or D polyalanine
polypeptides) has reveadled that electron transmission of spin-polarized electrons depends, with

349x

high degree of selectivity, on the chirality of the layer.

Another way to study electron interactions with molecular layers is to send an electron
beem from the vacuum side onto a molecular film condensed on a suitable, usually metalic,
substarte. In the low energy electron transmission (LEET) spectroscopy developed by Sanche
and coworkers the electron transmission spectrum is measured by monitoring the current
arriving a the metal substrate as a function of the incident electron energy and direction.
Similarly, the reflected electron beam can be analyzed with respect to energy and angular
distribution, yielding electron diffraction data, energy loss spectra and energy loss excitation
spectra. The same experimental setup can be used to study the effect of electron trapping,
electron stimulated desorption and electron induced chemical reactions in the molecular films.
For a recent review of these types of studies and references to earlier work see Sanche®®. Here
we focus on observations from LEET experiments that are relevant to our present subject. First,
the prominence of the elastic and quasielastic component of the transmitted intensity, observed
in most experiments of this kind, is in agreement with the photoemission experiment discussed
above. Secondly, a threshold of a few tens of eV (relative to the vacuum level) is seen for
transmission through alkane and through rare gas layers, indicating negative electron affinities
of these layers and providing an estimate for the position of the bottom of the layers conduction
bands. Third, conduction peaks below this threshold are attributed to tunneling assisted by local

* Recent results, (Carmeli I, Naaman R, Vager Z. To be published) indicate that when the chiral molecules also
carry and electric dipole, the effect of chirality depends on the direction in which the eectron travels along the
helical structure.
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states inside the gap.>*° This is the analog of the bridge assted tunneling discussed in Sedion 2,
except that the film constitues a 3-dimensional barrier in which the locd states are distributed
randomly in position and energy. As discussed in Sedion 3.4, thermal relaxation and dephasing
processes manifests themeselves in a dcharaderistic thickness dependence of the transmisson
probability as the processes changes from tunneling to hopping dominated with increasing
barrier width (see Fig. 12). fourth, the dedron transmisson spedra dosely refled the band
structure of the orresponding layer. This $ould not be taken as an evidence for ballistic
transport, in fad this observation holds for the inelatic components of the emisson intensity.
Rather, the dedron propagation through the moleaular environment is viewed as a sequence of
scatering events, with crosssedions that are proportiona to the density of available states.*®’
The resulting averaged mean free path is therefore inversely proprtiona to the density of states
at an energy that (as long as the @solute energy lossis gnall) may be gproximated by the
incident energy. Finaly, the transmisson can be strongly affeded by resonances, i.e. negative
ion formation. This in turn may grealy increase the probability for inelastic energy loss**®
These processes are observed in the high resolution eledron energy loss(HREEL) spedroscopy,
by monitoring the energy of refleded eledrons, but they undoubtly play an equally important
part in the transmisgon process

As aready mentioned, while the theoreticd methods discussed in previous ®dions of
these review are genera, ther applicadility to eledron transmisson in the postive energy
regime needs gedal work becaise standard quantum chemistry cdculations usually address
negative energy regimes and bound eledronic states, and becaise pseudopotentials are usually
derived from fitting results of such ab-initio cdculation to analyticd forms based on physicd
insight. Model cdculations that demonstrate some of the concepts discussed above ae shown in
Figs. 20 and 213! 38 Figure 20 compares the transmisson probability (‘one to al' with the
incident eledron perpendicular to the barrier) through a 1-dimensional redangular barrier of
height 3eV and width 1.2 nm as a function of the incident eledron energy measured relative to
the barrier top, to the transmisson through a 3-d dab of 4 Ar layers cut out of an Ar crystal in
the (100 diredion. The latter results are obtained with a spatial grid technique using the
eledron-Ar pseudo-potential of Space ¢ a.** The oscillations $own in Fig. 20a ae
interference patterns asociated with the finite width of the layers. The full line in Fig. 20b also
shows guch oscill ations, but in addition, a prominent dip above 4eV corresponds to a conduction
band gap of this thin ordered layer. The dashed line in Fig 2@ shows gmilar transmisson
results for disordered layers, obtained from the aystaline layer by a numericd therma
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anneding at 400K next to an adsorbing wall using moleaular dynamics propagation. The results
shown are averaged over four such disordered Ar configurations. The transmisson through the
disordered layer is considerably less sructured (smoother shapes $ould be obtained with more
configurational averaging), in particular, the dip assciated with the band gap has largely
disappeaed. Figure 21 compares the transmisson (one-to-al) versus eledron energy, for an
eledron incident in the normal diredion on ordered Ar films made of 2, 4 and 6 atomic
monolayers (‘prepared’ by cutting them off an Ar crystal as described above). Already at 6-layer
thickness the observed transmisson dip is very close to its bulk value, indicating that the band
structure is already well developed.

These cdculations invetigate transmisson through static nuclea structures, and
consequently cannot acount for thermal relaxation and dephasing effeds. In the other extreme
limit one uses gochastic models®™® **° that become acarrate when the moleaule film is thick
enough so that the dedron goes through mutiple scatering events before being transmitted
through or refleced from the film. Such an approach hes been used®°® 307 360 361 t5 describe the
energy distributions of eledron refleded from noleaular films and its relation to the density of
excesseledron states in the film.

6. Conclusions and outlook

This review has described the arrent status of theoreticd approadies to eledron
transmisson and conduction in moleaular junctions. In particular, Sedion 2 consitutes an
acount of theoreticd approadies to this problem for static junctions, while Sedion 3 dscusss
approadies that focus on dephasing and thermal relaxation effeds. It is important to note that
even though our methodology follows a stationary, steady state viewpoint of al processes
studied, the isaue of relative timescdes of different processes has played a centra role in our
analysis.

Current studies of moleaular junctions focus on general methodologies on one hand and
on detailed studies of spedfic systems on another. We have described in some details recent
computations of eledron transmisson through water layers and have described other studies on
prototypes of molealar wires. Two imporant classes of molealar wires have now become
subjeds of intense reseach, even development effort. These ae DNA wires*> 44 4749, 278281, 362
02 on one hand, and carbon renctubes'® ' 4%¥445> on the other. While the general principles
discus=ed in the present review apply aso to these systems, the scope of receit reseach on
speaal structure-function properties of these wires merits a separate verage.
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Coming back to theoretical issues, we have outlined some open problems in the
methodology of treating these many-body, strongly interacting, non-equilibrium open systems.
One additional direction not covered in the present review is the possbility to control the
operation of such junctions using external forces (as opposed to control of function by varying
the structure). Several recent studies point out the posdility to control transport processes by
external fields.****! The specific and selective nature of molecular optical response make
molecular junctions strong potential candidates for such applications.

In conclusion, €electron transmisson and conduction processes in smal molecular
junctions combines the phenomenology of molecular electron transfer with structural problems
associated with design and construction of such junctions on one hand, and with the need to
understand their macroscopic transport properties on the other. In addition, the potentid
technological promise suggests that research in this area will intensify.
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Figure Captions

Fig. 1. Schematic views of typicd eledron transmisson systems. (a) A 'standard’ eledron
transfer system containing a donor, an accetor and a moleaular bridge wnneding them (not
shown are nuclea motion beths that must be mupled to the donor and acceptor spedes). (b) A
moleaular bridge @nneding two eledronic continua, L and R, representing, e.g., two metal
eledrodes. (c) Same & (b) with the bridge replacel by a moleaular layer.

Fig. 2. A schematic view of the dedronic and nuclea states involved in typicd eledron
transmisson systems. Seetext for details

Fig. 3. Smple level structure models for moleaular eledron transfer (a) and for eledron
transmisson (b). The moleaular bridge is represented by a smple set of levels that represent
locd orbitals of appropriately chosen kridge sites. This st of levels is coupled to the donor and
acceptor spedes (with their corresponding nuclea environments) in (@), and to eledronic
continua representing metal leads (say) in (b). In the latter case the physicd meaning of states O
and N+1 depends on the particular physicd problem: They can denote donor and acceptor states
coupled to the mntinua of environmental states (hence the notation 0=D, N+1=A), surface
locdized states in a metal-moleaule-metal junction, or they can belong to the right and left
scatering continua.

Fig. 4. Tunneling gap between two metal eledrodes in an unhiased (left) and a biased (right)
stuations. The bare gap, given by the work function W, is modified by the image interadion —
the resulting barriers are represented by the aurved lines.

Fig. 5. Measured and computed dfferential conduction of a single a,a’-xylyl dithiol moleaule
adsorbed between two gold contads (From Ref.”?). Seetext for details.

Fig. 6. Models for eledrostatic potential profiles on a moleaule mwnneding two metal leads with
different eledrochemicd potentials (Li=Er- e®d;). Seediscusson in text above Eq. (71).

Fig. 7. A mode for current redification in a moleaular junction: Shown are the demicd
potentials y; and pg in the two eledrodes, and the HOMO and LUMO levels of the donor,
acceptor and bridge. When the right eledrode is positively biased (as diown) eledrons can hop
from left to right as indicaed by the dotted arrows. If the opposite bias can be set without
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affecting too much the electronic structure of the DBA system the reverese current will be
blocked.

Fig. 8. A nano-dot between two conductiong leads. A model for Coulomb blockade phenomena

Fig. 9. Parameters used in the expressions for tunneling traversal times. Left: tunneling through
a rectangular barrier. Right: bridge mediated transfer, where the grey area denotes the band
associated with the tight binding level structure of the bridge.

Fig. 10. The Buttiker dephasing model (see text)

Fig. 11. Finite temperature conduction of a simple tight binding model of a molecular junction

as afunction of bridge length N. See text for details

Fig. 12. (Reproduced from Ref.**®). Transmitted current in n-hexane films as a function of
thickness for various incident energies, showing the transition from tunneling to activation
induced transport.

Fig. 13. (Reproduced from Ref.*®). Electron transmission probability as a function of the

incident energy. Shown are one-to-all transmission results with the electron incident in the
direction norma to the water layer. These results are averaged over six equilibrium water
configurations sampled from an equilibrium trgectory for the water system. This system
contains 192 water molecules confined between two walls separated by 10R, with periodic
boundary conditions with period 23.54 in the directions paralel to the walls, at 300K. These
data correspond to three water monolayers between the walls. Thin dashed line: results from
model A (see text). Full line: results of model B. Also shown are the corresponding results for
tunneling through vacuum, i.e. through a bare rectangular potential barrier of height 5eV (dotted
line), and through a similar barrier of height 3.8eV (thick-dashed line), which corresponds to the
expected lowering of the effective barrier for tunneling through water.

Fig. 14. (Reproduced from Ref.?*®). Electron tunneling probabilities through water between two
electrodes with (full line) and without (dotted line) orientational ordering at the metal wall.

299

Fig. 15. (Reproduced from Ref.“™™). Electron transmission probabilities between the two
electrodes as described in the text. Full line: vacuum tunneling (bare barrier 5eV), dotted line:
normal equilibrium water configuration (model B1l), dashed and dashed-dotted lines. water
oriented by a field 5eV/A with tunneling direction opposite and identical to the orienting field,

respectively.
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302

Fig. 16. (Reproduced from Ref.”™). Transmission probability vs. electron energy for electron
tunneling through a water layer (model B, configuration as in Fig. 13 with bare barrier 5eV),

showing tunneling resonances below the vacuum barrier).

Fig. 17. (Reproduced from Ref.?"). Effective 1-dimensional barrier height for electron
transmission through water, displayed as a function of number of water layers. Solid, dotted and
dashed lines correspond to models B, A and to the bare (5eV) barrier respectively. See text for
further details.

Fig. 18. (Reproduced from Ref.?*?). The ratio t/1, (see text) computed for different static
configurations of (a) three and (b) four monolayer water films, displayed against the incident

electron energy. The inset shows an enlarged vertical scale for the deep tunneling regime.

Fig. 19. (Reproduced from Ref.?*%). The tunneling traversal time (full line; left vertical scale)
and the transmission probability (dotted line; right vertical scale) computed as functions of
incident electron energy for one static configuration of the 3-monolayer water film.

Fig. 20. (Reproduced from®!® 319). (a) Transmission probability through 1-d rectangular barrier
characterized by height of 3 eV and width of 12&, as a function of incident electron energy
measured relative to the barrier top. (b) Full line: electron transmission through a slab made of 4
Ar layers, cut out of an FCC Ar crystal in the (100) direction. Dashed line: same results obtained
for adisordered Ar slab (see Ref. 31° 318 for details.

318, 319

Fig. 21. (Reproduced from ). The computed transmission probabilities, Vs. Electron
energy, for an electron incident on dabs cut out of an FCC Ar crystal in the (100) direction. (a)
Slabs made of 2 (dashed line) and 4 (full line) monolayers. (b) Slabs with 4 (full line) and 6

(dashed line) monolayers. (The full linesin (a) and (b) are identical).
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