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Abstract 

 Electron transmission through molecules and molecular interfaces has been a subject of 

intensive research due to recent interest in electron transfer phenomena underlying the operation 

of the scanning tunneling microscope (STM) on one hand, and in the transmission properties of 

molecular bridges between conducting leads on the other. In these processes the traditional 

molecular view of electron transfer between donor and acceptor species give rise to a novel view 

of the molecule as a current carrying conductor, and observables such as electron transfer rates 

and yields are replaced by the conductivities, or more generally by current-voltage relationships, 

in molecular junctions. Such investigations of electrical junctions, in which single molecules or 

small molecular assemblies operate as conductors constitutes a major part of what has become 

the active field of molecular electronics.  

 In this paper I review the current knowledge and understanding of this field, with 

particular emphasis on theoretical issues. Different approaches to computing the conduction 

properties of molecules and molecular assemblies are reviewed, and the relationships between 

them are discussed. Following a detailed discussion of static junctions models, a review of our 

current understanding of the role played by inelastic processes, dephasing and thermal relaxation 

effects, is provided. The most important molecular environment for electron transfer and 

transmission is water, and our current theoretical understanding of electron transmission through 

water layers is reviewed. Finally, a brief discussion of overbarrier transmission, exemplified by 

photoemission through adsorbed molecular layers or low energy electron transmission through 

such layers is provided. Similarities and differences between the different systems studied are 

discussed. 
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I. Introduction 

Electron transfer, a fundamental chemical process underlying all redox reactions, has 

been under experimental and theoretical study for many years.1-6 Theoretical studies of such 

processes seek to understand the ways in which their rate depends on donor and acceptor 

properties, on the solvent and on the electronic coupling between the states involved. The 

different roles played by these factors and the way they affect qualitative and quantitative 

aspects of the electron transfer process have been thoroughly discussed in the past half-century. 

This kind of processes, which dominates electron transitions in molecular systems, are to be 

contrasted with electron transport in the solid state, i.e. in metals and semiconductors. 

Electrochemical reactions, which involve both molecular and solid state donor/acceptor systems, 

bridge the gap between these phenomena.6 Here electron transfer takes place between quasi-free 

electronic states on one side and bound molecular electronic states on the other.  

 The focus of the present discussion is another class of electron transfer phenomena: 

electron transmission between two regions of free or quasi-free electrons through molecules and 

molecular layers. Examples for such processes are photoemission (PE) through molecular 

overlayers, the inverse process of low energy electron transmission (LEET) into metals through 

adsorbed molecular layers and electron transfer between metal and/or semiconductor contacts 

through molecular spacers. Figure 1 depicts a schematic view of such systems. the 'standard' 

electron transfer model in Fig. 1a shows donor and acceptor sites connected by a molecular 

bridge. In Fig. 1b the donor and the acceptor are replaced by continua of electronic states 

representing free space or metal electrodes. (This replacement can occur on one side only, 

representing electron transfer between a molecular site and an electrode). In Fig. 1c the 

molecular bridge is replaced by a molecular layer. A schematic view of the electronic states 

involved is shown in Fig. 2. The middle box represents the bridging molecule or molecular layer 

and a set of levels { n} represents the relevant molecular orbitals. In a 'standard' electron transfer 

system (Fig. 2a) this bridge connects the donor and acceptor species, now represented by 

potential surfaces associated with the vibronic structure of the corresponding inramolecular and 

solvent nuclear motions. When the bridge connects two metal electrodes (or separates a metal 

substrate from vacuum) these nuclear baths are replaced by manifolds of electronic states {
�
} 

and {r} that represent continua of free or quasi-free electron states in the substrates (or, 

depending on the process, in vacuum). In addition, coupling to the thermal environment 

(represented by the box � ) may affect transmission through the bridge. The double arrows in the 

Figure represent the couplings between these different subsystems.  
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The first two of the examples given above, PE and LEET, involve electrons of positive 

energy (relative to zero kinetic energy in vacuum), and as such are related to normal scattering 

processes. The third example, transmission between two conductors through a molecular layer, 

involves negative energy electrons and as such is closely related to regular electron transfer 

phenomena. The latter type of processes has drawn particular attention in recent years due to the 

growing interest in conduction properties of individual molecules and of molecular assemblies. 

Such processes have become subjects of intensive research due to recent interest in electron 

transfer phenomena underlying the operation of the scanning tunneling microscope (STM) on 

one hand, and in the transmission properties of molecular bridges between conducting leads on 

the other. In the latter case the traditional molecular view of electron transfer between donor and 

acceptor species give rise to a novel view of the molecule as a current carrying conductor, and 

observables such as electron transfer rates and yields are replaced by the conductivities, or more 

generally by current-voltage relationships, in molecular junctions. Of primary importance is the 

need to understand the interrelationship between the molecular structure of such junctions and 

their function, i.e. their transmission and conduction properties. Such investigations of electrical 

junctions, in which single molecules or small molecular assemblies operate as conductors 

connecting 'traditional' electrical components such as metal or semiconductor contacts, 

constitute a major part of what has become the active field of molecular electronics.7-17 Their 

diversity, versatili ty and amenabili ty to control and manipulation make molecules and molecular 

assemblies potentially important components in nano-electronic devices. Indeed basic properties 

pertaining to single electron transistor behavior and to current rectification have already been 

demonstrated. At the same time major diff iculties lie on the way to real technological 

applications.18 These difficulties stem from problems associated with the need to construct, 

characterize, control and manipulate small molecular structures at confined interfaces with a 

high degree of reliabili ty and reproducibili ty, and from issues of stabili ty of such small 

junctions. 

It should be obvious that while the different processes outlined above correspond to 

different experimental setups, fundamentally they are controlled by similar physical factors. 

Broadly speaking we may distinguish between processes for which lifetimes or rates (more 

generally the time evolution) are the main observables and those that monitor fluxes or currents. 

In this review we focus on the second class, which may be further divided into processes that 

measure current-voltage relationships, mostly near equili brium, and those that monitor the non-

equili brium electron flux, e.g. in photoemission experiments. 
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Notations. A problem characteristic to an interdisciplinary field such as the one we are covering 

is that notations that became standard in particular disciplines overlap similarly standard 

notations of other disciplines. The T operator of scattering theory and the temperature constitute 

one example; the 
�
 parameter of of bridge mediated electron transfer theory and the inverse 

(temperature×Boltzmann constant) is another. I have therefore used non-standard notations for 

some variables in order to avoid confusion. Following is a list of the main notations used in this 

article. 

Notation Variable 

T Scattering operator 
�
 Transmission coefficient 

�
 Temperature 

�
 (kB

�
)-1 

�
' Range parameter in electron transfer rate theory 

g Conduction 
�  Used in different contexts for conductivity and for the 

reduced system's density operator. 

I Current 

J Flux 
�  Used in different contexts for charge density and for the 

density operator of the total system 

EF Fermi energy (EFL and EFR sometimes used for 'left' and 
'right' electrodes) 

�  Electron electrochemical potential ( � L and � R sometimes 
used for 'left' and 'right' electrodes) 

�
 the thermally averaged and Franck Condon (FC) 

weighted density of nuclear states 

F System-thermal bath interaction. In specific cases we 
also use Hel-ph 

V Electronic coupling between zero order molecular states 

H System's Hamiltonian 

HB Bridge Hamiltonian 

H 	  Hamiltonian of the thermal bath (in some specific cases 
we also use Hph 

Z Overlap Matrix:   Zi,j=<i|j> 

 EZ � H 
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�
 Combined system+thermal bath Hamiltonian 

S S matrix 

�  Speed 

�
 Potential or potential difference 

�
 Self energy 

�
 Width (decay rate) 

Acronyms 

MMM  Metal-Molecule-Metal (junction) 

MIM Metal-Insulator-Metal (junction) 

EH Extended Huckel 

HF  Hartree Fock 

FC Franck-Condon 

STM Scanning tunneling microscope 

LEET Low energy electron transmission 

PE Photo-emission 

 

 

 

2. Theoretical approaches to molecular conduction 

 The focus of this section is electron transfer between two conducting electrodes through 

a molecular medium. Such processes bear strong similarity to the more conventional systems 

that involve at least one molecular species in the donor/acceptor pair. Still , important conceptual 

issues arise from the fact that such systems can be studied as part of complete electrical circuits, 

providing current-voltage characteristics that can be analyzed in terms of molecular resistance, 

conductance and capacitance. 

2.1. Standard electron transfer theory 

To set the stage for our later discussion we first briefly review the rate expressions for 

'standard' electron transfer processes (Figs. 1a, 2a, 3a). We focus on the particular limit of non-

adiabatic electron transfer, where the electron transfer rate is given (under the Condon 

approximation) by the golden rule based expression 
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 22
| |et DAk V

π
= � �         (1) 

where VDA is the coupling between the donor (D) and acceptor (A) electronic states and where  

 ( ) ( )2
( ) ( ) | ( ) ( )

D A

AD th D D D A A A D D ADE P E
ν ν

ε ν ν ν δ ε ν ε ν= = − +∑∑� �  (2) 

is the thermally averaged and Franck Condon (FC) weighted density of nuclear states. In Eq. (2) 
�

D ������ A denote donor and acceptor nuclear states, Pth  is the Boltzamnn distribution over donor 

states, ( ) and ( )D D A Aε ν ε ν are nuclear energies above the corresponding electronic origin and 

AD A DE E E= −  is the electronic energy gap between the donor and acceptor states. In the 

classical limi t �   is given by 

 
( )2 / 4

( )
4

AD BE k

AD

B

e
E

k

λ λ

πλ

− + Θ

=
Θ

�        (3) 

where kB is the Boltzmann constant and 	  is the temperature, and where λ is the reorganization 

energy, a measure of the electronic energy that would be dissipated after a sudden jump from the 

electronic state describing an electron on the donor to that associated with electron on the 

acceptor. If the donor (say) is replaced by an electrode,6, 19, 20 we have to sum over all occupied 

electrode states 

2 2 2| | ( ) ( ) | | ( ) ( ) ( ) | |DA k k kA k kA
k k

V f e V d f e Vε ε ε ε ε δ ε ε⇒ − Φ = − Φ −∑ ∑∫� � �  (4) 

where  

 
/

1
( )

1 Bkf
eεε Θ=

+
        (5) 

is the Fermi-Dirac distribution function with ε measured relative to the electron chemical 

potential 
  in the electrode, and � , which determines the position of the acceptor level relative 

to µ is the overpotential. Defining 

 2 2( ) | | | ( ) |k kA
k

V Vδ ε ε ε− ≡∑        (6) 

the eletcron transfer rate takes the form 

 
( )2

/ 4
22

( ) ( )
4

Be k

et
B

e
k d V f

k

λ ε λπ ε ε ε
πλ

− − Φ+ Θ
=

Θ∫�     (7) 

Note that the reorganization energy that appears in Eq. (7) is associated with the change in the 

redox state of the molecular species only. The nominal change in the 'oxidation state' of the 
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macroscopic electrode does not affect the polarization state of the surrounding solvent because 

the transferred electron or hole do not stay localized. 

 Much of the early work on electron transfer have used expressions like (3) and (7) with 

the electronic coupling term VDA used as a fitting parameter. More recent work has focused on 

ways to characterize the dependence of this term on the electronic structure of the 

donor/acceptor pair and on the environment. In particular, studies of bridge mediated electron 

transfer, where the donor and acceptor species are rigidly separated by molecular bridges of well 

defined structure and geometry have been very valuable for characterizing the interrelationship 

between structure and functionality of the separating environment in electron transfer processes. 

As expected for a tunneling process, the rate is found to decrease exponentially with the donor-

acceptor distance 

 '
0

DAR
etk k e β−=         (8) 

where 
�

' is the range parameter that characterizes the distance dependence of the electron 

transfer rate. The smallest values for β' are found in highly conjugated organic bridges for which 

β' is in the range 0.2� 0.6� -121-32. In contrast, for free space, taking a characteristic ionization 

barrier 5BU eV= we find 2 1' 8 / 2.4BmUβ −= ≈ A��
(m is the electron mass) Lying between 

these two regimes are many motifs, both synthetic and natural, including cytochromes and 

docked proteins,33-41 DNA,42-50 and saturated organic molecules.51-57 Each displays its own 

characteristic range of β' values, and hence its own timescales and distance dependencies of 

electron transfer. A direct measurement of 
�

' along a single molecular chain was recently 

demonstrated.58 

In addition to bridge assisted transfer between donor and acceptor species, electron 

transfer has been studied in system where the spacer is a well characterized Langmuir-Blodgett 

film.59-61 The scanning tunneling microscope provides a natural apparatus for such studies.58, 62-

76 Other approaches include break junctions77-79 and mercury drop contacts.80-84 

Simple theoretical modeling of VDA usually relies on a single electron (or hole) picture in 

which the donor-bridge-acceptor (DBA) system is represented by a set of levels: 

| ,| ,{ |1 ,...| }D A N> > > >  as depicted in Fig. 3. In the absence of coupling of these bridge states 

to the thermal environment, and when the energies En (n=1,...,N) are high relative to the energy 

of the transmitted electron (the donor/acceptor orbital energies in Figs. 1a, 2a and 3a or the 

incident electron energy in Figs. 1b-c, 2b and 3b), this is the super-exchange model for electron 

transfer. 85 Of particular interest are situations where { n} are localized in space, so that the state 
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index n corresponds to position in space between the donor and acceptor sites (Fig. 3a) or 

between the two electron reservoirs (Fig. 3b). These figures depict generic tight binding models 

of this type, where the states n=1,...,N are the bridge states, here taken degenerate in zero order. 

Their localized nature makes it possible to assume only nearest neighbor coupling between 

them, i.e., , ' , 1 ', 1n n n n n nV V δ± ±= . We recall that the appearance of VDA in Eq. (1) is a low-order 

perturbation theory result. A more general expression is obtained by replacing VDA by TDA where 

the T operator is defined by ( ) ( )T E V VG E V= + , with 1( ) ( (1/ 2) )G E E H i −= − + Γ  and where Γ 

stands for the inverse lifetime matrix of bridge levels. Assuming for simplicity that the donor 

level |D> is coupled only to bridge state |1> and that the acceptor level |A> is coupled only to 

bridge level N, the effective coupling between donor and acceptor is given by 

 1 1( ) ( )DA DA D N NAT E V V G E V= +       (9) 

This naturally represents the transition amplitude as a sum of a direct contribution, VDA, which is 

usually disregarded for long bridges, and a bridge mediated contribution. In using TDA instead of 

VDA in Eq. (1) the energy parameter E in (9) should be taken equal to ED=EA at the point where 

the corresponding potential surfaces cross (or go through an avoided crossing).  For the level 

structure of Fig. 3a that corresponds to the DBA system in Fig. 1a, making the tight binding 

approximation and in the weak coupling limit, max | | min( )BV E E−� ,a the Green's function 

element in (9) is given by 

 
1

, 1
1

1

1
( )

N
n n

N
N nn

V
G E

E E E E

−
+

=
=

− −∏       (10) 

For a model with identical bridge segments En and Vn,n+1 are independent of n and will be 

denoted En=EB  and Vn,n+1=VB. Using this in Eq.  (1) leads to 

 

2 2

12
N

D NA B
et

B B

V V V
k

V E

π  
=  ∆ 

�
�       (11) 

where .B BE E E∆ = −  Similarly, for a bridge assisted transfer between a molecule and an 

electrode, Eq. (7) applies with |V(ε)|2 given by 

 

2 2

2 1| ( ) | ( )
N

k NAB
k

kB B

V VV
V

E V
ε δ ε ε

 
= − ∆ 

∑      (12) 

These results imply a simple form for the distance parameter β' of Eq. (8) 

 

a For a generali zation of Eq. (10) that does not assume weak coupling see Ref. 86 and 87. See also 88. 
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2

' ln B

B

E

a V
β

 ∆
=  

 
        (13) 

where a measures the segment size, so that the bridge length is Na. The exponential dependence 

on the bridge length is a manifestation of the tunneling character of this process. For typical 

values, e.g. / 10B BE V∆ =  and a=5
�
, Eq. (13) gives β'=0.92

�
-1. More rigorous estimates of the 

electronic  coupling term in electron transfer processes involve electronic structure calculation 

for the full DBA system. Such calculations, in the context of molecular conduction, will be 

discussed later. 

2.2. Transmission between conducting leads 

Eqs. (1), (7) and (11) are expressions for the rate of electron transfer between donor and 

acceptor molecules or between a molecule and a metal electrode. As already mentioned, for 

electron transfer in metal-molecule-metal (MMM ) junctions, the primary observable is the 

current-voltage characteristics of the system. Putting another way, while the primary observable 

in 'standard' charge transfer processes involving molecular donors and/or acceptors is a transient 

quantity,b in MMM junctions we focus on the steady state current through the junction for a 

given voltage difference between the two metal ends. 

Consider first a simple model for a metal-insulator-metal (MIM) system, where the 

insulator is represented by a continuum characterized by a dielectric constant ε.89 For specificity 

assume that the electrode surfaces are infinite parallel planes perpendicular to the x direction. In 

this case the transmission problem is essentially 1-dimensional and depends only on the incident 

particle velocity in the x direction, 2 /x xE mυ = . In the WKB approximation the transmission 

probabili ty is given by 

( )
1

2
1/24

( ) exp 2 ( )x B x

s

s
E m U x E dx

π  = − −   ∫�
�

    (14) 

where UB(x) is the barrier potential that determine the turning points s1 and s2 and m is the mass 

of the tunneling particle. The tunneling flux is given by ( ) ( ) 2 /x x xE n E E m
�

, where n(Ex) is 

the density per unit volume of electrons of energy Ex in the x direction. n(Ex) is obtained by 

 

b In addition to rates, other observables are the yields of different products of the electron transfer reaction. 

Furthermore, for light induced electron transfer processes, the steady state current under a constant ill umination can 

be monitored. 
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integrating the Fermi-Dirac function with respect to Ey and Ez. When a potential Φ is applied so 

that the right electrode (say) is positively biased, the net current density is obtained in the form89 

 
0

( ) ( )x x xJ dE E Eξ
∞

= ∫
�

       (15) 

where 

[ ] [ ]
2

3 3
0

2 4
( ) ( ) ( ) ( ) ( )

(2 ) (2 )
x y z r

m e me
E d d f E f E e dE f E f E e

πξ υ υ
π π

∞ ∞ ∞

−∞ −∞

= − + Φ = − + Φ∫ ∫ ∫� �  

           (16) 

and where 2 2(1/ 2) ( )r x y zE E E m υ υ= − = +  is the energy in the direction perpendicular to x. In 

obtaining this result it is assumed that the electrodes are chemically identical. At zero 

temperature and when 0Φ → , ( ) ( ) ( )Ff E f E e e E Eδ− + Φ = Φ − . Eqs. (15) and (16) then lead 

to an expression for the conduction per unit area, i.e. the conductivity per unit length 

 
2

3
0

4
( )

(2 )

FE

x x x
me

dE E
πσ
π

= ∫
�

�        (17) 

For finite Φ these expressions provide a framework for predicting the current-voltage 

characteristics of the junction; explicit approximate expressions were given by Simmons. 89. 

Here we only emphasize,89, that the dependence on Φ arises partly from the structure of Eqs. 

(15) and (16), for example, at zero temperature 

2 2

3
0

4
( ) ( ) ( )

(2 )

F F

F

E e E

x x x F x x
E e

m e
J e dE T E dE E E E

π
π

− Φ

− Φ

 
 = Φ + −
  

∫ ∫
�

� ,  (18) 

but mainly from the voltage dependence of 
�

. The simplest model for a metal-vacuum-metal 

barrier between identical electrodes without an external field is a rectangular barrier of height 

above the Fermi energy given by the metal workfunction. When a uniform electric field is 

imposed between the two metals a linear potential drop from EF on one electrode to EF-eΦ on 

the other is often assumed (see fig. 4). In addition, the image potential experienced by the 

electron between the two metals will considerably modify the potential barrier. For a point 

charge e, located at position x between two conducting parallel plates that are a distance d apart, 

the image potential is 

 
2

2 2
1

1 1

4 2 ( )
I

n

e nd
V

x ndnd xπε

∞

=

      = − + −       −     î  
∑      (19) 
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where ε is the dielectric constant of the spacer. For x=d/2 this becomes 

 
2 ln2

2I
e

V
dπε

= −          (20) 

This negative contribution to the electron's energy reduces the potential barrier (Fig. 4), and has 

been invoked to explain the lower than expected barrier observed in STM experiments.90, 91 

Some points should however be kept in mind. First, the classical result (19) fails close to the 

metal surface where quantum mechanical and atomic size effects change both the position of the 

reference image plane and the functional form of the image potential.92-96 Second, consideration 

of the dynamic nature of the image response should be part of a complete theory.97-99 100(a) The 

timescale of electronic response of metals can be roughly estimated from the plasma frequency 

to be ~10-16s. This should be compared to the time during which a tunneling particle can respond 

to interactions localized in the barrier. For transmitted particles this is the traversal time for 

tunneling101, 102 (see Section 3.1) that, for an electron traversing a 10
�
 wide 1eV barrier is of the 

order of ~1fs. This comparison would justify the use of the static image approximation in this 

context, but this approximation becomes questionable for deeper tunneling or narrower barriers.  

 The planar geometry implied by the assumption that transmission depends only on the 

energy of the motion parallel to the tunneling direction, as well as the explicit form of Eq. (14) 

are not valid for a typical STM configuration that involves a tip on one side and a structured 

surface on the other. To account for these structures Tersoff and Hamman103 have applied the 

Bardeen's formalism104 which is a perturbative approach to tunneling in arbitrary geometries. 

The Bardeen's formula for the tunneling current isc 

( ) ( )[ ]

[ ]

2

,

2

,

4
( ) 1 ( ) 1 ( ) ( ) | | ( )

2
( ) ( ) | | ( )

l r l r lr l r
l r

l r lr l r

l r

e
I f E f E e f E f E e M E E

e
f E f E e M E E

π
δ

π
δ

= − + Φ − − + Φ − =

− + Φ −

∑

∑

�

�

 (21) 

where 

 ( )
2

* *

2lr l r l rM dS
m

ψ ψ ψ ψ= ⋅ ∇ − ∇∫
��

      (22) 

 

c This is just the Golden rule rate expression (multiplied by the electron charge e), with M playing the role of 

coupling. In Ref.103 only the first term in the square brackets of the first line appears. This gives the partial current 

from the negative to the positi ve electrode. The net current is obtained by subtracting the reverse current as shown 

in Eq. (21). Also, compared with Ref103, Eq. (21) contains an additional factor of 2 that accounts for the spin 

multipli city of the electronic states. 
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is the transition matrix element for the tunneling process. In these equations ψ �  and ψr are 

electronic eigenstates of the negatively biased (left) and positively biased (right) electrodes, 

respectively, Φ is the bias potential and the integral is over any surface separating the two 

electrodes and lying entirely in the barrier region. The wavefunctions appearing in Eq. (22) are 

eigenfunctions of Hamiltonians that describe each electrode in the absence of the other, i.e 

interfaced with an infinite spacer medium. These functions therefore decay exponentially in the 

space between the two electrodes in a way that reflects the geometry and chemical nature of the 

electrodes and the spacer. For Φ→0 Eq. (21) yields the conduction 

 
2

2

,

4
| | ( ) ( )lr l F r F

l r

I e
g M E E E E

π δ δ≡ = − −
Φ ∑�     (23) 

Tersoff and Hamman103 have used substrate wavefunctions that correspond to a corrugated 

surface of a generic metal while the tip is represented by a spherical s orbital centered about the 

center r0 of the tip curvature. In this case they find 

 2
0( ) ( )FI E Eν ν

ν
ψ δ∝ −∑ r        (24) 

The r.h.s. of (24) is the local density of states of the metal. While this result is useful for analysis 

of spatial variation of the tunneling current on a given metal surface, the contributions from the 

coupling matrix elements in (23) can not be disregarded when comparing different metals and or 

different adsorbates.20 

2.3. The Landauer Formula 

 The results (14)-(17) and (21)-(23) are special cases of a more systematic representation 

of the conduction and the current-voltage characteristic of a given junction due to Landauer.105, 

106 Landauer's original result was obtained for a system of two 1-dimensional leads connecting 

two macroscopic electrodes ('electron reservoirs') via a scattering object or a barrier 

characterized by a transmission function � (E). The zero temperature conductance, measured as 

the limit Φ→0 of the ratio I/Φ between the current and the voltage drop between the reservoirs, 

was found to bed 

 

d The corresponding resitance, g� 1, can be represented as a sum of  the intrinsic resistance of the scatterer itself, 

( )( )
1

2 / /(1 )e π
−

 − 
� � �

 and a contribution ( ) 12 /e π
−�

from two contact resistances between the leads and 

the reservoirs. See Chapter 5 of 107 for a discussion of this point. 
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2

( )F
e

g E
π

= � �         (25) 

This result is obtained by computing the total unidirectional current carried in an ideal lead by 

electrons in the energy range (0,Ε)=(0,
� 2kE

2/(2m)). In a 1-dimensional system of length L the 

density of electrons, including spin, with wavevectors in the range between k and k+dk is 

( ) 2(1/ )( / 2 ) ( ) ( ) /k kn k dk L L f E dk f E dkπ π= = . The corresponding velocity is /k mυ = � . 

Thus 

 ( )
0 0 0

( ) ( ) ( ) / ( ) / ' ( ')E E
k

k k Ee
I E e dk k n k e dk k m f E dE f Eυ π

π
= = =∫ ∫ ∫�

�  (26) 

At zero temperature, the net current carried under bias Φ is 

 ( )
2

0

0
( ) ( )

e e
I dE f E f E e

π π
Θ→∞

= − + Φ → Φ∫� �     (27) 

Thus the conductance of an ideal 1-dimensional lead is ( ) 12/ / 12.9I e Kπ −Φ = = Ω
�

. In the 

presence of the scatterer this is replaced by 

 ( )
2

0, 0

0
( ) ( ) ( ) ( )F

e e
I dE E f E f E e E

π π
Θ→ Φ→∞

= − + Φ → Φ∫� �� �  (28) 

which leads to (25). This result is valli d for 1-dimensional leads. When the leads have finite size 

in the direction normal to the propagation so that they support traversal modes, a generalization 

of (25) to this case yields108e 

 ( )
2 2

,

( )
F

ij F
E

i j

e e
g E SS

π π
= =∑ Tr�� �       (29) 

where � ij=|Sij|
2 is the probabili ty that a carrier coming from the left (say) of the scatterer in 

transversal mode i will be transmitted to the right into transversal mode j (Sij, an element of the 

S matrix, is the corresponding amplitude). The sum in (29) is over all traversal modes whose 

energy is smaller than EF. More generally, the current for a voltage difference Φ between the 

electrodes is given by 

 [ ]
0

( )
( ) ( )

g E
I dE f E f E e

e

∞

= − + Φ∫       (30) 

 

e The analog of Eq. (29) for the microcanonical chemical reaction rate was was first written by Mill er109.  Similarly, 

Eq. (34) was first written in a similar context in Ref. 110. 
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2

,

( ) ( )ij
i j

e
g E E

π
= ∑� �         (31) 

As an example consider the case of a simple planar tunnel junction (see Eqs. (14)-(17)), 

where the scattering process does not couple different transversal modes. In this case the 

transmission function depends only on the energy in the tunneling direction 

 

( )( )2 22
2

,

2 2
0

( ) ( ) / 2
(2 )

2
( )

(2 )

y z
ij ii y z y z

i j i

E
y z

r r

L L
E E dk dk E m k k

L L m
dE E E

π

π
π

 = = − + =  

= −

∑ ∑ ∫ ∫

∫

�

�

� � �

�
 (32) 

Er is defined below Eq. (16). Using this in Eq. (29) yields the conductivity per unit length 

 
2

3
0

4
( )

FE

x x
y z

g me
dE E

L L h

πσ≡ = ∫
�

      (33) 

in agreement with Eq. (17).  

 Similarly, Eqs. (21) and (23) are easily seen to be equivalent to (25) or (31) if we 

identify Mlr with Tlr in Eq. (37) below. An important difference between the results (29) and (31) 

and results based on the Bardeen's formalizm, Eqs. (21)-(23), is that the former are valid for any 

set of transmission probabili ties, even close to 1, while the latter yields a weak coupling result. 

Another important conceptual difference is the fact that the sums over �  and r in Eqs.(21)-(23) is 

over zero order states defined in the initial and final subspaces, while the sums in Eqs. (29)-(31) 

is over scattering states, i.e. eigenstates of the exact system's Hamiltonian. It is the essesnce of 

Bardeen's contribution104 that in the weak coupling limit (i.e. high/wide barrier) it is possible to 

write the transmission coefficient � ij in terms of a golden rule expression for the transition 

probabili ty between the zero order standing wave states | and |l r> >  localized on the left and 

right electrodes, thus establishing the link between the two representations. (For an alternative 

formulation of this link see Ref. 111) 

 To explore this connection on a more formal basis, we can replace the expression based 

on transmission coefficients �  by an equivalent expression based on scattering amplitudes, or T 

matrix elements, between zero order states localized on the electrodes. This can be derived 

directly from Eqs. (29) or (31) by using the identity 

 2 2

, ,

( ) 4 | | ( ) ( )ij lr l r
i j l r

E T E E E Eπ δ δ= − −∑ ∑�     (34) 
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On the left side of (34) a pair of indices (i,j) denote an exact scattering state of energy E, 

characterized by an incoming state i on the left (say) electrode and an outgoing state j on the 

right electrode. On the right, l and r denote zero order states confined to the left and right 

electrodes, respectively. T is the corresponding transition operator whose particular form 

depends on the details of this confinement. Alternatively we can start from the golden-rule-like 

expression 

( ) ( )

[ ]

2

,

2

,

4
( ) 1 ( ) ( ) 1 ( ) | | ( )

4
( ) ( ) | | ( )

l r r l lr l r
l r

l r lr l r
l r

I e f E f E e f E e f E T E E

e
f E f E e T E E

π δ

π δ

 = − + Φ − + Φ − − = 

= − + Φ −

∑

∑

�

�
  (35) 

(An additional factor of 2 on the r.h.s. accounts for the spin degeneracy). It is convenient to 

recast this result in the form 

 

[ ]

[ ]

2

,0

0

4
( ) ( ) | | ( ) ( )

( )
( ) ( )

lr l r
l r

e
I dE f E f E e T E E E E

g E
dE f E f E e

e

π δ δ
∞

∞

= − + Φ − − =

= − + Φ

∑∫

∫

�
  (36) 

where 

2
2

,

4
( ) | | ( ) ( )lr l r

l r

e
g E T E E E E

π δ δ≡ − −∑�      (37) 

Note that Eqs. (34) and (37) imply again Eq. (31). For Φ→0 Eqs. (36) and (37) lead to I g= Φ  

with 

 ( )Fg g E=          (38) 

The analogy of this derivation to the result (23) is evident. 

2.4. Molecular conduction 

Eqs. (36)-(38) provide a convenient starting point for most treatments of currents 

through molecular junctions where the coupling between the two metal electrodes is weak. In 

this case it is convenient to write the system's Hamiltonian as the sum, 0H H V= + , of a part H0 

that represents the uncoupled electrodes and spacer and the coupling V between them. In the 

weak coupling limit the T operator 

 ( ) 1( ) ( ) ; ( )T E V VG E V G E E H iε −= + = − +     (39)  

is usually replaced by its  second term only. The first 'direct' term V can be disregarded if we 

assume that V couples the states � and r only via states of the molecular spacer. Consider now a 
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simple model where this spacer is an N-site bridge connecting the two electrodes so that site 1 of 

the bridge is attached to the left electrodes and site N - to the right electrode, a variant of Fig. 3b. 

In this case we have 1 1lr l N NrT V G V= , so that at zero temperature112, 113 

 2 ( ) ( )
1 1

,

( ) | ( ) | ( ) ( )L R
ij N F F N F

i j

E G E E E= Γ Γ∑ �
     (40) 

and (using Eqs. (36) and (37)) 

 2 ( ) ( )
1 1( ) | ( , ) | ( ) ( )

F

F

E
L R

N N

E e

e
I dE G E E E e

π − Φ

Φ = Φ Γ Γ + Φ∫�    (41) 

with 

( ) 2 ( ) 2
1 1 1( ) 2 | | ( ) ; ( ) 2 | | ( )L R

l N Nr N
l r

E V E E E V E Eπ δ π δΓ = − Γ = −∑ ∑  (42) 

The Green's function in Eq. (40) is itself reduced to the bridge's subspace by projecting out the 

metals' degrees of freedom. This results in a renormalization of the bridge Hamiltonian: in the 

bridge subspace 

 ( ) ( )1 1( )B BE H i E H Eη − −− + → − − Σ      (43) 

where 0
B B BH H V= +  is the Hamiltonian of the isolated bridge entity with 

 0
, '

1 1 ' 1

| | ; | ' |
N N N

B n B n n
n n n

H E n n V V n n
= = =

= >< = ><∑ ∑ ∑    (44) 

and where in the basis of eigenstates of 0
BH  

 ( )[ ]' , ' ,1 ,( ) ( ) (1/ 2) ( )nn n n n n N n nE E i Eδ δ δΣ = + Λ − Γ     (45) 

 2( ) 2 | | ( )n nj jj
E V E Eπ δΓ = −∑       (46) 

 ( )
( ')

( ) '
2 '

n
n

PP E
E dE

E Eπ
∞

−∞
ΓΛ =

−∫       (47) 

In Eq. (46) the sum is over both the right and the left manifolds, i.e., j goes over all states { l} 

and {r} in these manifolds) so that ( ) ( ) ; 1,L R
n n n n NΓ = Γ + Γ = . The transmission problem is thus 

reduced to evaluating a Green's function matrix element and two width parameters. The first 

calculation is a simple inversion of a finite (order N) matrix. The width Γ and and the associated 

shift Λ, represent the finite lifetime of an electron on a molecule adsorbed on the metal surface, 

and can be estimated, for example,113 using the Newns-Anderson model of chemisorption.114 In 

the simple tight binding model of the bridge and in the weak coupling limit, G1N is given by Eq. 

(10) modified by the inclusions of the self energy terms 
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 ( )( )
1

, 11,2
1

1 1 2

( )
( ) ( )

N
j j

N
N N jj

VV
G E

E E E E E E E E

−
+

=
=

− − Σ − − Σ −∏    (48) 

Eqs. (40)-(48) thus provide a complete simple model for molecular conduction, equivalent to 

similar approximations used in theories of molecular electron transfer.(e.g. 115, 116 and references 

therein) For applications of variants of this formalism to electron transport in specific systems 

see Refs. 86, 87, 117, 118. Below we discuss more general forms of this formulation. 

2.5. Relation to electron transfer rates 

It is interesting to examine the relationship between the conduction of a molecular 

species and the electron transfer properties of the same species.f We should keep in mind that 

because of tunneling there is always an Ohmic regime near zero bias, with conduction given by 

the Landauer formula. Obviously this conduction may be extremely low, indicating in practice 

an insulating behavior. Of particular interest is to estimate the electron transfer rate in a given 

donor-bridge-acceptor (DBA) system that will translate into a measurable conduction of the 

same system when used as a molecular conductor between two metal leads. To this end consider 

a DBA system, with a bridge that consists of N identical segments (denoted 1,2,...N) with 

nearest neighbor coupling VB. The electron transfer rate is given by Eq. (11) that we rewrite in 

the form 

 
2 2

1 1
2

( )D A D NA N Dk V V G E
π

→ = � �      (49) 

where, in the weak coupling limit, | |B BV E E−�  (cf. Eq. (10)) 

 
1

1 ( )
( )

N
B

N N
B

V
G E

E E

−

=
−

        (50) 

and where �  is the Franck-Condon-weighted density of nuclear states, given in the classical 

limit by Eq. (3). The appearance of �  in Eq. (49) indicates that the process is dominated by the 

change in the nuclear configuration between the two localization states of the electron. Suppose 

now that the same DBA complex is used to connect between two metal contacts such that the 

donor and acceptor species are chemisorbed on the two metals (denoted 'left' and 'right' 

 

f Nitzan A. To be published. Such an estimate was given before in Ref.119, but the procedure given there is limited 

to a 1-dimensional model, and has disregarded the Franck-Condon factor in the electron transfer rate. The 

procedure outlined here is more general. 
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respectively). We wish to calculate the conduction of this junction and its relation to .D Ak →  

First note that the conduction process does not involve localized states of the electron on the 

donor or the acceptor, so the factor 
�

 will be absent. (We will disregard for the moment energy 

loss arising from transient distortions of the nuclear configuration associated with transient 

populations of electronic states of the DBA complex). Assuming as before that states of the 

molecular complex are coupled to the metal only via the D and A orbitals, and that the latter are 

coupled only to their adjacent metal contacts, the conduction is given by an equation similar to 

(40), except that the bridge (1,...,N) is replaced by the complex DBA=(D,1,...,N,A)  

 
2

2 ( ) ( )( ) | ( ) | ( ) ( )L R
DA D A

e
g E G E E E

π
= Γ Γ�      (51) 

where, in analogy to Eq. (48) 

 
( )( )

1
1( ) ( )

( ) ( )
D NA

DA N
D D A A

V V
G E G E

E E E E E E
=

− − Σ − − Σ
   (52) 

Since the donor and acceptor species are chemisorbed on their corresponding metal contacts, 

their energies shift closer to the Fermi energies. We assume that this shift occurs uniformly in 

the DBA complex, without distorting its internal electronic structure (strictly speaking this can 

happen only in the symmetric case of identical donor and acceptors and identical metal 

electrodes, but the result of Eq. (53) below is probably a good approximation for more general 

cases because G1N(E) is often not strongly dependent on E). Assuming therefore that the 

denominator in (52) is dominated by the imaginary parts of the self energies � , we get 

 
22

1 2
1( ) ( )

16
( ) | ( ) | ;

( ) ( )
D NA

F N F F D AL R
D F A F

V Ve
g g E G E E E E

E Eπ
= = = =

Γ Γ
�   (53) 

Comparing to Eq. (49) we get 

 
2

( ) ( )

8D A
L R

D A

ke
g

π π
→=

Γ Γ

�
� �        (54) 

It has been argued that, provided the energy spacing EB-EF between the bridge levels and the 

Fermi energy is large relative to kBT, Eq. (54) holds also when the electron transfer process 

involves thermal activation into the bridge states (and not only for the bridge assisted tunneling 

implied by Eq. (53)).120 Using the classical expression for 
�

, Eq. (3), we have in the present 

case ( ) ( )
1

4 exp / 4B Bk T k Tπλ λ
−

= −
�

. For a typical value of the reorganization energy ~0.5eV, 

and at room temperature this is ~ 0.02(eV)-1. Taking also ( ) ( )L R
D AΓ = Γ ~0.5eV leads to 
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( )( )2 13 1~ / 10 ( )D Ag e k sπ − −
→ ≅

�
 17 1 110 ( )D Ak s− − −

→  Ω  . This sets a criterion for observing 

Ohmic behavior for small voltage bias in molecular junctions: With a current detector sensitive 

to pico-amperes, kD→A has to exceed ~106s-1 (for the estimates of �  and Γ given above) before 

measurable current can be observed at 0.1V voltage across such a junction. 

2.6. Quantum chemical calculations 

 The simple models discussed above are useful for qualitative understanding of molecular 

conductivity, however the Landauer formula or equivalent formulations can be used as a basis 

for more rigorous molecular calculations using extended Huckel calculations70-72, 79, 121-135 or 

Hartree Fock136-139. These approaches follow similar semiempirical and ab-initio calculations of 

electron transfer rates in molecular systems,140 however instead of focusing on the computation 

of the electronic coupling VDA needed in Eqs. (1), the sum in Eq. (34) is calculated directly. 

Structural stabili ty considerations suggest that useful metal-molecule-metal bridges should 

involve strong chemisorption bonding between the molecule and the metal substrate, implying 

large electronic coupling between them.141 It is therefore preferable to use a 'supermolecule' 

approach, in which the quantum chemical calculations are carried for a species that comprises 

the molecule and two clusters of metal atoms, so that the reduction that introduces the self 

energy Σ (Eq. (43) is done at some deeper metal-metal contact. Such atomic level calculations 

usually start from a (non-orthogonal) basis set of atomic orbitals, so the formalism described 

above has to be generalized for this situation.g We also relax the assumption that the molecule-

metal contact is represented by coupling to a single molecular orbital. Defining the operator 

 ( ) with |ijE EZ H Z i j= − =< >
�

       (55) 

the Green's function is G(E)=� (E)-1. In Eq. (55), i and j denote atomic orbitals that may be 

assigned to the supermolecule (M), the left metal (L) and the right metal (R) subspaces. 

Denoting formally the coupling between the subspace M and the subspaces K=L,R by the 

corresponding submatrices � MK, the Green's function for the supermolecule subspace is  

 ( ) 1( ) ( ) ( )( )M L RG E
−

= − Σ − Σ�       (56) 

 

g Alternatively, it has been shown by Emberly and Kirczenow142,143 that one can map the problem into a new Hilbert 

space in which the basis states are orthogonal. 
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withh 

 ( ) 1( )K
MK KK KM

−Σ =
� � �

       (57) 

Using also 

 ' '
, '

lr ln nn n r
n n

T G= ∑ � �
       (58) 

(l and r in the metal L and R subspaces, respectively; n,n' in the supermolecule subspace) in Eq. 

(37) leads to 

 
2

( ) ( ) ( ) ( )( ) ( ) ( ) ( )M R M Le
g E Tr G E E G E

π
 = Γ Γ  

�     (59) 

where, e.g. for the 'left' metal 

 ( )
', ' 2 ( )L

nl ln ln n
l

E Eπ δΓ = −∑ � �
  (n and n' in the molecular subspace) (60) 

In practice, Σ and Γ = � 2Im(Σ) can be computed by using closure relations based on the 

symmetry of the metal lattice.132 The trace in Eq. (59) is over all basis states in the 

(super)molecular subspace. The evaluation of the Green's function matrix elements and of this 

trace is straightforward in semi-empirical single electron representations such as the extended 

Huckel (EH) approximation, and can be similarly done at the Hartree-Fock (HF) level using, 

after convergence, the Fock rather then the Hamiltonian matrix in Expressions (55)-(60).i 

 An important attribute of the approach described above is that, within the approximation 

used, it provides the total current carried by the system, both through the unoccupied molecular 

levels (electron conduction) and the occupied ones (hole conduction). This results from the fact 

that the trace in (59) is over all the atomic orbitals that comprise the (super)molecular basis set, 

that upon diagonalization in the (super)molecular Hamiltonian will yield both occupied and 

unoccupied molecular orbitals. In a 1-electron theory such as the extended Huckel 

approximation both types of orbitals contribute in the same way. For example, the terms in Eq. 

(59) that describe an electron moving from the highest occupied molecular orbital (HOMO) into 

empty states of the anode, followed by an electron moving from the cathode into the HOMO 

 

h ( )KΣ is a matrix in the molecular subspace and Eq. (57) is a compact notation  for 

( )( ) 1
' 'n', ', '

( )K
nk kk kk kn n

−Σ = ∑ � � �
 where k and k' are states in the metal K subspace. 

i Note that the Fock operator depends on the ground state electronic configuration. The latter is taken in Refs. 136-139. 

to be that of the isolated supermolecule, assuming that the contact with the bulk electrodes does not affect it 

appreciably. In particular, the supermolecule is usually assumed neutral in these calculations. 
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("hole transport"), and an electron moving from the cathode to the lowest unoccupied molecular 

orbital (LUMO) then moving on into the cathode ("electron transport") are similar (their values 

depend on the energies of the molecular orbitals involved with respects to the Fermi energies), 

irrespective of whether the corresponding orbitals are occupied or not. The same is true in the 

HF calculation if the Koopmans' theorem,144 stating that the HF orbital energies represent the 

actual energies involved in removing an electron from an occupied orbital or putting an electron 

into an unoccupied one, holds. The Koopman's theorem is accurate only for large systems, and 

the approximation involved in applying it to small systems is one reason why HF is not 

necessarily superior to EH for calculating the conduction properties of small molecular 

junctions.j  

 In spite of these limitations, EH and HF based calculations have provided important 

insight into the conduction properties of molecular junctions. Fig. 5 shows a remarkable 

example. The (EH) calculation is done for a single α,α'-xylyl dithiol molecule adsorbed between 

two gold contacts. The experiment monitors the current between an STM tip (obtained by 

cutting a Pt/Ir wire) and a monolayer of such molecules deposited on gold, and it is assumed that 

lateral interaction between the molecules is unimportant. Two unknown parameters are used for 

fitting. The first is the position of the metals Fermi energy in the unbiased junction relative to 

the molecular energy levels expressed by FH F HOMOE E E≡ − . The second describes the 

electrostatic potential profile along the junction, represented by a parameter �  that expresses the 

distribution of the voltage drop between the two metal leads (see Fig. 6 and Eq. (71) below). As 

seen in Fig. 5, good agreement between theory and experiment is obtained for EFH=0.9eV and 

η=0.5. 

 

j This is true particularly for LUMO dominated conduction, because the HF is notoriously inadequate for electron 

aff inities.145-148. See 139 for further discussion of this point. Another potential (but in principle avoidable) problem in 

these calculations is associated with the finite, relatively small basis of atomic orbitals used. Close to resonance, 

when the electrode electrochemical potential µ= EF+eΦ approaches the HOMO or LUMO energies, the 

corresponding HOMO or LUMO orbitals dominate the electron transfer and a small basis that describe correctly 

these orbitals is suff icient. When EF is a distance ∆E away from EHOMO or ELUMO, all molecular orbitals in the range 

∆E below EHOMO and in a similar range above ELUMO, can contribute to the transmission probabilit y and cannot be 

ignored, implying the need for a larger molecular basis.111,129. We note in passing that the recently discussed 

transmission antiresonances142,150 associated with the non-orthogonalit y of the atomic orbital basis sets, have been 

shown111 to be sometimes artifacts of a small basis calculation. 
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 In view of the other unknowns, associated both with the uncertainty about the junction 

structure and with the simplified computation, the main value of these results should be placed 

not in the absolute numbers obtained but rather in highlighting the importance of these 

parameters in determining the junction conduction behavior. We return to the issue of the 

junction potential profile below. Other qualitative issues that were investigated with these types 

of calculations include the effect of the nature (length and conjugation) of the molecular bridge, 
128, 129 the effect of the molecule-electrode binding and of the molecular binding site,132 the 

relation of conductance spectra to molecular electronic structure79 and the effect of bonding 

molecular wires in parallel.130 (See also Ref. 151) 

2.7. Spatial-grid based pseudopotential approaches 

 Another way to evaluate the expressions appearing in Eqs. (34) and (37) as well as 

related partial sums is closely related to the discrete variable representation of reaction 

probabili ties as formulated by Seideman and Mill er.152-154 We have already seen that the  sum 

 2

,

( ) | | ( ) ( )lr l r
l r

s E T E E E Eδ δ≡ − −∑       (61) 

which is related to the conduction by 2( ) (4 / ) ( )g E e s Eπ=
�

 (c.f Eq. (37)) can be represented by 

(c.f. Eq. (59)) 

( ) ( ) ( )* ( )
2

1
( ) ( ) ( ) ( )

4
M R M Ls E Tr G E E G E

π
 = Γ Γ      (62) 

If instead of considering transitions from 'left' to 'right' electrode we think of Eq. (61) as 

expressing a sum over transition probabili ties from all initial (i) states of energy E in the reactant 

space to all final (f) states of the same energy in the product space, s(E) is also associated with 

the so called cumulative reaction probability,152-154 which in terms of the reaction S matrix is 

defined by 2 2
,

( ) | ( ) | 4 ( )ifi f
N E S E s Eπ= =∑ , i.e. 

,

( ) ( )if
i f

N E E= ∑ �
. Eq. (62) now expresses 

the important observation that the cumulative reaction probabili ty for a reactive scattering 

process can be expressed as a trace over states, defined in a finite subspace that contains the 

interaction region, of an expression that depends on the reduced Green's function and the 

associated self energy defined in that subspace. Following Seideman and Mill er we can use a 

spatial grid representation for the states in this subspace, so that the trace in (62) becomes a sum 

over grid points. Also, in this representation the overlap matrix Z is zero. In general, any 

subspace of position space that separate reactants from products (i.e. that encompasses the entire 

interaction region; the molecular bridge in our application) can be used in (62), provided that the 
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consequences of truncating the "rest of the universe", expressed by the corresponding Σ and Γ 

can be computed. The absorbing boundary condition Green's function (ABCGF) method of 

Seideman and Mill er is based on the recognition that if this subspace is taken large enough so 

that its boundaries are far from the interaction region, the detailed forms of Σ and Γ are not 

important; the only requirement is that scattered waves that approach these boundaries will  be 

absorbed and not reflected back into the interaction zone.  In the ABCGF method this is 

accomplished by taking (1/ 2) ( )i iεΣ = − Γ = − r , a local function in position space, taken to be 

zero in the interaction region and gradually increasing from zero when approaching the subspace 

boundaries. Its particular form is chosen to affect complete absorption of waves approaching the 

boundary to a good numerical accuracy. Eq. (62) then becomes 

 *( ) 4 ( ) ( )R L
ABC ABCs E Tr G E G Eε ε =        (63) 

where ( ) 1( ) ; R L
ABCG E E H iε ε ε ε−= − + = +  and where εR and εL are different from zero only 

on grid points near the the right side (more generally the product side) and the left (reactant) side 

of the inner subspace, respectively.  

 A similar development can be done for the partial sum 

 2( ) | | ( )l lr r
r

s E T E Eδ≡ −∑        (64) 

which, provided that l is taken as an eigenstate of the Hamiltonian describing the left electrode 

(or the reactant sunspace), is related the 'one to all ' rate, kl(E) to go from an initial state of energy 

E on the left electrode (or in reactant space) to all possible states on the right one (product 

space) according to (2 / )l lk sπ=
�

.k We use the same definition of the coupling V between our 

subspace (bridge) and the reactant and product (electrode) states. Putting T=VGV in (64) we get 

 ( ) ( ) ( )*1
( ) | |

2
M R M

ls E l VG G V l
π

= < Γ >      (65) 

 

k The "microcanonical rate" is defined by 
1( ) ( ) ( )L l ll

k E E k E Eρ δ−= − =∑  

( ) 1 22 ( ) 4 ( )L E s Eπ ρ π− =
� ( ) 1

2 ( ) ( ).L E N Eπ ρ −�
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Using again a position grid representation of the intermediate states used to evaluate this 

expression, and applying the same methodology as above, Eq. (65) can be recast in the forml 

  

*

*

1
( ) | ( ) ( ) |

1
| ( ) ( ) |

R

L R L

ABC ABC
l

ABC ABC

s E l V G E G E V l

l G E G E l

ε
π

ε ε ε
π

= < >

= < >
    (66) 

The results (63) and (66) are very useful for computations of transmission probabili ties in 

models where the interaction between the transmitted particle and the molecular spacer is given 

as a position dependent pseudo-potential. Applications to electron transmission through water 

and other molecular layers are discussed in Section 4.  

2.8. Density functional calculations 

 Density functional methods provide a convenient framework for treating metalic 

interfaces.100(b) Applications of this methodology to the problem of electron transport through 

atomic and molecular bridges have been advanced by several workers. In particular, Lang's 

approach90, 155-161 is based on the density functional formalism162, 163 in which the single electron 

wavefunctions ψ0(r) and the electron density n0(r) for two bare metal (jelli um) electrodes is 

computed, then used in the Lippman-Schwinger equation 

 0
0( ) ( ) ' '' ( , ') ( ', '') ( '')d d G Vψ ψ δ ψ= + ∫r r r r r r r r r     (67) 

to get the full single electron scattering wavefunctions ψ(r) in the presence of the additional 

bridge. (Lang's earlier calculations90, 164 use a related density functional approach to calculate 

the tunneling current between an atomic tip and a jelli um electrode without an atomic or 

molecular bridge). In Eq. (67) G0 is the Green's function of the bare electrode system and δV is 

the difference between the potential of the full system containing an atomic or a molecular 

spacer and that of the bare electrodes. In atomic units (|e|,
�
,m=1) it is 

 0

( '')
( , ') ( , ') ( ( )) ( ( ) '' )

| '' |ps

n
V V V n V n d

δδ  = + − + − ∫xc xc

r
r r r r r r r

r r
   (68)      

 

l The second part of Eq. (66) is obtained by using the identity | 0R lε >= to write * |RG V lε >  = 

*(1 ) |R G V lε + > = * * 1( ) |RG G V lε − + > , which, together with * 1
0G E H V iε− = − − + , 

0( ) | 0E H l− >=  and | |ll lε ε>= > , yields the desired result. 
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where Vps is the sum of non-local pseudopotentials representing the cores of the spacer atoms 

and Vxc is the LDA of the exchange correlation potential. n is the electron number density for the 

full system (electrodes and atoms) and δn=n-n0. Eq. (67) yields scattering states that can be 

labeled by their energy E, momentum k|| in the direction (yz) parallel to the electrodes and spin. 

In addition, Lang distinguishes between wavefunctions that in the electrode regions carry 

positive (+) or negative (-) momentum in the tunneling direction. Denoting by �
L and �

R the 

electron electrochemical potential in the left and right electrode, respectively, the zero 

temperature electrical current density from left to right (for �
L>�

R) is then 

 { }2 *
||( ) 2 Im

R

L

J dE d K
µ

µ
ψ ψ+ += − ∇∫ ∫r       (69) 

The factor 2 accounts for the double occupancy of each orbital. This approach was used 

Recently165 to calculate current through a molecular species, Benzene 1,4-dithiolate molecule 

(as used in the experiment of Ref.67), between two jellium surfaces. The result demonstrates the 

large sensitivity of the computed current to the microscopic structure of the molecule-metal 

contacts.  

A similar density functional approach, using an atomic-level description of the 

electrodes, was described by Di ventra and Pantelides.166 These authors use density-functional 

based ground state molecular dynamics167 in order to get the relaxed structure of the metal-

atomic system-metal junction, then evaluated the current through the relaxed structure. 

 The density-functional based calculations described above where done for small applied 

potential bias between the electrodes. In contrast, the density functional approach of Hirose and 

Tsukada168 calculates the electronic structure of a metal-insulator-metal system under strong 

applied bias. The main difference from the density functional approaches described above 

comes in the way the effective 1-electron potential is calculated. The potential used in this work 

contains the usual contributions from the Coulomb and the exchange-correlation interactions as 

well as from the ionic cores. However the Coulomb (Hartree) contribution is obtained from the 

solution of a Poisson equation 

 [ ]2 ( ) 4 ( ) ( )HV π ρ ρ+∇ = − −r r r       (70) 

in the presence of the applied potential boundary conditions. ρ+(r) is the fixed positive charge 

density, and the electron density ρ(r) is constructed by summing the squares of the 

wavefunctions over the occupied states. At the same time the exchange-correlation potential is 

calculated in the standard local density approximation, neglecting the effect of the finite current 
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that exists in the steady state system. The resulting formalism thus accounts approximately for 

non-equilibrium effects within the density functional calculation.m 

 To end this brief overview of density functional based computations of molecular 

conduction we should note that this approach suffers in principle from problems similar to those 

encountered in using the Hartree Fock approximation, namely the inherent inaccuracy of the 

computed LUMO energy and wavefunctions. The errors are different, for example HF 

overestimates the HOMO-LUMO gap (since the HF LUMO energy is too high145-149 170, 171) 

while DFT underestimates it.163, 172 Common to both approaches is the observation that 

processes dominated by the HOMO level will be described considerably better by these 

approaches than processes controlled by coupling to the LUMO.139, 173 

2.9. Potential profiles 

 The theoretical and computational approaches described above are used to compute both 

the Ohm-law conduction, g(EF) of a molecular bridge connecting two metals, Eq. (37) or (59), 

and the current-voltage characteristics of the junction, also beyond the Ohmic regime, Eq. (36). 

We should keep in mind that these calculations usually disregard a potentially important factor �  

the possible effect of the imposed electrostatic field on the nuclear structure as well as on the 

electronic structure of the bridge. A change in nuclear configuration under the imposed 

electrostatic field is in fact not very likely for stable chemisorbed molecular bridges. On the 

other hand, the electronic wavefunctions can be distorted by the imposed field, and this in turn 

may affect the electrostatic potential distribution along the bridge,n the electronic coupling 

between bridge segments and the position of the molecular energy levels vis-a-vis the metals 

Fermi energies. These effects were in fact taken approximately into account by Hirose and 

Tsukada 168 and by Mujica, Roitberg and Ratner169 by solving simultaneously the coupled 

Schr
�
dinger and Poisson equations. The latter yields the electrostatic potential for the given 

electron density and under the imposed potential boundary conditions.  

 The importance of the electrostatic potential profile on the molecular bridge in 

determining the conduction properties of a metal-molecule-metal junction was recently 

discussed by Tian et al72 in conjunction with the current-voltage characteristics of a junction 

 

m A simplified version of the same methodology has recently been presented by Mujica et al. 169. 
n In a single electron description this local electrostatic potential will be an input, associated with the underlying 

many electron response of the molecular bridge, to the position dependent energies of the bridge electronic states in 

the site representation.  
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comprised of an STM tip, a gold substrate and a molecule with two bonding sites (e.g. α,α'-

xylyl dithiol) connecting the two.  Fig. 6 displays several possible potential profiles between 

electrode 1 (substrate) and electrode 2 (tip) when the potential bias is µ1-µ2=Φ. The linear ramp, 

A1A2 represents a commonly made assumption for metal-molecule-metal junctions with a strong 

chemical bonding of the molecule to both metals. The assumption that the electrostatic potential 

on the molecule is pinned to that of the substrate so that all the potential drop occures between 

the molecule and the tip (profile A1CA2) is often made in analyzing STM experiments where the 

molecule interacts strongly with the substrate and weakly with the tip. Because the molecule is a 

polarizable object we expect that the linear ramp potential should be replaced by the dashed line 

in the figure, that is actually better approximated by the profile A1B1B2A2.
72 Indeed, the recent 

model calculation by Mujica et al169 suggests that this is indeed a good approximation. In this 

model, the conduction properties of the junction are determined by the position of the molecular 

bridge states relative to the metals equili brium Fermi energy, and by the voltage division factor 
�  that determines the voltage drops at the molecule-substrate and the molecule-tip contacts by 

 1 1

2 2 1

A B

A B

η
η

=
−

         (71) 

If η=0, all the potential drop occurs at the molecule� tip interface. In this case changing the 

voltage across the junction amounts to changing the energy difference between the molecular 

levels and the tip electrochemical potential. Enhanced conduction is expected when the latter 

matches either the HOMO (when the tip is positively biased) or the LUMO (when the tip is 

negatively biased) energies. However, because the HOMO and the LUMO states are usually 

coupled differently to the metals (for example, in the aromatic thiols the HOMO is a sulfur-

based orbital that couples strongly to the metal while the HOMO is a ring-based orbital that 

couples weakly to it), this implies strong asymmetry, about zero voltage, in the current-voltage 

dependence, i.e. rectification. In contrast, the observed dependence is essentially symmetric 

about Φ=0, a behavior obtained from Eq. (36) for a symmetric voltage division factor η=0.5.72  

Lamoen et al173 have carried out a density-functional based calculation of the 

equili brium structure and the electrostatic properties of Pd-doped porphyrin and perylene 

molecules adsorbed on gold slabs under an external electric field imposed in the direction of the 

molecule-metal axis. The observed behavior is qualitatively similar to a rounded, one-sided 

version, of the dashed line of Fig. 6. To what extent the electrostatic potential calculated in this 

work and in Ref.169 are relevant for single electron models of molecular junctions still remains 

to be clarified. In particular, in other treatments of excess electrons at the insulator side of a 
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metal-insulator interface the image potential attracting the electron to the interface plays an 

important role if the insulator dielectric constant is not too large174-178 and experimental 

implications of this potential are well known.179-184 The observation72 that details of the 

electrostatic potential distribution across a metal-molecule-metal junction can significantly 

affect qualitative aspects of the junction electrical properties, makes further theoretical work in 

this direction highly desirable. 

2.10. Rectification 

The possibility to construct molecular junctions with rectifying behavior has been under 

discussion ever since Aviram and ratner185 suggested that an asymmetric donor-bridge-acceptor 

system connecting two metal leads can rectify current. The proposed mechanism of operation of 

such a device is shown in Fig. 7. When the left electrode is negatively biased, i.e., the 

corresponding electrochemical potentials satisfy L Rµ µ>  as shown, electrons can move from 

this electrode to the LUMO of molecular segment A as well as from the HOMO of molecular 

segment D to the right electrode. Completion of the transfer by moving an electron from A to D 

is assisted by the intermediate bridge segment B. When the polarity of the bias is reversed the 

same channel is blocked. This simple analysis is valid only if the molecular energy levels do not 

move together with the metal electrochemical potentials, and if the coupling through the 

intermediate bridge is weak enough so that the orbitals on the D and A species maintain their 

local nature. Other models for rectification in molecular junctions have been proposed.186 As 

discussed above, the expected rectifying behavior can be very sensitive to the actual potential 

profile in the ABD complex, which in turn depend on the molecular response to the applied 

bias.72, 187 This explains why rectification is often not observed even in asymmetric molecular 

junctions.187 Still, rectification has been observed in a number of metal-molecule-metal 

junctions as well as in several STM experiments involving adsorbed molecules,61, 65, 188-192. 

2.11. Carrier-carrier interactions 

 The models and calculations discussed so far focus on processes for which the 

probability that a charge carrier populates the bridge is low so that carrier-carrier interactions 

can be disregarded. Electron-electron interactions were taken into account only in so far that 

they affected the single electron states, either in constructing the molecular spectrum (in the ab-

initio HF or DFT calculations) or in affecting the junction electrostatic potential through the 

electronic polarization response of the molecule or the metal contacts. When the density of 

carriers in the space between the metal contacts becomes large, Coulomb interactions between 
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them have to be taken into account explicitly. Here we briefly discuss the effect of such 

interactions.  

In classical (hopping) transport of carriers through insulating films separating two 

metals, inter-carrier interactions appear as suppression of current due to film charging.193, 194 In 

nano-junctions involving double barrier structures, increased electron population in the 

intermediate well under resonance transmission should affect the transport process for similar 

reasons. For example, consider a small metal sphere of radius R in the space between two metal 

electrodes (Fig. 8), and assume that both sphere and electrodes are made of the same metal of 

workfunction W. Neglecting possible proximity effect of these electrodes, the classical energy 

for removing an electron from the sphere to infinity is W+e2/2R and the classical energy for the 

opposite process is W-e2/2R.o Here the sphere plays the role of a molecular bridge in assisting 

electron tunneling between the two electrodes, and these energies now play the same role as the 

corresponding HOMO and LUMO energies of the bridge. This implies that a finite voltage 

difference is needed before current can flow in this sphere assisted mode between the two 

metals, a phenomenon known as Coulomb blockade. For a larger potential bias, other 

conduction channels, corresponding to more highly charged states of the sphere give rise to the 

phenomenon of Coulomb steps.196 For experimental manifestations of such and related 

phenomena see, e.g. Refs197-203. The possibili ty to observe such phenomena in electrochemical 

systems was discussed by Kuznetsov and Ulstrup204 and possibly demonstrated by Fan and 

Bard.205  

When the junction consists of a molecule or a few molecules connecting two metal leads, 

such Coulomb blockade phenomena are not expected to appear so clearly.  The first Coulomb 

threshold is replaced, as just described, by the gap associated with the position of the metals 

Fermi energies relative to the molecular HOMO and LUMO levels (modified by appropriate 

electron correlations). However, the discreteness (in the sense that ∆E
�
kBT) of the molecular 

spectrum implies that for any given charging state of the molecule, e.g., a molecule with one 

excess electron or one excess hole, there will be several distinct conduction channels that will 

appear as steps in the current vs. voltage plot. It will be hard to distinguish between this 

structure and between 'genuine' Coulomb blockade structure. It should be emphasized that for 

 

o From experimental and theoretical work on ionization potentials of small metal clusters195 we know that the actual 

energies are approximately W+0.4e2/R and W-0.6e2/2R, respectively; with the differences arising from quantum size 

effects). 
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potential applications, e.g. using the molecular junction in single electron transistor devices, the 

distinction between the origins of these conduction structure is in principle not important. 

Still, understanding the role played by electron-electron interactions (in particular 

correlation effects beyond the HF approximation) remains an important challenge in the study of 

molecular nano-junctions. Several recent theoretical works have addressed this problem within 

the Hubbard model with206-208or without209 the mean field approximation. In particular, 

Malysheva and Onipko have derived a tight binding analog of the model for negative 

differential resistance originally proposed by Davydov and Ermakov210 (see also 211 and 212, 213). 

Numerical simulations214 can assist in gauging the performance of the mean field 

approximations used in these calculations. Such models may be relevant to the understanding of 

recent experimental observation of negative differential resistance in a metal-self assembled 

monolayer-metal junction with the SAM containing a nitroamine redox center.215 

We conclude this discussion by emphasizing again that understanding correlated carrier 

transport in molecular junctions continues to be an important experimental and theoretical 

challenge. Recent work by Gurvitz et al216-218, using exactly solvable models of electron 

transport in two and three barrier structures, have indicated that new phenomenology may arise 

from the interplay of inelastic transitions and inter-carrier interactions in the barrier. In fact, 

dephasing transitions in the barrier may prove instrumental in explaining the charge quantization 

that give rise to the single electron transport behavior of such junctions (219, Section 6.3). 

2.12. Some open issues 

 This section discusses some subtle difficulties that are glossed over in most of the 

treatments of electron transmission using the formalisms described above. These should be 

regarded as open theoretical issues that should be addressed in future developments. The source 

of these problems is our simplified treatment of what is actually a complex many body open 

system. In particular, common ways of incorporating many body effect using single body 

effective potentials become questionable in particular limits of timescales and interactions 

strengths. 

One such issue, already mentioned, is the use of static image to account for the effect of 

metal polarizability (namely the response of the metal electrons) on charge transfer processes at 

metal surfaces. The timescales estimated in Section 3.1 below are of the same order as metal 

plasma frequencies that measure the electronic reponse time of metals. Still static image theory 

has been used in the analysis of Section 2.2 and in other treatments of electron injection from 
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metals into insulating phases.220 To what extent dynamic image effects are important is not 

known, though theories that incorporates such effects have been developed. 97-99 100(a)  

Assuming that image interactions at metal surfaces should be accounted for in the static 

limit, namely that the metal responds instantaneously to the tunneling charge, opens other 

questions. Many calculations of electronic processes near metal surfaces (e.g. 89 (See Sect. 2.2 

above) assume that the metal electrons respond instantaneously to the position of the tunneling 

electron. Other calculations use atomic or molecular orbitals,p or more general electronic charge 

distributions, and computing these under the given potential boundary conditions (see, e.g. Ref 
169) implies that the corresponding orbitals or charge distributions are well defined on timescales 

shorter than the metal response times.q Examination of the energies and timescales involved 

suggests that assuming instantaneous metal response to the electron position is more suitable in 

most situations than taking instantaneous response to the charge distribution defined by a 

molecular orbital, but the corresponding timescales are not different enough to make this a 

definite statement. 

A similar issue appears in attempts to account for the electronic polarizability of a 

solvent in treating fast electronic processes involving solute molecules or excess electrons in this 

solvent. For example, in treating electron transmission in MIM junctions, the potential barrier 

that enters into expressions like (14) depends on the electronic structure of the insulating spacer. 

For vacuum tunneling a rectangular barrier, whose height above the metal Fermi energy is the 

metal workfunction, modified by image interactions as discussed above and in Section 2.2, 

seems appropriate. For a dielectric spacer the barrier should be further modified by the fast 

(electronic) dielectric response of this spacer in the same way that it is modified by the 

electronic response of the metal, raising issues similar to those discussed above. We return to 

this point in Section 4. 

 

p Computing molecular orbitals self-consistently with image interactions is the common practice in quantum 

chemistry calculations for solvated molecules using reaction field (cavity) models. Again we have a choice: either 

imposing the reaction field on the electronic Hamiltonian in the position representation, thus modifying all 

Coulomb interaction terms, then calculate the electronic wavefunctions under the new potential, or compute the 

electronic wavefunctions with the original Hamiltonian under the imposed dielectric boundary conditions. The fact 

that the two representations are not equivalent is associated with the approximate nature of the approach which 

replaces a detailed treatment of the electronic structure of the solvent by its electronic dielectric response. (See also 

footnote q). 
q These two approaches are not equivalent, because the Schr

�
dinger equations derived from them are non-linear in 

the electronic wavefunctions. 
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Finally, an interesting point of concern is related to the way the Fermi distribution 

functions enter into the current equations. For example, the Bardeen's transmission formula (21) 

is based on weak coupling between states localized on the two electrodes, the partial or 

unidirectional currents contain a product, (1 )f f− , i.e. the probabili ty that the initial state is 

occupied multiplied by the probabili ty that the final state is not. In this viewpoint the transitions 

occur between two weakly coupled systems, each of them in internal thermal equili brium, which 

are out of equili brium with each other because of the potential bias.  

Alternatively, we could work in the basis of exact eigenstates of the whole system 

comprising the two electrodes and the spacer between them. This system is in an internal non-

equili brium state in which transmission can be described as a scattering problem. The relevant 

eigenstates correspond to incident (incoming) waves in one electrode and transmitted waves in 

the other. The flux associated with those scattering states arising from an incident state in the 

negatively biased electrode is proportional to f(E), while that associated with incoming waves in 

the positively biased electrode is proportional to f(E+eΦ). The net flux is therefore found again 

to proportional to the difference ( ) ( )f E f E e− + Φ . This argument cannot be made unless the 

process can be described in terms of coherent scattering states defined over the whole systems. 

When inelastic scattering and dephasing processes take place the description in terms of exact 

scattering states of the whole system becomes complicated,219, 221 although kinetic equations for 

electron transport can be derived for relatively simple situations.216-218 On the other hand, it 

appears that for weakly coupled contacts the perturbative approach that leads to Eq. (21) is 

valid. This approach describes the transmission in terms of electron states localized on the two 

electrodes where unidirectional rates appear with f(1-f) factors, and can in principle be carried 

over to the inelastic regime. (See also Sect 3.4). The exact correspondence between these 

different representation needs further study. 

  

3. Dephasing and relaxation effects 

The theoretical treatments of electron transmission and conduction through insulating 

barriers reviewed in the last section have assumed that the barrier nuclear configuration is static. 

The conduction of such junctions was thus assumed to be determined by the electronic structure 

of static interfacial configurations. Nuclear reorganization does play a dominant role in the 

analogous theory of electron transfer in molecular systems, however here again the electronic 

coupling itself is computed for static structures, while coupling to nuclear motion is assumed to 

be associated with the initial and final localized states of the transferred electron. As discussed 
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in Sect. 2.5, the corresponding nuclear reorganization energies are unimportant in an MMM 

junction, because the transferred electron does not stay localized on the moleular species. 

Disregarding thermal interactions also during the transmission process therefore leads to a rigid 

junction model. While we cannot rule out the possible validity of such a model, it is important to 

consider possible scenarios where thermal relaxation on the bridge is important for two reasons. 

First, dephasing processes associated with electron-phonon coupling are the primary source for 

converting the transmission process from coherent transfer to incoherent hopping. Therefore 

ignoring nuclear dynamics disregards a potentially important transfer mechamism. Second, as 

discussed in the introduction, an important factor in desiging molecular conductors is their 

structural stabili ty, therefore understanding heat generation and dissipation in molecular 

conductors is an important issue.222, 223 This naturally motivates a study of inelastic effect and 

thermal relaxation during electron transmission. Indeed, the effect of dephasing and relaxation 

on carrier transport through molecular junctions (as well as other microscopic charge transport 

devices), on its temperature and system-size dependence and on possible interference effects has 

recently attracted much attention. 

3.1. Tunneling traversal times 

The underlying assumption in the treatments of electron transfer and transmission 

described in Section 2 is that the junction nuclear structure is rigid. The validity of this 

assumption should be scrutinized. Obviously, whether the barrier appears rigid to the tunneling 

electron, and to what extent inelastic transitions can occur and affect transmission and 

conductance depend on the relative scales of barrier motions and the transmission traversal time, 

properly defined.  

 A framework for discussing these issues is the theory of tunneling traversal times. 

'Straightforward' timescales for tunneling, such as the rate for probabili ty buildup on one side of 

a barrier following a colli sion of an incoming particle on the other side, or the time associated 

with the tunneling splitting in a symmetric double well potential, are important measures of the 

tunneling rate. Following the work of Landauer and Buttiker101, 102, 224-227 and others,228-230 it has 

been recognized that other timescales may be relevant for other observables associated with the 

tunneling process. The question 'how long does the tunneling particle actually spends in the 

classically forbidden region of the potential' is of particular interest. This traversal time for 

tunneling is useful in estimates of the relative importance of processes that may potentially 

occur while the particle is in the tunneling region. Energy exchange with other degrees of 

freedom in the barrier and interaction with external fields focused in the barrier region (e.g. 
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deflection of a tunneling electron by an electrostatic field induced by a heavy ion) are important 

examples. 

The B
�
ttiker-Landauer approach to tunneling timescales is based on imposing an internal 

clock on the tunneling system, for example a sinusoidal modulation of the barrier height.101 At 

modulation frequencies much smaller than the inverse tunneling time the tunneling particle sees 

a static barrier that is lower or higher than the unperturbed barrier, depending on the phase of the 

modulation. At frequencies much higher than the inverse tunneling time the system sees an 

average perturbation and so no effective change in the barrier height, but inelastic tunneling can 

occur by absorption or emission of modulation quanta.  The inverse of the crossover frequency 

separating these regimes is the estimated traversal time for tunneling.  For tunneling through the 

1-dimensional rectangular barrier 

1 2;
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0
BU x x x

V x
otherwise

≤ ≤
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î
      (72) 

and provided that d=x2-x1 is not too small and that the tunneling energy E is sufficiently below 

UB, this analysis gives 
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for a particle of mass m and energy E0 < UB. � I, defined by (73), is the imaginary velocity for the 

under-barrier motion. A similar result is obtained by using a clock based on population transfer 

between two internal states of the tunneling particle induced by a small barrier localized 

coupling between them.102 Using the same clock for electron transfer via the super-exchange 

mechanism in the model of Fig. 3 (equal donor and acceptor energy levels, EA=ED, coupled to 

opposite ends of a molecular bridge described by an N-state tight binding model with nearest-

neighbor coupling VB, with an energy gap ∆EB=EB � ED � VB), yields231 
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Nitzan et al have shown231 that both results (73) and (74) are limiting cases (wide and narrow 

band limits) of a more general expression: 
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where DBBB EVEU −−≡∆ 2  is difference between the initial energy ED and the bottom of the 

conduction band, EB-2V, see Fig. 9. When 0BV → , B BU E∆ → ∆  and the r.h.s of Eq. (75) 

becomes that of Eq. (74). In the opposite limit, BV → ∞ �������� UB kept constant, Eq. (75) 

becomes 

 
BB UV
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if we express VB in terms of the effective mass for the band motion, 22 2 aVm B

�
=  with 

/a d N= , Eq. (76) yields the B 	 ttiker Landauer result, Eq. (73). 

The interpretation of τ defined above as a characteristic time for the tunneling process 

should be used with caution. An important observation made by Buttiker, 102 is that the 

tunneling time is not unique, but depends on the observable used as a clock. Still, as shown in 

Ref.101, for a proper choice of clock the traversal time provides a useful measure for the 

adiabaticity or non-adiabaticity of the interaction of the tunneling particle with barrier degrees of 

freedom. The calculation that leads to Eqs. (74)-(76) uses a clock based on two internal states, 

|1> and |2>, of the tunneling particle with a small barrier-localized coupling, 

( )|12||21| ><+><λ , between them. The incident particle is in state |1>. The population of 

state |2> in the transmitted wavefunction can be related to the duration of the interstate coupling, 

i.e. to the traversal time. Writing the transmitted state in the form >+> 2|1| 21 cc  this procedure 

yields 
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For the 1-dimensional rectangular barrier model, Eq. (72), and in the limit 1>>dκ , this leads 

again to Eq. (73). Galperin et al232 have applied the same approach to compute traversal times 

through water layers (see Sect. 4). 

For tunneling through a molecular spacer modeled as a barrier of width ~10
  (N=2-3) 

and height UB-E ≅ � E ~ 1eV, Eqs. (73) and (74) yield τ ≅ 0.2fs and τ ≅ 2fs, respectively, both 

considerably shorter than the vibrational period of molecular vibrations. When the barrier is 

lower or when tunneling is affected or dominated by barrier resonances, the traversal time 

becomes longer, and competing relaxation and dephasing processes in the barrier may become 

effective. This is expected to be the rule for resonance transmission through molecular bridges, 

because the bandwidth associated with the bridge states (i.e. the electronic coupling between 
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them; see Fig. 9) is considerably smaller than in metals. As a consequence thermal relaxation 

and dephasing are expected to dominate electron transport at and near resonance. This issue is 

discussed next. 

3.2. Nuclear relaxation during electron transmission 

It has long been recognized that tunneling electrons interact, and may exchange energy, 

with nuclear degrees of freedom in the tunneling medium. One realization of such processes is 

inelastic electron tunneling spectroscopy,220, 233 where the opening of inelastic channels upon 

increasing the electrostatic potential difference between the source and sink metals is manifested 

as a peak in the second derivative of the tunneling current with respect to this potential drop. 

Recent applications of this phenomenon within scanning tunneling spectroscopy hold great 

promise for making the STM a molecular analytical tool.234 Inelastic electron tunneling may 

also cause chemical bond breaking and chemical rearrangement in the tunneling medium, either 

by electron induced consecutive excitation or via transient formation of a negative ion.r 235-238  

As discussed by Gadzuk,239, the phenomenology of inelastic electron transmission is also 

closely related to other electronic processes in which transient occupation of an intermediate 

state drives a phonon field. Intramolecular vibrational excitation in resonant electron 

scattering,240 phonon excitation in resonant electron tunneling in quantum-well 

heterostructures241 and electron induced desorption242, 243 can all be described using similar 

models. A prototype Hamiltonian describing these models is (see Fig. 3b) 

el ph el phH H H H −= + +        (78) 

where Hel is the electronic Hamiltonian 

 ( ), ' ' , ,
, '( ')

el n n n n n n n k k k k n k n n k n k
n n n n n k k n

H E c c V c c E c c V c c V c c
≠

= + + + +∑ ∑ ∑ ∑∑  (79) 

Hph is the Hamiltonian of the phonon bath 

 phH b bν ν ν
ν

ω= ∑ �
        (80) 

and Hel-ph is the electron-phonon interaction, usually written in the form 

 ( )el ph n n n
n

H c c b bν ν ν
ν

λ− = +∑∑       (81) 

 

r While our language refer to electron transport and electron tunneling, hole transport and nuclear excitation via 

transient positi ve ion formation are equally possible. 
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Here jc  and jc  (j=n,n',k) create and annihilate an electron in electronic state j, while bν  and bν  

similarly create and annihilate a phonon of mode ν, of frequency ων. In Eq. (79) the states (k) 

are taken to be different manifolds of continuous scattering states, denoted by a continuous 

index k (Fig. 3b shows two such manifolds, k={
�
} , { r} ), while the set of states { n} are discrete 

electronic states of the observed molecular system. The electronic Hamiltonian (79) can describe 

a scattering process in which the electron starts in one continuous manifold and ends in another 

and the states { n} belongs to the target the causes the scattering process. These states may be the 

eigenstates of the target Hamiltonian, in which case Vn,m in Eq. (79) vanishes, or some zero-

order representation in which the basis states are mutually coupled by the exact target 

Hamiltonian. Eqs. (80) represents the thermal environment as a harmonic phonon bath. The 

coupling between the electronic system and this bath is assumed in Eq. (81) to originate from a 

target-state dependent shift in the equili brium position of each phonon mode. An exact solution 

to this scattering problem can be obtained for the particular case where the target is represented 

by a single state n=1 and the phonon bath contains one oscill ator of frequency ω. In this case it 

is convenient to consider the oscill ator as part of the target which is therefore represented by a 

set of states |m >  with energies 1E m ω+ �  (the zero point energy can be set to 0). If the 

oscill ator is initially in the ground state (m=0) the cross-section for electron tunneling (or 

scattering) from the left to the right side in Fig. 1 is given by239, 240, 244 

( )( ) ( )
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' | | 0
( , ) ~ '
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∞ ∞

= =

< >< >Γ Γ − −
− − Λ + Γ∑ ∑�

� � � �

� �
�  (82) 

where |m >
�

 are states of the shifted harmonic oscill ator that corresponds to the temporary 

negative ion (electron residing on the target) and 2
1 /mE E m ω λ ω= + −� � � . mΛ �  and mΓ � are the 

shifts and widths of the dressed target states associated with their coupling to the continuous 

manifolds and  

( ) 2
,1( ) 2 | | ( ) ; , ,K

k k
k

E V E E K L k l or K R k rπ δΓ = − = = = =∑ . (83) 

The exact solution (82) can be obtained because of the simplicity of the system, which was 

chracterized by a single intermediate electronic state and a single phonon mode. In more 

realistic situations characterized by many bridge electronic states and many phonon modes one 

need to resort to approximations or to numerical simulations. We discuss such systems next.  

To get the proper perspective on the nature of this problem consider again the standard 

electron transfer process in a donor-bridge-acceptor (DBA) system without metal electrodes. As 
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already emphasized (see Section 2.5), nuclear dynamics and conversion of electronic energy to 

nuclear motions, resulting from solvent reorganization about the donor and acceptor sites upon 

changing their charge state, are essential ingredients of this process. The reason for the 

prominent role of nuclear dynamics in this case is that the transferred charge is localized on the 

donor/acceptor orbitals, consequently affecting distortion of their nuclear environments 

(represented by the parabolas in Figs 2a and 3a). Standard electron transfer theory assumes that 

nuclear motion is coupled to the donor and acceptor electronic states only, and the electronic 

coupling itself is taken independent of the nuclear configuration (the Condon approximation). 

This assumption is sometimes questionable, in particular when intermediate electronic states are 

involved, as in Figures 1-3. The possible role of nuclear motion on such intermediate electronic 

potential surfaces has been discussed by Stuchebrukhov and coworkers.245, 246 Focusing on 

bridge assisted electron transfer processes, these authors separate the nuclear degrees of freedom 

into two groups. The first include those nuclear modes that are strongly coupled to the donor-

acceptor system (solvent polarization modes and vibrational modes of the donor and acceptor 

species). In the absence of the other modes this coupling leads to the standard electron transfer 

rate expression due to Marcus (c.f. Eqs. (1), (3) and (9)) 

( )2 / 4
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| |
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AD BE k

et DA
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e
k T

k

λ λπ
πλ

− + Θ

=
Θ

�       (84) 

where λ is the reorganization energy, EAD is (free) energy difference between the initial (electron 

on donor) and final (electron on acceptor) equili brium configurations and DAT  is the non-

adiabatic electronic coupling matrix element that incorporates the effect of the bridge via, e.g. 

Eqs. (9) and (10). The other group of degrees of freedom, 'bridge modes', are coupled relatively 

weakly to the electron transfer process, and it is assumed that their effect can be incorporated 

using low-order perturbation theory. This is accomplished by considering the modulation of the 

electronic coupling DAT  by these motions, ( ){ }DA DAT T xν= , where { x � } is the set of the 

corresponding nuclear coordinates. It is important to note that the separation of nuclear modes 

into those coupled to the donor and acceptor states (schematically represented by the Marcus 

parabolas in Fig. 2a and 3a) and those associated with electronic coupling between them is done 

for convenience only, and is certainly not a rigorous procedure. Within this picture the electron 

transfer rate is obtained245 as a convolution 

 ( )0( )B ADk d k Eερ ε ε= +∫        (85) 

where 
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and 

 / /( ) B BiH t iH t
DA DAT t e T e−=

� �
       (87) 

where BH  is the bridge Hamiltonian including the thermal environment (
�

 of Fig. 2). 

Calculations based on this formalism indicate245 that inelastic contributions to the total electron 

transfer flux are substantial for long (>10 segments) bridges.  

 It should be emphasized that dynamical fluctuations in the bridge can considerably affect 

also the elastic transmission probabili ty. For example, a substantial effect of the bridge nuclear 

motion on the electron transfer rate has been observed in simulations of electron transfer in 

azurin246, 247 in agreement with earlier theoretical predictions.248, 249 There are some experimental 

indications that electron transfer rate in proteins is indeed substantially affected by the protein 

nuclear motion.250 

 The Medvedev-Stuchebrukhov theory245 corresponds to the lowest order correction, 

associated with intermediate state nuclear relaxation, for bridge mediated electron transfer rate. 

On the other extreme side we find sequential processes that are best described by two or more 

consecutive electronic transitions. For this to happen two conditions have to be satisfied. First, 

the intermediate state(s) energy should be close to that of the donor/acceptor system, so these 

states are physically populated either directly or by thermal activation. Second, nuclear 

relaxation and dephasing should be fast enough so that the bridging states can be treated as well-

defined thermally averaged electronic configurations. Obviously, intermediate situations can 

exist. Bridge mediated electron transfer can be dominated by two (donor-acceptor) electronic 

states coupled via intermediate high-lying states that are only virtually populated, by real 

participation of such intermediate states in a coherent way (when thermal relaxation and 

dephasing are slow), or by sequential transfer through such states. This issue was extensively 

discussed251-253 for three state models of electron transfer that were recently used to describe 

primary charge separation in bacterial photosynthesis. The possibili ty to observe similar effects 

in STM studies of molecules adsorbed at electrochemical interfaces was discussed by 

Schmickler.254, 255  

Closely related to this phenomenology is the process of light scattering from molecular 

systems where the donor and acceptor states are replaced by the incoming and outgoing photons. 

Elastic (Rayleigh) scattering is the analog of the 2-state 'standard' electron transfer process. 

Inelastic (Raman) scattering is the analog of the process analyzed by by Stuchebrukhov and 
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coworkers.246, except that our abili ty to resolve the energy of the scattered photon make it 

possible to separate the total rate (or flux), the analog of Eq. (85), into its elastic and different 

inelastic components 256. Resonance Raman scattering and resonance fluorescence are the 

processes that take place when excited molecular states are physically, as opposed to virtually, 

occupied during the light scattering process. The former is a coherent process that take place in 

the absence of dephasing and thermal relaxation while the latter follows thermal relaxation in 

the excited molecular state. Re-emitting the photon after dephasing has occurred, but before full 

thermal relaxation takes place, is the process known as hot luminescence. 

3.3. Thermal interactions in molecular conduction 

Coming back to electron transfer and transmission, the importance of dephasing effects 

in the operation of microscopic junctions has long been recognized.108, 219 The Landauer formula 

for the conduction of a narrow constriction connecting two macroscopic metals, Eq. (25) or (29), 

is derived by assuming that the transmission is elastic and coherent, i.e. without dephasing and 

energy changing interactions taking place in the constriction. If the constriction is small relative 

to the mean free path of the electron in it, these effects may indeed be disregarded. When the 

constriction becomes macroscopic multiple scattering and dephasing are essential to obtain the 

limiting Ohm's law behavior. A simple demonstration is obtained(219p. 63) by considering a 

conductor of length L as a series of N macroscopic scatterers, each of the type that, by itself, 

would yield Eq. (25). At each scatterer the electron can be transmitted with probabili ty 
�
, or 

reflected with probabili ty � =1-
�
. Let the the total transmission through N such objects be 

�
N, so 

that 
�
=
�

1. Provided that the phase of the wavefunction is destroyed after each transmission-

reflection event, so that we can add probabili ties, the transmission through an N scatterers 

system is obtained by considering a connection in series of an N-1 scatterers system with an 

additional scatterer, and summing over all multiple scattering paths 

 ( )2 1
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1 ( ) ...
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N N N N
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with � =1-
�
 and � N=1-

�
N.  This implies 

 1

1

1 1 1 1N N

N N

N−

−

− − − −= + =
� � � �
� � � �       (89) 

so that 
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where ( )0 / 1L ν= −
� �

 and /N Lν =  is the scatterers density. Using this  in Eq. (25) yields 
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that gives the inverse length dependence characteristic of Ohm's law as L→∞. (See however 108, 

p. 107).  

A more detailed treatment of the role played by dephasing in quantum charge transport 

in microcopic junction was given by B � ttiker.257 He has introduced phase destruction processes 

by conceptually attaching an electron reservoir onto the constriction (Fig. 10), under the 

condition that, while charge carriers are exchanged between the current-carrying system and the 

reservoir, no net averaged current is flowing into this reservoir. B � ttiker has observed that such 

a contact, essentially a voltage probe, acts as a phase breaking scatterer. By adjusting the 

coupling strength between this device and the system, a controlled amount of incoherent current 

can be made to be carried through the system. This approach has been very useful in analyzing 

conduction properties of multi-gate junctions and connected nano-resistors.  

In molecular systems, a very different approach to dephasing was considered by Bixon 

and Jortner,258, 259 who pointed out that the irregular nature of Franck Condon overlaps between 

intramolecular vibrational states associated with different electronic centers can lead to phase 

erosion in resonant electron transfer. Consequently, bridge assisted electron transfer, which 

proceeds via the superexchange mechanism in off resonance processes, will become sequential 

in resonance situations. For a finite temperature system with an electronic energy gap between 

donor and bridge that is not too large relative to kB � , the thermally averaged rate from a 

canonical distribution of donor states results in a superposition of both superexchange and 

sequential mechanisms. 

While coupling to the thermal environment is implicit in the models described above, 

using molecular bridges embedded in condensed environments as conductors immediately 

suggests the need to consider the coupling to intramolecular and environmental nuclear motions 

explicitly as in the Hamiltonian (78)-(81). The models of Figures 2 and 3, where transition 

between the two electron reservoirs or between the donor and acceptor species is mediated by a 

bridge represented by the group of states { n} is again the starting point of our discussion. 

Several workers have recently addressed the theoretical problem of electron migration in such 

models, where the electron is coupled to a zero temperature phonon bath. Bon� a and 
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Trugman260, 261 have provided an exact numerical solution for such a problem. Their model is 

similar to that described by Eqs. (78)-(81), except that the metal leads connected to the 

molecular target are represented by 1-dimensional semi-infinite tight binding Hamiltonians:  

el ph el phH H H H −= + +        (92) 

 , ' ' , ' ' ,
, ' , ' ,

.el n n n k k k n n n n k k k k n k n k
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H E c c E c c V c c V c c V c c h c
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 

∑ ∑ ∑ ∑ ∑ (93) 

 phH b bν ν ν
ν

ω= ∑ �
        (94) 

 ( )el ph n n n
n

H c c b bν ν ν
ν

λ− = +∑∑       (95) 

Here, Hel desribes both the metal leads (represented by the manifold(s) of states {k} ) and the 

molecular target (with states { n} ). The coupling to the phonon field is assumed to vanish on the 

metal sites. The electron transport problem is treated as a 1-particle multichannel scattering 

problem, where each of the (one incoming, many outgoing) channels corresponds to a given 

vibrational state of the target.  A finite basis is employed by using a finite number of phonon 

modes and limiting the number of phonons quanta associated with each site, and by projecting 

out leads that carry only outgoing states, however the size of this basis can be increased until 

convergence is achieved. Yu et al262, 263 have studied the same 1-dimensional electronic model 

with a different electron-phonon interaction: instead of the Holstein type interaction taken in 

Eqs. (81) and (95), they use a model similar to the Su-Schrieffer-Heeger (SSH) Hamiltonian,264 

where Eqs. (93)-(95) are replaced by 

 ( ){ }, 1 , 1 1 1 . .el el ph n n n n n n n n n n n
n n

H H E c c V u u c c h cα− + + + + + = + − − + ∑ ∑  (96) 
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where un (n = 1,...,N) are displacements of the target atoms. The segment of the lattice between 

n=1 and n=N represents an organic oligomer, connecting between two metals, and the model for 

the Oligomer is the same as that used in the SSH theory of conducting conjugate polymers, with 

the nuclear degrees of freedom treated classically. The electron-phonon coupling is again 

assumed to vanish outside the bridge, i.e., in Eq. (96) αn.n+1 is taken zero unless n=1,2,...N-1. A 

special feature (in the context of this review) of this calculation is that it is done using the exact 

many electron ground state of the metal-oligomer-metal system, which takes into account the 

Peierl's distortion265 that leads to a dimerization in the Oligomer's structure.264 However, the 

energy of the transmitted electron is taken far above the Fermi energy and electron-electron 
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interactions are neglected, so issues associated with Pauli exclusion can be disregarded. The 

model is used to study the time evolution of an excess electron wavepacket that starts in the 

metal lead in the direction of the oligomer segment. This time evolution is computed using the 

quantum-classical time dependent self consistent field (TDSCF) approximation, whereupon the 

electron wavefunction is propagated under the instantaneous nuclear configuration, while the 

latter is evolved classically using the expectation value of the Hamiltonian with the 

instantaneous electronic wavefunction.s This approximation for the time evolution conserves the 

total system energy, so energy exchange between the electronic and nuclear subsystem can be 

studied as a function of time in addition to the total transmission and reflection probabilities. It 

is found that lattice dynamics can be quite important at an intermediate window of electron 

energies, where the electronic and nuclear timescales are comparable. Of particular interest is 

the energy left in the nuclear subsystem after the electron has traversed the oligomer. 

 A fully quantum analog of this model was studied by Ness and Fisher.266 Their 

Hamiltonian is 

 ( ), ,
, ,

el n n n n m n m
n n m

H E c c b b b b c cν ν ν ν ν ν
ν ν

ω γ= + + +∑ ∑ ∑�
   (98) 

where, again, the distinction between the metal leads and the molecular system enters through 

the values of the site energies En and through the fact that coupling to phonons exists only at the 

oligomer sites. The ground state of the neutral N electron dimerized chain is the reference 

system. Electron-electron interaction is disregarded and the time evolution in the corresponding 

N+1 or N-1 electron system is studied at zero temperature using the multichannel time 

independent scattering theory approach of Bon� a and Trugman.260, 261 The result of this 

calculation is a considerable increase in the tunneling current when the electron-phonon 

interaction is switched on, in particular for long chains. The origin of this behavior seems to be 

the existence of a polaron state below the conduction band edge of the molecular segment that 

effectively lower the  barrier energy experienced by the tunneling electron. Close to resonance 

however, the effect of electron-phonon coupling may be reversed, leading to a smaller total 

overall conduction.267 

 

s An open issue in this calculation is the validity of the TDSCF approximation. This 

approximation is known to be problematic in tunneling and scattering calculations where the 

quantum wavefunction splits to several distinct components.  
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 The Bon
�
a Trugman approach260, 261 has also been used recently by Emberly and 

Kirczenow,221 also for a 1-dimensional tight binding model described by the SSH Hamiltonian. 

These authors attempt to take into account the Pauli exclusion principle in calculating the 

inelastic contributions to electron transmission and reflection. While the formalism can in 

principle be applied to finite temperature processes, the implementation is done for a low 

temperature system. The result again indicates that inelastic processes can substantially modify 

electron transport for long molecular chains and large potential drops. 

3.4. Reduced density matrix approaches 

The works described above use models for quantum transport that yield practically exact 

numerical solutions at the cost of model simplicity: 1-dimensional tight binding transport model, 

only a few harmonic oscill ators and essentially zero temperature systems. An alternative 

approach uses the machinery of non-equili brium statistical mechanics, starting from an 

Hamiltonian such as (92) and projecting out the thermal bath part. The resulting reduced 

equations of motion for the electronic subsystem contain dephasing and energy relaxation rates 

that are related explicitly to properties of the thermal bath and the system-bath coupling.  

Such approaches to bridge mediated electron transport were made by several workers.119, 

120, 268-273. For simplicity we limit ourselves to the tight binding super-exchange model for bridge 

mediated electron transfer (see Section 2.1). Also, for simplicity of notation we consider N 

bridge states between the two electrodes, without assigning special status to 'donor' and 

'acceptor' states as in Fig. 3b. (It should be obvious that this makes only a notational difference). 

The Hamiltonian for the athermal system is 

VHH += 0          (99) 
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where { l} and {r} are again continuous manifolds corresponding to the 'left' and 'right' metal 

leads and {n} is a set of bridge states connecting these leads in the way specified by the 

corresponding elements of the coupling V. In the absence of thermal interactions, and when the 

left and right electrodes are coupled only to levels 1 and N of the bridge, respectively, transport 

in this system is descibed by the conduction function (c.f. Eqs. (31) and (40)) 
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In general G(E) is evaluated numerically by inverting the corresponding Hamiltonian matrix. 

For En=EB and Vn,n+1=VB, identical for all bridge levels and for all mutual couplings, 

respectively, and in the superexchange limit, |VB|� |EB-E|, the Green's function element is 

1 /N N
B BV E

− ∆ (c.f. Eq. (10)), with ∆EB=E-EB. In this case g depends exponentially on the bridge 

length N according to ]'exp[~ Ng β−  with ( )' 2ln | / |B BE Vβ = ∆ (c.f. Eq. (13)).  

Weak thermal coupling.  To see how this dynamics is modified by thermal relaxation 

and dephasing effects, we follow the formulation of Ref.119 The Hamiltonian H is supplemented 

by terms describing a thermal bath and a system-bath interaction 

 FHH ++= Θ
�

        (104) 

where H �  is the Hamiltonian for the thermal environment or bath, and where the system-bath 

interaction F is assumed weak . In this case thermal coupling between different bridge levels is 

neglected relative to the internal coupling V between them, so  

 ∑ ><=
=

N

n
n nnFF

1
||          (105) 

where Fn are operators in the bath degrees of freedom that satisfy ( ) 0H
n nF Tr e Fβ Θ−

Θ< >≡ = (Tr�  

is a trace over all thermal bath states). F is characterized by its time correlation function. As a 

simple model we postulate 

',' )(0()( nnnn tfFtF δ>=< ,       (106)  

The Fourier transform of the remaining correlation functions satisfies the detailed balance 

condition 
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where �  is the temperature and β �  the Boltzmann constant. For specificity we sometimes use 

 ( )( ) exp | | /
2 c

c

f t t
κ τ
τ

= −        (108) 

which becomes )(tκδ  in the Markovian, τc→0, limit. Note that (105) is a particular model for 

the thermal interactions, sufficient to show their general consequences, but by no means 
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adequate for quantitative predictions. In particular, the assumption (106) will be replaced by a 

more realistic model below. 

 Galperin et al111 have shown that the conduction properties of a system like that 

described by the Hamiltonian (99)-(104) can be obtained by studying a steady state in which the 

amplitude of one state |0> in the initial { l} manifold remains constant and the amplitudes of 

other states evolve under this restriction.  Segal et al119 have generalized this approach to 

thermal systems of the kind described by the Hamiltonian (104), using, in the weak thermal 

coupling limit, the Redfield approximation.269, 274, 275 This approximation combines two steps 

that rest on the weak coupling limit: an expansion up to second order in the coupling F and the 

assumption that the thermal bath is not affected by its coupling to the molecular system. In this 

approach one starts from the set of states |0>, |1>,..., |n>, {| l>} , {|r>} , where |0> is the incoming 

state in the { l} manifold, and projects out the continuous manifolds { l} (except |0>) and {r} ). 

This amounts to replacing H of Eqs. (99)-(104) by an effective Hamiltonian, Heff, in the space 

spanned by states |0>, |1>,..., |n> in which the energies E1 and EN are modified by adding self 

energy terms whose imaginary parts are respectively ( )
1 / 2LΓ  and ( ) / 2R

NΓ . This effective 

Hamiltonian of order N+1 is then diagonalized and the resulting set of N+1 states (originating 

from N bridge states and one incoming state) is used to represent the Liouvill e equation for the 

density operator �  of the overall electrode-bridge-bath system, [ , ]iρ ρ= −
� �

. This Liouvill e 

equation is expaned to second order in F and traced over bath degrees of freedom using the 

approximation ( ) ( )t tρ ρ σΘ= with He βρ Θ−
Θ =  and ( ) ( )t Tr tσ ρΘ= . This leads to an equation of 

motion for the reduced density matrix σ(t) for the electrode-bridge system that takes the form 
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  (109) 

where Ejl=Ej-El  and tiHtiH FeetF ΘΘ −=)(
~ . Here the indices j,k,l,m refer to molecular states that 

diagonalize the effective Hamiltonian Heff. The damping terms �  originate from the decay of 

states |1> and |N> distributed into these eigenstates. At steady state all σ elements are constant 

and Eq. (109) become 
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Transforming (110) back to the local bridge representation {0, n=1,...N} leads to a a set 

(N+1)(N+1) equations of the form 
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where the elements of R are linear combinations of the integrals appearing in Eq. (110) and 

where ( ) ( )
, 1 ,1

R L
n N n N nδ δΓ = Γ + Γ . Again, at steady state the first (n=n'=0) equation is replaced by 

the boundary condition � 00=constant. The remaning (N+1)(N+1)-1 equations constitute a set of 

linear non-
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00 constitute source 

terms. Thus, all elements σnn', and in particular σNN, can be obtained in the form ' ' 00nn nnUσ σ= , 

in terms of the fixed population σ00 in the incoming state |0> of the { l} manifold, where the 

coefficients Unn' are related to the inverse of the (N+1)(N+1)-1 order matrix of thermal rates. The 

steady state flux into the { r} manifold is ( )R
N NNσΓ , and the corresponding rate is  

( ) ( )
0 00/R R

R N NN N NNk Uσ σ→ = Γ = Γ       (112) 

While the general expression for UNN is very cumbersome, involving the inverse of an 

(N+1)(N+1)-1 order matrix, numerical evaluation of the resulting rate and its dependence on 

coupling parameters, bridge length and temperature is an easy numerical task for reasonable 

bridge lengths. A final technical point stems from the observation that the resulting k0+ R must be 

proportional to |V10|
2, the squared coupling between the first bridge level and the left continuous 

manifold. We therefore rewrite Eq. (112) in terms of new variables 0' Rk →  and 'NNU , defined by 

2 ( ) 2
0 0 10 10' | | ' | |R

R R N NNk k V U V→ →= = Γ       (113) 

We can make contact with results obtained in the athermal case by writing |0>=|k||,kx> where x is 

the direction of transmision, k|| is the momentum in the yz plane and 

( )2 22
|| || 0( / 2 ) x xm k k E E E+ = + =

,
. The transmission coefficient - (E0,k||) for electron incident 

from the left electrode with total energy E0 in channel k|| is related to k0 .!/  by  
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 ( ) 1

0 0 || 0 ||( , ) 2 ( ) ( , )x
R x

k
k E k E E k

mL
πρ −

→ = =
� �

       (114) 

where � (Ex) is the 1-dimensional density of states for the motion in the x direction. Therefore 

 
||

( )
0 || 0 1, 0( , ) 2 ( ) 'L

x R k RE k E k kπρ → →= = Γ
�

      (115) 

and the all-to-all transmission at energy E0 is the sum over all channels with energy || 0E E<  

( ) ( ) ( )
0 1 0 1( ) ' 'L L R

R N NNE k U→= Γ = Γ Γ
�

      (116) 

Comparing to Eq. (102), we see that Eq. (116) is the analog of Eq. (40), where, in the thermal 

case, U'NN has replaced |G1N|2.  

 In the athermal case the conduction of a junction characterized by a given transmission 

coefficient is obtained from the Landauer formula (29). Here the issue is more complex since, 

while 
�
(E0) is the probabili ty that an incident electron with energy E0 will be transmitted 

through the molecular barrier, it is obvious that the transmitted electron can carry energy 

different from E0. As an example consider the case where the bridge has only one intermediate 

state, i.e. N=1. Within the same model and approximations as outlined above it is possiblet to 

obtain the energy resolved transmission. In the Markovian limit ( � c�����
	���
�� (108)) the result is 

( )
( )

1 0( )

0 0 0 0 22
1 1

/ 2
'( , ) ( ) ( )  

( ) / 2

E Ee
E E E E E

E E

βκ π
δ

− − 
= − + 

− + Γ  

� �
   (117) 

(we use 
�
 ' to denote the differential (per unit energy range) transmission coefficient) where 

( ) ( )
1 1 1

L RΓ = Γ + Γ  and 
�

0 is eleastic transmission coefficient 

 
( ) ( )
1 1

0 0 2 2
1 0 1

( )
( ) ( / 2)

L R

E
E E

Γ Γ=
− + Γ

�
 

The total transmission coefficient, including inelastic contribution is given by 

 1 0( )
0 0 0 0

1

( ) '( , ) ( ) 1  E EE dE E E E e βκ − − 
= = + Γ 

∫
� � �

    (118) 

In the absence of thermal interactions ( 0κ =  in Eq. (108)) 
�
 is reduced to 

�
0, and the electron is 

transmitted with E=E0. For a finite �  we get an additional, thermally activated, component 

peaked about the energy E1 of the bridge level. 

 

t D. Segal and A. Nitzan, Chem. Phys., in press. 
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 How will this affect the conduction? It has been argued (see219 chapter 2.6) that simple 

expressions based on the Pauli principle (e.g. Eqs. (21), (35)) are not valid in the presence of 

inelastic processes including thermal relaxation. It may still be used however in the weak metal-

bridge coupling limit (see discussion in Section 2.12). Proceeding along this line, an equation 

equivalent to (35) can be written 

( ) ( )0 0 0 0

0 0

'( , ) ( ) 1 ( ) ( ) 1 (
e

I dE dE E E f E f E e f E e f E
π

∞ ∞

 = − + Φ − + Φ − ∫ ∫� �   (119) 

For small bias and low enough temperature (so that ( ) ~ ( ) ( )Ff E e f E e E Eδ+ Φ − Φ − ) this 

leads tot 

 ( ) 1 0

2
( )

0 0 0 1
1

( ) ( ) 1 1 ( ) E EI e
g E E f E e βκ

π
− − 

= = + − Φ Γ 
� �    (120) 

The equivalent result for electron transfer rates is familiar: at zero temperature the rate is 

determined by a tunneling probabili ty, and at higher temperature an activated component takes 

over. For an experimental manisfestation of this behavior see, e.g. 276. It is also interesting to 

examine the bridge length dependence of the transfer rate and the associated conduction. Here 

analytical results are combersome but numerical evaluation of the rate, Eq. (112), and the 

transmission coefficients (115) and (116) in terms of the system parameters (Hamiltonian 

couplings and the parameters �  and � c of Eq. (108)) is straighforward.119 Figure 11 shows the 

conduction (in units of e2��� � ) obtained from such a model calculation using VB=0.05eV, 

�
EB=EB 	 EF=0.2eV, ( ) ( )

1 0.1L R
N eVΓ = Γ = 
�� c=0, 
�������������  and T=300K and 500K, plotted against 

the number of bridge segments N for two different temperatures. An exponential dependence on 

N, characteristic of the superexchange model, is seen to give way to a weak bridge length 

dependence at some cross-over value of N. Further analysis of this results119, 120 reveals that the 

dependence on bridge length beyond the cross-over may be written in the form ( ) 111 −−− + Nkk diffup , 

where kup is the rate associated with the thermal activated rate from the Fermi-level into the 

bridge, while kdiff corresponds to hopping (diffusion) between bridge sites. As N increases, the 

conduction behaves as N-1, indicating Ohmic behavior. This inverse length dependence should 

be contrasted with non-directional diffusion, where the rate to reach a distance N from the 

starting position behaves like N-2.  Furthermore, if other loss channels exist, so carriers may be 

redirected or absorbed with a rate � B once they populate the bridge, the bridge length 

dependence again becomes exponential and may be written  ( ) N
diffup eNkkg α−−−− + 111~  , where �  is 
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related to this loss rate.49, 278-281 Table 1119 summarizes these results for the Markovian limit of 

the thermal relaxation process 

 

Table 1  Bridge length dependence of the transmission rate119 
Physical Process Bridge 

length (N) 
dependence 

 

Super exchange 
(small N, large ∆EB/VB, large 
∆EB/kB

�
) 

e-β'N ( )BB EV ∆= /ln2'β  

Steady state hopping 
(large N, small ∆EB/VB, small 
∆EB/kB

�
) 

N �
1  

Non-directional hopping 
(large N, small ∆EB/VB, small 
∆EB/kB

�
) 

N �
2  

Intermediate range 
(intermediate N, small ∆EB/VB) ( ) 111 −−− + Nkk diffup

 

( ) Θ∆−∆ BB kE
Bup eEVk /22~ κ

 

( ) Θ∆− BB kE
Bdiff eVk /24~ κ  

Steady state hopping + competing 
loss at every bridge site 

e�
αN 

BBB V2)( κα +ΓΓ=  

 

Observing the behaviors indicated by this Table experimentally is not easy since it is usually not 

possible to change the length of a molecular bridge without affecting its other properties, e.g. the 

positions of molecular HOMOs and LUMOs relative to donor and acceptor energies or an 

electrode Fermi energy.282 A nice example of a cross-over behavior observed in a LEET 

experiment (see section 6) as a function of thickness of an absorbed molecular layer is seen in 

Fig. 12. Here electrons are injected into N-hexane films adsorbed on a polycrystaline Pt foil at 

energies below the bottom of the conduction band (~0.8eV). The role of bridge states is here 

assumed by impurity states in the hydrocarbon band gap. Since the energy and localization 

position of these states is not known, the observed results cannot be quantitatively analyzed with 

the model described above. However a crossover from tunneling to hopping behavior is clearly 

seen.  

Strong thermal coupling. The weak system-thermal bath coupling model discussed 

above rests on two approximations: (a) The system-bath interaction can be considered in low 

order, and (b) the bath degrees of freedom are essentially unaffected by the electronic process. 

Using these assumptions has enabled us to obtain the general charactersitics of electron 

transmission through molecular barriers in the presence of barrier-localized thermal interactions. 
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When the interaction between the electronic system and the underlying bath is stronger these 

assumptions break down, and distortions in the bath configuration induced by the electronic 

process can play an important role. One example is the analysis of Ness and Fischer266 discussed 

below Eq. (98), where coupling to phonons increases the overall transmission because of the 

existance of polaron state below the conduction band edge of the electronic system. However, 

because the overall transmission efficiency depends both on energetics (the polaron state lowers 

the effective barrier height) and coupling strength (small nuclear overlaps between distorted and 

undistorted nuclear configurations decreases the effective coupling) the issue is more involved 

and, depending on details of coupling and frequencies, both enhancement or reduction of 

transmission probabili ties can occur. Similarly, at finite temperatures, the relative importance of 

the two transmission routes, tunneling and the activated hopping, is sensitive to these details. 

Relatively simple results are obtained in the particular limit where the thermal coupling is strong 

while the bare electronic coupling VB is weak.t In this case it may still be assumed that the bath 

degrees of freedom remain in thermal equili brium throughout the process. Taking the bath to be 

a system of harmonic oscill ators, ( ) ( )2 2 2/ 2 / 2BH p m m xα α α α αα
ω = + ∑  and taking Fn in Eq. 

(105) to be linear in the coordinates xα 

(1/ 2)n nF C xα α
α

= ∑          (121) 

(so that the Hamiltonian (104) is similar to the polaron-type Hamiltonian used in Eqs. (78)-(81) 

and (92)-(95)), a small polaron transformation is applied in the form 

 ( )

1

1 2

2

'

...

exp | |

;
2

N

n n

n
n n n

U U

U U U U

U n n

C p

m
α α

α α
α α αω

−=
=
= − >< Ω

Ω = Ω Ω =∑

� �

      (122) 

leading to the transformed Hamiltonian 

 ( )1 1

1
( ) ( )

1

2

2

' '

' | 1| | 1 |

1
| |

8

n n n n

B shift

N
i i

B
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shift

n

H H F E

F V n n e n n e

C
E n n

m
α

α α αω

+ +

−
Ω −Ω − Ω −Ω

=

= + + +

= >< + + + ><

= − ><

∑

∑∑

�

   (123) 

where H is given by Eqs. (99)-(101). If VB is small the procedure based on the Redfield 

approximation, that lead to Eq. (111), can be repeated. Note that keeping only terms up to 
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second order in F' still i ncludes terms of arbitrary order in the system-bath coupling. This 

procedure leads tot 

 

( )

( )2

, 0

0 0

' '

(0) ( ) ( ) (0)

( ) (0) (0) ( )

jmlk

jllk

jk jk jk B jm mk mk jm
m

iEiE
B lm mk jl mk jl

l m

iEiE
mk jl lm jm ml lk

i iV F F

V d F F e F F e

d F F e d F F e

ττ

ττ

σ ω σ σ σ

σ τ τ τ

σ τ τ σ τ τ

∞
−−

∞ ∞
−−

= − − < > − < >

+ +
î

− −

∑

∑ ∫

∫ ∫

�

� � � �
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 (124) 

where ' 'F F F= − < >
�

. The terms in the first line of Eq. (124) account for coherent motion with 

a modified coupling operator, while the terms proportional to VB
2 describe incoerent hopping 

between bridge sites. An important new element in this formulation is the themperature 

dependent renormalization of the coupling responsible for the coherent transmission. Using Eq. 

(123) results in 

 

( )

( )
( )

2

1

2

1,2

3

' exp

(1/ 2) (2 1)

exp( / ) 1

8

T
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B

n n
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S d n

n k T

C C
d

m

α α
α

α α

α α
α

α α

ω

ω

−

+

< >= −

= +

= −

−
=

∑
       (125) 

so that coherent transfer becomes less important at higher temperatures. This reduction in the 

coherent hopping rate is associated with the small overlap between bath degrees of freedom 

accomodating the electron at different sites. In fact <F'> is recognized as the thermally averaged 

Franck Condon factor associated with the electron transfer between two neighboring bridge 

sites. In terms of the spectral density   

 
( )2

1,
( ) ( )

2
n nC C

J
m

α α
α

α α α

πω δ ω ω
ω

+−
= −∑      (126) 

(independent of n if the bridge sites are equivalent) we have 

 
( ) 0
2 3

0 0

( )coth / 21 ( )

8 4
B B

T finite T

J k T k T J
S d dωω ω ωω ω

π πω ω

∞ ∞
→=    →∫ ∫    (127) 

Depending on the spectral density this integral may diverge. More specifically, if ( ) ~ sJ ω ω  

with s<2, ST diverge at any finite temperature and the coherent route is blocked. In other cases 

the coherent route quickly becomes insignificant with increasing temperature. 
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 We have gone with some length into this discussion of thermal relaxation and dephasing 

effects in bridge assisted electron transport both because these effects are inherently important in 

determining transport and conduction properties of molecular junctions, and because the issue of 

heat generation in these current carrying nano-structures is intimately related to these relaxation 

phenomena. As we have seen this problem is far from being solved and more research along 

these lines should be expected. 

 

 

4. Electron tunneling through water 

 Electron tunneling through water is obviously an important element in all electron 

transfer processes involving hydrated solutes, and in many processes that occur in water based 

electrochemistry. Still, only a few systematic experimental studies of the effect of the water 

structure on electron transfer processes have been done.73, 76, 80, 283-290 Porter and Zinn80 have 

found, for a tunnel junction made of a water film confined between two mercury droplets, that at 

low (<1nm) film thickness conduction reflects the discrete nature of the water structure. Nagy 76, 

288, 289 have studied STM current through adsorbed water layers and has found that the distance 

dependence of the tunneling current depends on the nature of the substrate and possibly 

indicates the existing of resonance states of the excess electron in the water layer. Vaught et al287 

have seen a non-exponential dependence on tip-substrate distance of tunneling in water, again 

indicating that at small distances water structure and possibly resonance states become 

important in affecting the junction conductance. Several workers have found that the barrier to 

tunneling through water is significantly lower than in vacuum for the same junction geometry.73, 

283-286, 289-291 The observed barrier is considerably lower than the threshold observed in 

photoemission into water292, 293 and, in contrast to tunneling in vacuum, can not be simply 

explained by image effects.80 

The present section focuses on attempts294-302 to correlate these observations with 

numerical and theoretical studies. In the spirit of most calculations of electron transfer rates (as 

in Sect. 2) and of earlier dielectric continuum modes that neglect the water structure altogether, 

we assume at the outset that in films consisting of a few monolayers transmission is dominated 

by elastic processes. The discussion of Sect. 3 emphasizes the need to justify this assumption. 

Since we are dealing with negative energy (tunneling) processes, electronic excitations of water 

molecules by the transmitting electron can be ruled out. In addition, photoemission through thin 

water films adsorbed on metals indicates that inelastic processes associated with the water 
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nuclear motion contributes relatively weakly at such energies.303, 304 Numerical simulations of 

sub-excitation electron transmission through 1-4 water monolayers adsorbed on Pt(1,1,1)305 are 

in agreement with this observation.u Theoretical calculations of inelastic tunneling309 similarly 

show that sufficiently far from resonance the overall transmission is only weakly affected by 

inelastic processes. In both cases this can be rationalized by the short interaction times (see Ref 
305 and Section 3.1). In such cases a static medium assumption appears to provide a reasonable 

starting point for discussing the overall transmission, i.e. we assume that the transmission event 

is completed before substantial nuclear motion takes place. The computation of the transmission 

probability can therefore be done for individual static water configurations sampled from an 

equilibrium ensemble, and the results averaged over this ensemble. This assumption is critically 

examined below. It should be emphasized that while solvent nuclear motion is slow relative to 

the transmission timescale, solvent electronic response (electronic polarizability) is not. We 

return to this issue also below. 

 In section 2 we have summarized theoretical and computational approaches available for 

studying electron transfer and electron transmission. The following account (see also 301) 

summarizes recent computational work on electron transmission through water that use the 

pseudo-potential method. 294-300, 302 Here the detailed information about the electronic structure 

of the molecular spacer is disregarded, and replaced by the assumption that the underlying 

electron scattering or tunneling can be described by a one electron potential surface. This 

potential is taken to be a superposition of the vacuum potential experienced by the electron and 

the interaction potential between an excess electron and the molecular spacer. The latter is 

written as a sum of terms representing the interaction between the electron and the different 

atomic (and sometimes other suitably chosen) centers. The applicability of this method depends 

on our ability to construct reliable pseudopotentials of this type. In the work described below we 

use the electron-water pseudopotential derived and tested in studies of electron hydration,310 and 

a modified pseudopotential that includes the many-body interaction associated with the water 

electronic polarizability. Other electron-solvent pseudopotentials have been used for water,311 

ammonia312 methanol,313 rare gases314 and hydrocarbons. 315 

 With such a potential given, the problem is reduced to evaluating the transmission 

probability of an electron when it is incident on the molecular layer from one side, say the left. 

 

u It should be kept in mind that energy transfer from the transmitting electron to water nuclear degrees of freedom, 

the mechanism responsible for capturing and localizing the electron as a solvated species must play an important 

role for thicker layers.306-308.  
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In recent years various time dependent and time independent numerical grid techniques were 

developed for such calculations. In the time dependent mode an electron wavepacket is sent 

towards the molecular barrier, and propagated on the grid using a numerical solver for the time 

dependent Schr
�
dinger equation. This propagation continues until such time tf at which the 

'colli sion' with the barrier has ended, i.e. until the probabili ty that the electron is in the barrier 

region, ,),(
2∫barrier
dt rrψ  has fallen below a predetermined margin. Since only the result at the 

end of the time evolution is needed, a propagation method based on the Chebychev polynomial 

expansion of the time evolution operator316, 317 is particularly useful.  

In the time independent mode, Nitzan and coworkers 295-299, 302, 318, 319 have applied the 

spatial grid based absorption boundary condition Green's function (ABCGF) technique 

described in Section 2.7 (Eqs. (63) and (66)). Taking x be the tunneling direction, periodic 

boundary conditions are used in the y-z plane parallel to the molecular layer, and the absorption 

function, ε(r)=ε(x), is taken to be different from zero near the grid boundaries in the z direction, 

far enough from the interaction region (i.e. the tunneling barrier), and gradually diminishing to 

zero as the interaction region is approached from the outside. The stabili ty of the computed 

transmission to moderate variations of this function provides one confidence test for this 

numerical procedure. The cumulative microcanonical transition probabili ty  and the one-to-all 

transition rates are calculated as outlined in Sect. 2.7. In addition, exact outgoing and incoming 

wavefunctions +Ψi  and −Ψ f  which correspond to initial and final states (eigenfunctions of H0 

with energy E) φi and φf, respectively, can be computed from 
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and provide a route for evaluating state selected transition probabili ties, Sif= <ψf
-|ψi

+>. The 

evaluation of these expressions requires (a) evaluating the Hamiltonian matrix on the grid, and 

(b) evaluating the operation of the corresponding Green's operator on a known vector. In the 

implementation of Refs 296-299 7th order finite-differencing representation is used to evaluate the 

kinetic energy operator on the grid. As in most implementations of grid Hamiltonians the 

resulting matrix is extremely sparse, suggesting the applicabili ty of Krylov space based iterative 

methods such as the Generalized Minimum Residual method (GMRES),320 or Quasi Minimal 

Residual method (QMR). 321         
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While considerable sensitivity to the water structure is found in these studies, water 

layers prepared with different reasonable water-water interaction models had similar 

transmission properties.297, 298 On the other hand the results are extremely sensitive to the choice 

of the electron-water pseudopotential. Most previous studies of electron solvation in water 

represent the electron-water pseudopotential as a sum of two-body interactions. Studies of 

electron hydration and hydrated electron spectroscopy show that the potential developed by 

Barnett et al310 as well as that developed by Schnitker and Rossky311 could account semi-

quantitatively for the general features of electron solvation structure and energetics and in water 

and water clusters. Taking into account the many-body aspects of the electronic polarizability 

contributions to the electron-water pseudopotential322 have lead to improved energy values that 

were typically different by 10-20% from the original results. In contrast, including these many-

body interactions in the tunneling calculation is found (see below) to make a profound effect, an 

increase of ~ 2 orders of magnitudes in the transmission probability of electron through water in 

the deep tunneling regime. There are two reasons for this: First, as already noted, tunneling 

processes are fast relative to characteristic nuclear relaxation times. The latter is disregarded, 

leaving the electronic polarizability as the only solvent response in the present treatment. 

Secondly, variations of the interaction potentials enter exponentially into the tunneling 

probability, making their effects far larger than the corresponding effect on solvation. It should 

be kept in mind that including the solvent electronic polarizability in simulations of quantum 

mechanical processes in solution raises some conceptual difficulties. The simulation results 

described below are based on the approach to this problem described in references 295 and 298. In 

what follows model B refers to the the corrected electron-water pseudo-potential used in these 

papers while model A refers to the original pseudopotential of Barnett  et al.310 (see the original 

publications295-299, 301 for details of the water-water and water-metal potentials used in these 

calculations. 

The results described below illustrate the principal factors affecting the transmission 

process: (a) the dimensionality of the process, (b) the effect of layer structure and order, (c) 

effect of resonances in the barrier and (d) signature of band motion. The simulations consist of 

first preparing water layer structures on (or between) the desired substrates using classical MD 

simulations; secondly, setting the Schr
�
dinger equation for the electron transmission problem on 

a suitable grid and, finally, computing the transmission probabilities.   

Figure 13 shows results of such calculations for the transmission probability as a 

function of the incident electron energy. The results for the polarizable model (B) are seen to be 
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in remarkable agreement with the expectation based on lowering of the effective rectangular 

barrier by 1.2eV, while those obtained using model A, which does not take into account the 

many-body nature of the interaction associated with the water electronic polarizability, strongly 

underestimates the transmission probability. In fact, model A predicts transmission probability 

in water to be lower than in vacuum, in qualitative contrast to observations. 

Next consider the effect of orientational ordering of water dipoles on the metal walls. 

Water adsorbs with its oxygen on the metal surface and the hydrogen atoms pointing away from 

it, leading to net surface dipole density directed away from the wall. Simulations yield ~5⋅10-11 

Coul/m for this density.v This is an important factor in the reduction of the surface work 

function of many metals due to water adsorption.292, 323, 324 Fig. 14 compares, for Model A, the 

transmission probabilities computed with two water configurations (sampled as described in Fig. 

13). One is the same as the model A result shown in Fig. 13 and the other is obtained from a 

similar model in which the attractive oxygen-metal wall interaction, therefore the preferred 

orientational ordering, was eliminated.295 We see that the existence of surface dipole in the 

direction that reduces the work function is associated with a larger transmission probability as 

expected. 

Traditional approaches to electron transfer are based on continuum dielectric picture of 

the solvent, where the issue of tunneling path rarely arises. Barring other considerations, the 

exponential dependence of tunneling probabilities on the path length suggests that the tunneling 

process will be dominated by the shortest possible, i.e. 1-dimensional, route. A closer look 

reveals that electron tunneling through water is inherently 3-dimensional (see e.g. Fig. 7 of Ref. 
295). An interesting demonstration of the importance of the 3-d structure of the water layer in 

determining the outcome of the tunneling process is shown in Fig. 15. This Figure compares, 

using the configuration of Fig. 13 and model B at room temperature, tunneling through the 

given water layer and tunneling through another water configuration that was prepared in the 

presence of a strong electric field pointing along the tunneling (x) axis. In the resulting layer 

structure the water dipoles point on the average along this axis. This structure is frozen and the 

electric field used to generate it is removed during the tunneling calculation. The computed one-

to-all transmission for electrons incident in the x direction shows several orders of magnitude 

difference between the probabilities calculated for electron incident in the direction of the 

induced polarization and against this direction. Microscopic reversibility implies that the 

 

v I. Benjamin and A. Nitzan, unpublished results 
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corresponding 1-dimensional process should not depend on the tunneling direction, positive or 

negative, along the x axis. The observed behaviour is therefore associated with the 3-

dimensional nature of the process. it shows that the angular distribution associated with the 

transmission through such layer depends strongly on the transmission direction, and suggests 

that asymmetry in current-voltage dependence of transmission current should exist beyond the 

linear regime. 

Next consider the possibility of resonance assisted tunneling. Fig. 16 shows such 

resonances in a range of ~1eV below the 5eV vacuum barrier. The existence of such resonances 

correlates with the observation of weakly bound states of an electron in neutral configurations of 

bulk water. Mosyak et al298 have found that such states appear in neutral water configurations in 

both models A and B, however only model B shows such states at negative energies. Moreover, 

these states are considerably more extended in systems described by model B compared with the 

corresponding states of model A.298 The possible effect of bound electron states in water on 

electron transmission probability through water was raised by several workers in the past.325-327 

Peskin et al302 have recently identified the source of the resonances seen in our simulations as 

transient vacancies in the water structure. We emphasize again that because these results were 

obtained for static water configurations, their actual role in electron transmission through water 

is yet to be clarified.  

The effective barrier to electron tunneling in water has been subject to many discussions 

in the STM literature.73, 286, 290, 328 While the absolute numbers obtained vary considerably 

depending on the systems studied and on experimental setups and conditions, three observations 

can be made: (a) Tunneling is observed at large tip-surface distances, sometimes exceeding 

20
�

.73, 290, 328 (b) The barrier, estimated using a 1-dimensional model from the distance 

dependence of the observed current, is unusually low, of the order of 1eV in systems involving 

metals with work-functions of 4-5eV. (c) The numbers obtained scatter strongly: the estimated 

barrier height may be stated to be 11eV. (d) The apparent barrier height appears to depend on 

the polarity of the bias potential. 

 It should be kept in mind that even in vacuum STM the barrier to tunneling is expected 

to be lower than the workfunctions of the metals involved because of image effects associated 

with the fast electronic response of the electrodes.91 Nevertheless, the reduction of barrier height 

in the aqueous phase seems to be considerably larger. Taking the vacuum barrier as input in our 

discussion lets consider the possible role of the solvent. These can arise from the following 

factors: (1) The position, on the energy scale, of the "conduction band" of the pure solvent. By 
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"conduction band" we mean extended electronic states of an excess electron in the neutral 

solvent configuration. (2) The effect of the solvent on the electrode workfunction. (3) The hard 

cores of the atomic constituents, in the present case the water oxygens, which make a substantial 

part of the physical space between the electrodes inaccessible to the electron. (4) The possibility 

that the tunneling is assisted by resonance states supported by the solvent. Such resonances can 

be associated with available molecular orbitals - this does not appear to be the case in water- or 

with particular transient structures in the solvent configurations as discussed above.  

Factors (2)-(4) are usually disregarded in theories of electron transfer, while a common 

practice is to account for the first factor by setting the potential barrier height at a value, below 

the vacuum level, determined by the contribution of the solvent electronic polarizability. This 

value can be estimated as the Born energy of a point charge in a cavity of intermolecular 

dimensions, say a radius of a~5au, in a continuum with the proper dielectric constant, here the 

optical dielectric constant of water, ε∞=1.88. This yields e2(2a)-1[ε∞
-1-1]~-1.3eV, same order as 

the result of a more rigorous calculation by Schmickler and Henderson,329 and in agreement with 

experimental results on photoemission into water.292, 324 It should be noted that this number was 

obtained for an infinite bulk of water, and should be regarded as an upper limit for the present 

problem.  

The simulations described above shed some light on the roles played by the other factors 

listed above. First, we find that lowering the metal workfunction by the orientational ordering of 

water dipoles at the metal surface does affect the tunneling probability, see Fig. 14. Secondly, 

the occupation of much of the physical space between the electrodes by the impenetrable 

oxygen cores strongly reduces the tunneling probability. In fact, if these two factors exist alone, 

the computed tunneling probability is found to be considerably lower than in the corresponding 

vacuum process, see Fig 7 of Ref. 295. Even including the effect of the water electronic 

polarizability (i.e. attractive r-4 terms) in the two-body electron-water pseudopotential (model A) 

is not sufficient to reverse this trend, as seen in Fig. 13. Taking into account the full many body 

nature of this interaction was found to be essential for obtaining the correct qualitative effect of 

water, i.e. barrier lowering relative to vacuum.  

The estimate of the magnitude of this lowering effect in our simulations can be done in 

two ways. One is to fit the absolute magnitude of the computed transmission probability to the 

result obtained from a 1-dimensional rectangular barrier of width given by the distance s 
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between the electrodes. 297 This is done in Figure 17 for systems with 1-4 monolayers of water 

(s=3.6, 6.6, 10.0, 13.3
�
).w The following points should be noted: 

(a) The effective barrier to tunneling computed with the fully polarizable model B is reduced 

by at least 0.5eV (from the bare value of 5eV used in these simulations) once a 'bulk' has 

been developed in the water layer, i.e. once the number of monolayers is larger than 2. 

(b) The equivalent calculation done with model A, in which water polarizabili ty is accounted 

for only on the 2-body level, yields an effective barrier higher than the vacuum barrier. 

(c) For the very thin layers studied, the effective barrier height depends on the layer 

thickness. This behavior (which support a recent experimental observation by Nagy289) is 

expected to saturate once a well-defined bulk is developed. 

Following common practice in STM studies, another way to discuss the effective simulated 

barrier is to fit the distance dependence of the observed tunneling probabili ty to the analytical 

result for a rectangular barrier. This practice can yield very low apparent barriers in cases where 

tunneling is influenced by resonance structures.301 Moreover, since the existence and energies of 

these resonances in water depend on local structures that evolve in time, it is possible that the 

characteristic scatter of data that appears in these measurements73, 286, 290, 328 may arise not only 

because of experimental diff iculties but also from intrinsic system properties.  

The existence in water of transient structures that support excess electron resonaces and 

the possible implications of these resonances in enhancing the tunneling probabili ty and the 

apparent barier height raises again the issue of timescales. In particular, the lifetimes of these 

resonance states is of considerable interest, since they determine the duration of the electron 

'capture' by the water film and, as a consequence, the possibili ty that water dynamics and 

thermal relaxation become important on this timescale. Peskin et al302 have determined these 

lifetimes by a direct evaluation of the complex eigenvalues associated with the corresponding 

resonance structures, using a filter diagonalization method with the imaginary boundary 

conditions Hamiltonian. The resulting eigenvalues have imaginary parts of the order ~0.05eV, 

implying lifetimes of the order 10fs≤ . An alternative way to probe the dynamics of electron 

tunneling in water is by evaluating the corresponding traversal times (see Setion 3.1). Here the 

timescale for possible interaction between the excess electron and barrier motions can be 

 

w It should be emphasized that these results were not statistically averaged over many water 

configurations, so the absolute numbers obtained should be taken only as examples of a general 

qualitative behavior. 
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determined both near and away from resonance energies. Galperin et al232 have applied the 

internal clock approach of Sect. 3.1 to this problem, starting from the one-to-all transmission 

probabili ty, Eq. (66), written in the form 

><= )(||)(
1 * EGGE ininoutinin φεεεφ
π

σ      (129) 

where φin denotes an incoming state in the reactant region and εin and εout are the absorbing 

boundary functions in the reactant (incoming) and product (outgoing) regions, respectively. In 

the present application the electron is taken to have two internal states, so that if x is the 
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where λ is a constant and where F(x)=1 in the barrier region and 0 outside it. The approximate 

scattering wave function, 
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is evaluated using iterative inversion methods,320, 321. The transmission probabili ties into the |1> 

and |2> states are obtained from 

( ) ( ) | | ( ) ; 1,2i i out iE E E iψ ε ψ=< > =
�

   (132) 

�
i are equivalent to |ci|2 where ci (i=1,2) are defined above Eq. (77). Accordingly 

  2
0

1

( )
( ) lim

| | ( )

E
E

Eλτ
λ→

 
=    

� �

�        (133) 

 Figs. 18 and 19232 display some results of this calculation. Fig. 18 shows calculated 

traversal times as functions of incident electron energy for an electron transmitted through a 

layer of three water films between two platinum electrodes (the distance between the electrodes 

is d =18.9au). Shown is τ/τ0
 for several configurations of this system, where τ0 is the tunneling 

time associated with the bare vacuum barrier (same geometry with no water). The transient 
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nature of the water structures that give rise to the resonance features is seen here. Note that the 

difference between different configurations practically disappears for energies sufficiently 

below the resonance regime, where the ratio between the time computed in the water system and 

in the bare barrier is practically constant, approximately 1.1. Fig. 19 shows, for one of these 

configurations, the tunneling time and the transmission probabili ty, both as functions of the 

incident electron energy. We see that the energy dependence of  the tunneling time follows this 

resonance structure closely. In fact, the times (3-15 fs) obtained from the peaks in Figs. 18 are 

consistent with the resonance lifetimes estimated in Ref. 302.  

 We conclude this discussion with two more comments: First, in the above analysis the 

possibili ty of transient 'contamination' of the tunneling medium by foreign ions has been 

disregarded. Such ions exist in most systems used in underwater STM studies, and the apearance 

of even one such ion in the space of 10-20
�
 between the electrodes can have a profound effect 

on the tunneling current. This may add another source of scatter in the experimental results. 

Secondly, as already discussed, changes in the water structure between the electrodes may 

appear also as bias dependent systematic effects. Thus, the asymmetry in the bias dependence of 

the barrier height observed in Refs.286 and73, 290 may be related to the asymmetric transmission 

properties of orientationally ordered layers.  

 

5. Overbarrier transmission 

 Our discussion so far has focused on electron transmission processes that at zero 

temperature can take place only by tunneling. The present section provides a brief overview of 

transmission processes where an electron incident on a molecular barrier carries a positive 

(above ground state vacuum) energy. It should be emphasized that this in itself does not mean 

that transmission can take place classically. If the incident energy is in the bandgap of the 

molecular spacer, zero temperature transmission is still a tunneling process. Still , this type of 

phenomena is distinct from those discussed in the other parts of this review for several reasons: 

first, positive energy transmission (and reflection), essentially scattering processes are amenable 

to initial state control and to final state resolution that are not possible in negative energy 

processes. Second, a positive energy electron interacts with a large density of medium states, 

therefore the probabili ty for resonance or near resonance transfer is considerably larger, 

implying also a larger cross-section for dephasing and inelastic energy loss. Third, at this range 

of energies conventional quantum chemistry approaches, as well as pseudopotentials derived 

from low-energy electronic structure data can be very inaccurate. Finally, at high enough 
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energies elecronic excitations and secondary electron generation become important factors in the 

transmission mechanism. For the last two reasons the numerical approaches described in Section 

2.6-8 are not immediately applicable. 

The effect of adsorbates on photoelectrons emitted from surfaces has been studied for 

almost a century.330, 331 These experiments were partially motivated by their practical 

ramifications whereby the surface workfunction was modified by the adsorbate.332, 333 Recently, 

the development of tuneable UV light sources has enabled studies of energy resolved 

photoelectron spectroscopy.334 This eventaully lead to studies of photoelectron energy 

distribution for photoelectrons produced from metal surfaces covered with self assembled 

monolayers (SAMs) of organic molecules, or organized organic thin films (OOTFs).318, 319, 335-349 

These films are prepared either with the Langmuir Blodgett technique350, 351 or by self assembly 

from vapor or solution. One of the earlier experiments of this kind was the measurement of 

transmitted electron energy distribution for photoelectrons produced from a Pt(111) surface 

covered with several layers of water.304 It was found that the transmission probability decreases 

exponentially with increasing number of water layers, however this numebr does not affect the 

energy distribution of the emitted electrons, indicating that transmission in this system is 

independent of the electron energy and that inelastic energy loss is small. These results however 

should be regarded with caution in view of low energy electron transmission (LEET, see below) 

data308 that indicate that energy loss from a transmitted electron to water nuclear motion may be 

quite efficient. The latter observation is supported by estimates352 of the distance (20-50
�

) 

traversed by electrons photoejected into water at subexcitation energies before their capture to 

form the precursor of solvated electrons. 

Unlike water, the electron affinity A = � V0 of hydrocarbon layers is negative, i.e. their 

LUMOs, or in the language of solid state physics, the bottom of their electron condition band is 

above vacuum energy (V0=0.8eV for bulk hydrocarbons353). Indeed a threshold for electron 

photoemission from silver covered with a monolayer of cadmium stearate 

CH3(CH2)16COO 2Cd2+ or arachdic acid CH3(CH2)16COOH is observed.341 Above 0.8eV 

photoemission from these surfaces proceed with efficiency close to 1, turning down again at 

higher energies. Oscillations in the transmission probability through similar films as function of 

the initial electron energy were interpretted in terms of the electronic band structure of the 

film.318, 340 This interpretation gains further support from the observation of the large sensitivity 

of the transmission probability to the film structure in the lateral dimension343, 346 and from the 

strong effect of film ordering.346 This does not exclude what is often taken to express a single 
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molecule effect �  a strong preference of the phtoemission to be directed along the axis of the 

molecular adsorbate.339 The latter manifestation of ordering effect was invoked for the 

interpretation of the observed dependence of the photoemission yield on substrate 

temperature.354 Recently, vibrational structure was observed in the photoemission spectra from 

gold covered with molecular layers containing benzene, naphthalene and anthracene rings.348 

These structures are usually associated with resonances related to temporary electron capture in 

the film, however unlike the usual assignment to temporary ion formation (see below), 

experimental data offer evidence to an interesting collective shape resonance, resulting from a 

two dimensional quantum well associated with the ordered aromatic rings in the direction 

parallel to the substrate surface. Finally, using chiral molecular SAMs (L or D polyalanine 

polypeptides) has revealed that electron transmission of spin-polarized electrons depends, with 

high degree of selectivity, on the chirality of the layer.349x 

Another way to study electron interactions with molecular layers is to send an electron 

beem from the vacuum side onto a molecular film condensed on a suitable, usually metalic, 

substarte. In the low energy electron transmission (LEET) spectroscopy developed by Sanche 

and coworkers the electron transmission spectrum is measured by monitoring the current 

arriving at the metal substrate as a function of the incident electron energy and direction. 

Similarly, the reflected electron beam can be analyzed with respect to energy and angular 

distribution, yielding electron diffraction data, energy loss spectra and energy loss excitation 

spectra. The same experimental setup can be used to study the effect of electron trapping, 

electron stimulated desorption and electron induced chemical reactions in the molecular films. 

For a recent review of these types of studies and references to earlier work see Sanche355. Here 

we focus on observations from LEET experiments that are relevant to our present subject. First, 

the prominence of the elastic and quasielastic component of the transmitted intensity, observed 

in most experiments of this kind, is in agreement with the photoemission experiment discussed 

above. Secondly, a threshold of a few tens of eV (relative to the vacuum level) is seen for 

transmission through alkane and through rare gas layers, indicating negative electron affinities 

of these layers and providing an estimate for the position of the bottom of the layers conduction 

bands. Third, conduction peaks below this threshold are attributed to tunneling assisted by local 

 

x Recent results, (Carmeli I, Naaman R, Vager Z. To be published) indicate that when the chiral molecules also 

carry and electric dipole, the effect of chirality depends on the direction in which the electron travels along the 

helical structure. 
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states inside the gap.356 This is the analog of the bridge assisted tunneling discussed in Section 2, 

except that the film constitues a 3-dimensional barrier in which the local states are distributed 

randomly in position and energy. As discussed in Section 3.4, thermal relaxation and dephasing 

processes manifests themeselves in a characteristic thickness dependence of the transmission 

probabili ty as the processes changes from tunneling to hopping dominated with increasing 

barrier width (see Fig. 12). fourth, the electron transmission spectra closely reflect the band 

structure of the corresponding layer. This should not be taken as an evidence for balli stic 

transport, in fact this observation holds for the inelatic components of the emission intensity. 

Rather, the electron propagation through the molecular environment is viewed as a sequence of 

scattering events, with cross-sections that are proportional to the density of available states.357 

The resulting averaged mean free path is therefore inversely proprtional to the density of states 

at an energy that (as long as the absolute energy loss is small) may be approximated by the 

incident energy. Finally, the transmission can be strongly affected by resonances, i.e. negative 

ion formation. This in turn may greatly increase the probabili ty for inelastic energy loss.355 

These processes are observed in the high resolution electron energy loss (HREEL) spectroscopy, 

by monitoring the energy of reflected electrons, but they undoubtly play an equally important 

part in the transmission process. 

As already mentioned, while the theoretical methods discussed in previous sections of 

these review are general, their applicabili ty to electron transmission in the positive energy 

regime needs special work because standard quantum chemistry calculations usually address 

negative energy regimes and bound electronic states, and because pseudopotentials are usually 

derived from fitting results of such ab-initio calculation to analytical forms based on physical 

insight. Model calculations that demonstrate some of the concepts discussed above are shown in 

Figs. 20 and 21.319 318 Figure 20 compares the transmission probabili ty ('one to all ' with the 

incident electron perpendicular to the barrier) through a 1-dimensional rectangular barrier of 

height 3eV and width 1.2 nm as a function of the incident electron energy measured relative to 

the barrier top, to the transmission through a 3-d slab of 4 Ar layers cut out of an Ar crystal in 

the (100) direction. The latter results are obtained with a spatial grid technique using the 

electron-Ar pseudo-potential of Space et al.314  The oscill ations shown in Fig. 20a are 

interference patterns associated with the finite width of the layers. The full li ne in Fig. 20b also 

shows such oscill ations, but in addition, a prominent dip above 4eV corresponds to a conduction 

band gap of this thin ordered layer. The dashed line in Fig 20b shows similar transmission 

results for disordered layers, obtained from the crystalli ne layer by a numerical thermal 
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annealing at 400K next to an adsorbing wall using molecular dynamics propagation. The results 

shown are averaged over four such disordered Ar configurations. The transmission through the 

disordered layer is considerably less structured (smoother shapes should be obtained with more 

configurational averaging), in particular, the dip associated with the band gap has largely 

disappeared. Figure 21 compares the transmission (one-to-all) versus electron energy, for an 

electron incident in the normal direction on ordered Ar films made of 2, 4 and 6 atomic 

monolayers ('prepared' by cutting them off an Ar crystal as described above). Already at 6-layer 

thickness the observed transmission dip is very close to its bulk value, indicating that the band 

structure is already well developed. 

 These calculations invetigate transmission through static nuclear structures, and 

consequently cannot account for thermal relaxation and dephasing effects. In the other extreme 

limit one uses stochastic models358, 359 that become accurate when the molecule film is thick 

enough so that the electron goes through mutiple scattering events before being transmitted 

through or reflected from the film. Such an approach has been used306, 307 360, 361 to describe the 

energy distributions of electron reflected from molecular films and its relation to the density of 

excess electron states in the film. 

 

6. Conclusions and outlook 

 This review has described the current status of theoretical approaches to electron 

transmission and conduction in molecular junctions. In particular, Section 2 consitutes an 

account of theoretical approaches to this problem for static junctions, while Section 3 discusses 

approaches that focus on dephasing and thermal relaxation effects. It is important to note that 

even though our methodology follows a stationary, steady state viewpoint of all processes 

studied, the issue of relative timescales of different processes has played a central role in our 

analysis.  

 Current studies of molecular junctions focus on general methodologies on one hand and 

on detailed studies of specific systems on another. We have described in some details recent 

computations of electron transmission through water layers and have described other studies on 

prototypes of molecular wires. Two imporant classes of molecular wires have now become 

subjects of intense research, even development effort. These are DNA wires42, 44, 47, 49, 278-281, 362-

402 on one hand, and carbon nanotubes13, 15, 403-445 on the other. While the general principles 

discussed in the present review apply also to these systems, the scope of recent research on 

special structure-function properties of these wires merits a separate coverage. 
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 Coming back to theoretical issues, we have outlined some open problems in the 

methodology of treating these many-body, strongly interacting, non-equilibrium open systems. 

One additional direction not covered in the present review is the possibility to control the 

operation of such junctions using external forces (as opposed to control of function by varying 

the structure). Several recent studies point out the possiility to control transport processes by 

external fields.446-461 The specific and selective nature of molecular optical response make 

molecular junctions strong potential candidates for such applications. 

 In conclusion, electron transmission and conduction processes in small molecular 

junctions combines the phenomenology of molecular electron transfer with structural problems 

associated with design and construction of such junctions on one hand, and with the need to 

understand their macroscopic transport properties on the other. In addition, the potential 

technological promise suggests that research in this area will intensify.   
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Figure Captions 

 

Fig. 1. Schematic views of typical electron transmission systems: (a) A 'standard' electron 

transfer system containing a donor, an acceptor and a molecular bridge connecting them (not 

shown are nuclear motion baths that must be coupled to the donor and acceptor species). (b) A 

molecular bridge connecting two electronic continua, L and R, representing, e.g., two metal 

electrodes. (c) Same as (b) with the bridge replaced by a molecular layer. 

Fig. 2. A schematic view of the electronic and nuclear states involved in typical electron 

transmission systems. See text for details 

Fig. 3. Simple level structure models for molecular electron transfer (a) and for electron 

transmission (b). The molecular bridge is represented by a simple set of levels that represent 

local orbitals of appropriately chosen bridge sites. This set of levels is coupled to the donor and 

acceptor species (with their corresponding nuclear environments) in (a), and to electronic 

continua representing metal leads (say) in (b). In the latter case the physical meaning of states 0 

and N+1 depends on the particular physical problem: They can denote donor and acceptor states 

coupled to the continua of environmental states (hence the notation 0=D, N+1=A), surface 

localized states in a metal-molecule-metal junction, or they can belong to the right and left 

scattering continua. 

Fig. 4. Tunneling gap between two metal electrodes in an unbiased (left) and a biased (right) 

situations. The bare gap, given by the work function W, is modified by the image interaction �  

the resulting barriers are represented by the curved lines. 

Fig. 5. Measured and computed differential conduction of a single α,α'-xylyl dithiol molecule 

adsorbed between two gold contacts (From Ref.72). See text for details. 

Fig. 6. Models for electrostatic potential profiles on a molecule connecting two metal leads with 

different electrochemical potentials (µi=EF 
�  eΦi). See discussion in text above Eq. (71). 

Fig. 7. A model for current rectification in a molecular junction: Shown are the chemical 
�������
	��
���
�����

L
�
	����

R in the two electrodes, and the HOMO and LUMO levels of the donor, 

acceptor and bridge. When the right electrode is positively biased (as shown) electrons can hop 

from left to right as indicated by the dotted arrows. If the opposite bias can be set without 
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affecting too much the electronic structure of the DBA system the reverese current will be 

blocked. 

Fig. 8. A nano-dot between two conductiong leads: A model for Coulomb blockade phenomena 

Fig. 9. Parameters used in the expressions for tunneling traversal times. Left: tunneling through 

a rectangular barrier. Right: bridge mediated transfer, where the grey area denotes the band 

associated with the tight binding level structure of the bridge. 

Fig. 10. The Buttiker dephasing model (see text) 

Fig. 11. Finite temperature conduction of a simple tight binding model of a molecular junction 

as a function of bridge length N. See text for details 

Fig. 12. (Reproduced from Ref.356). Transmitted current in n-hexane films as a function of 

thickness for various incident energies, showing the transition from tunneling to activation 

induced transport.  

Fig. 13. (Reproduced from Ref.298). Electron transmission probability as a function of the 

incident energy. Shown are one-to-all transmission results with the electron incident in the 

direction normal to the water layer. These results are averaged over six equilibrium water 

configurations sampled from an equilibrium trajectory for the water system. This system 

contains 192 water molecules confined between two walls separated by 10
�

, with periodic 

boundary conditions with period 23.5
�

 in the directions parallel to the walls, at 300K. These 

data correspond to three water monolayers between the walls. Thin dashed line: results from 

model A (see text). Full line: results of model B. Also shown are the corresponding results for 

tunneling through vacuum, i.e. through a bare rectangular potential barrier of height 5eV (dotted 

line), and through a similar barrier of height 3.8eV (thick-dashed line), which corresponds to the 

expected lowering of the effective barrier for tunneling through water. 

Fig. 14. (Reproduced from Ref.295). Electron tunneling probabilities through water between two 

electrodes with (full line) and without (dotted line) orientational ordering at the metal wall. 

Fig. 15.  (Reproduced from Ref.299). Electron transmission probabilities between the two 

electrodes as described in the text. Full line: vacuum tunneling (bare barrier 5eV), dotted line: 

normal equilibrium water configuration (model B1), dashed and dashed-dotted lines: water 

oriented by a field 5eV/
�

 with tunneling direction opposite and identical to the orienting field, 

respectively. 
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Fig. 16.  (Reproduced from Ref.302). Transmission probability vs. electron energy for electron 

tunneling through a water layer (model B, configuration as in Fig. 13 with bare barrier 5eV), 

showing tunneling resonances below the vacuum barrier). 

Fig. 17. (Reproduced from Ref.297). Effective 1-dimensional barrier height for electron 

transmission through water, displayed as a function of number of water layers. Solid, dotted and 

dashed lines correspond to models B, A and to the bare (5eV) barrier respectively. See text for 

further details. 

Fig. 18. (Reproduced from Ref.232). The ratio τ/τ0 (see text) computed for different static 

configurations of (a) three and (b) four monolayer water films, displayed against the incident 

electron energy. The inset shows an enlarged vertical scale for the deep tunneling regime. 

Fig. 19. (Reproduced from Ref.232). The tunneling traversal time (full line; left vertical scale) 

and the transmission probability (dotted line; right vertical scale) computed as functions of 

incident electron energy for one static configuration of the 3-monolayer water film. 

Fig. 20.  (Reproduced from318, 319). (a) Transmission probability through 1-d rectangular barrier 

characterized by height of 3 eV and width of 12
�

, as a function of incident electron energy 

measured relative to the barrier top. (b) Full line: electron transmission through a slab made of 4 

Ar layers, cut out of an FCC Ar crystal in the (100) direction. Dashed line: same results obtained 

for a disordered Ar slab (see Ref. 319 318 for details. 

Fig. 21. (Reproduced from318, 319). The computed transmission probabilities, Vs. Electron 

energy, for an electron incident on slabs cut out of an FCC Ar crystal in the (100) direction. (a) 

Slabs made of 2 (dashed line) and 4 (full line) monolayers. (b) Slabs with 4 (full line) and 6 

(dashed line) monolayers. (The full lines in (a) and (b) are identical). 
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