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ABSTRACT
The involvement of excited and highly reactive intermediates in oxygenic photo-
synthesis poses unique problems for algae and plants in terms of potential oxida-
tive damage to the photosynthetic apparatus. Photoprotective processes prevent or
minimize generation of oxidizing molecules, scavenge reactive oxygen species
efficiently, and repair damage that inevitably occurs. This review summarizes
several photoprotective mechanisms operating within chloroplasts of plants and
green algae. The recent use of genetic and molecular biological approaches is
providing new insights into photoprotection, especially with respect to thermal
dissipation of excess absorbed light energy, alternative electron transport path-
ways, chloroplast antioxidant systems, and repair of photosystem II.
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INTRODUCTION

Light is required for photosynthesis, yet plants need protection from light.
Photosynthesis inevitably generates highly reactive intermediates and byprod-
ucts that can cause oxidative damage to the photosynthetic apparatus (16, 58).
This photo-oxidative damage, if not repaired, decreases the efficiency and/or
maximum rate of photosynthesis, termed “photoinhibition” (89; reviewed in
13,98,118,129).

Oxygenic photosynthetic organisms have evolved multiple photoprotective
mechanisms to cope with the potentially damaging effects of light, as dia-
grammed in Figure 1. Some algae and plants avoid absorption of excessive light
by movement of leaves, cells (hegative phototaxis), or chloroplasts. Within the
chloroplast, regulation of photosynthetic light harvesting and electron transport
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Figure 1 Schematic diagram of photoprotective processes occurring within chloroplasts.
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balances the absorption and utilization of light energy. For example, adjust-
ments in light-harvesting antenna size and photosynthetic capacity can decrease
light absorption and increase light utilization, respectively, during relatively
long-term acclimation to excessive light. Alternative electron transport path-
ways and thermal dissipation can also help to remove excess absorbed light
energy from the photosynthetic apparatus. Numerous antioxidant molecules
and scavenging enzymes are present to deal with the inevitable generation of
reactive molecules, especially reactive oxygen species. However, despite these
photoprotective defenses, damage to the photosynthetic machinery still occurs,
necessitating turnover and replacement of damaged proteins. The overall goal
of photoprotection is, therefore, to prevent net damage from occurring.

Because of its importance for maintaining photosynthesis and ultimately for
survival of photosynthetic organisms in many natural environments, photopro-
tection has long been a topic of considerable interest in plant physiology and
biochemistry. The general subject of photoprotection, as well as several specific
photoprotective processes, have been extensively reviewed (9,13, 18, 31, 37,
47-49, 51,57,65,76,77,98,112,118, 128), so one might ask why the topic
needs to be “revisited.” Although genetic methods have long been used in
analysis of photosynthesis (95, 142), only recently has there been widespread
use of genetic and molecular techniques to dissect specific processes involved
in photoprotection. The roles of specific cloned genes are being tested through
reverse genetics, and classical (forward) genetics is uncovering new mutants
and providing insights into the complexity of photoprotection. This article
reviews several photoprotective processes that occur within chloroplasts of eu-
karyotic photosynthetic organisms, with a particular emphasis on the use of
molecular and genetic approaches in intact green algae and plants. Space con-
straints direct my focus to results obtained with the most commonly used model
organisms with good molecular genetics, the green@lgamydomonas rein-
hardtii (Table 1) and the C3 vascular pla#sabidopsis thalianand tobacco
(Table 2).

PHOTO-OXIDATIVE DAMAGE
TO THE PHOTOSYNTHETIC APPARATUS

Before discussing specific photoprotective mechanisms, | briefly summarize the
types of oxidizing molecules that are involved in damaging the photosynthetic
machinery.

Generation of Oxidizing Molecules in Photosynthesis

Because of the large differences in redox potential between reactants and prod-
ucts and the involvement of excited intermediates, oxygenic photosynthesis
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Tablel Summary of Chlamydomonas mutants affecting photoprotection in the chloroplast

Photoprotective Photoprotection
system Mutant Description phenotype Reference
Thermal npqgl Lacks zeaxanthinin HL?  Partly NPQ-deficient; 109
dissipation and growsin HL
xanthophylls - o Accumulates zeaxanthin;  Faster induction of NPQ; 109
lacks antheraxanthin, growsin HL
violaxanthin, and
neoxanthin
lorl Lackslutein and Partly NPQ-deficient; 38, 110
loroxanthin growsin HL
npgllorl Lackszeaxanthinin HL;  NPQ-deficient; 110
lacks lutein and sensitive to HL
loroxanthin
npg4 Normal xanthophylls NPQ-deficient; D Elrad, KK Niyogi
growsin HL & AR Grossman,
unpublished results
npg2lorl Accumulates zeaxanthin;  Growsin HL KK Niyogi,
lacks antheraxanthin, unpublished results
violaxanthin,

neoxanthin, lutein,
and loroxanthin

Water-water PAR19  OverexpressesFeSOD  n.dP 85
cycleand
scavenging
enzymes
PS I repair srispr Deficient in chloroplast ~ Sensitive to HL 73
protein synthesis
ag16.2 Accumulates D1 protein ~ Sensitiveto HL 158
psbTA DeficientinPS1linHL  Sensitive to HL 105
2High light.

bNot determined.

poses unique problems for algae and plants with respect to the generation of
reactive oxygen species and other oxidizing molecules. Potentially damaging
molecules are generated at three major sites in the photosynthetic apparatus:
the light-harvesting complex (LHC) associated with photosystem (PS) I, the
PS Il reaction center, and the PS | acceptor side.

Chlorophyll (Chl) molecules are critical participants in light-harvesting and
electron transfer reactions in photosynthesis, but Chl can act as a potent
endogenous photosensitizer in algae and plants. Absorption of light causes
Chl to enter the singlet excited stat€hl), and the excitation energy is rapidly
transferred £ps time scale) between neighboring Chls in the LHC by res-
onance transfer. Before excitation energy is trapped in the reaction center,
triplet Chl GChl) can be formed fromiChl through intersystem crossing. This
is an inherent physical property 8€hl (121), and the yield oiChl formation
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depends on the average lifetime*@hl (~ns time scale) in the antenna (58). In
contrast to'Chl, 3Chl is relatively long-lived £ms time scale) and can interact
with O, to produce singlet oxygeri@,) (56). Because the average lifetime of
IChlinthe PS Il LHC is several times longer than in the PS | LHC, the potential
for generation ofO, is greater in the PS Il LHC.

In the PS Il reaction center, trapping of excitation energy involves a primary
charge separation between a Chl dimer (P680) and a pheophytin molecule
(Pheo) that are bound to the D1 reaction center protein. The'PBB60
radical pair is reversible (44,134), and the charge recombination (and other
backreactions in PS 1) can generate triplet P68®80) (11, 13, 115, 148). As
inthe LHC, energy exchange betwe®680 and Qresults in formation ofO,.

The P680/Pheo charge separation can be stabilized upon electron transfer
from Pheo to the quinone acceptor Qand P680 is subsequently reduced

by an electron derived from the oxidation of®lvia the secondary donor,Y
(tyrosine 161 of the D1 protein). Although the very high oxidizing potential of
P680" and Y4 enables plants to use,f as an electron donor, P68and Y,
themselves are also capable of oxidizing nearby pigments and proteins (11, 13).

In PS 1, charge separation occurring between P700 and the primary acceptor
Chl A, is stabilized by subsequent electron transfer to secondary acceptors, the
phylloguinone A and three iron-sulfur clusters {FF,, and k). In contrast
to P680°, P700 is less oxidizing and relatively stable; in fact, P709 a very
efficient quencher of excitation energy from the PS | LHC (44, 121). However,
the acceptor side of PS I, which has a redox potential low enough to reduce
NADP* via ferredoxin, is also capable of reducing 10 the superoxide anion
radical () (102). G, can be metabolized to #,, and a metal-catalyzed
Haber-Weiss or Fenton reaction can lead to production of the hydroxyl radical
(OH.), an extremely toxic type of reactive oxygen species (16).

Generation of these oxidizing molecules occurs at all light intensities, but
when absorbed light energy exceeds the capacity for light energy utilization
through photosynthesis, the potential for photo-oxidative damage is exacer-
bated. In excessive light, accumulation of excitation energy in the PS Il LHC
will increase the average lifetime &€hl, thereby increasing the yield &€hl
and'O,. Higher excitation pressure in PS Il can increase the frequency of direct
damage by P680and formation ofO, as a result of P68@Pheo recombi-
nation. Furthermore, the highpH that builds up in excessive light can inhibit
electron donation to P680from the oxygen-evolving complex, resulting in
longer-lived P680 and/or Y;. Overreduction of the PS | acceptor side in ex-
cessive light favors direct reduction of, @ form G,. Analysis of transgenic
tobacco plants with reduced levels of cytochrdogé complex has pointed to
the involvement of lumen acidification and/or overreduction of the PS | acceptor
side in photoinhibition (80).
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Targets of Photo-Oxidative Damage

Although the exact mechanism(s) of damage has not been determined, PS
Il is a major target of photo-oxidative damage (10, 11, 13, 115). Interestingly,
photoinhibition of PS Il, measured as a decrease in either the flash yielgd of O
evolution or the Chl fluorescence parameiefF,,,, seems to depend on the
number of absorbed photons rather than the rate of photon absorption. This
implies that there is a constant probability of photodamage for each absorbed
photon during conditions of steady-state photosynthesis (122, 123). However,
the probability of photodamage can be modulated by changes in Chl antenna
size and rate of electron transport (20, 124), which alter the excitation pressure
on PS Il (79) at a given light intensity.

Generation ofO, within the LHCs can potentially lead to oxidation of lipids,
proteins, and pigments in the immediate vicinity (87). Thylakoid membrane
lipids are especially susceptible to damage'®y because of the abundance
of unsaturated fatty acid side chains. Reaction betw@grand these lipids
produces hydroperoxides and initiates peroxyl radical chain reactions in the
thylakoid membrane. Generation b, and/or P680 in the PS Il reaction
center can result in damage to lipids, critical pigment cofactors, and protein
subunits associated with PS 1l, especially the D1 protein, resulting in photo-
oxidative inactivation of entire reaction centers (13, 18).

On the acceptor (stromal) side of PS |, the targets of oxidative damagg,by O
H,0,, and OH include key enzymes of photosynthetic carbon metabolism such
as phosphoribulokinase, fructose-1,6-bisphosphatase, and NADP-glyceralde-
hyde-3-phosphate dehydrogenase (16, 84). Photoinhibition due to damage to
the PS I reaction center itself can be observed under some circumstances, es-
pecially during chilling stress (reviewed in 143).

ADJUSTMENT OF LIGHT-HARVESTING
ANTENNA SIZE

Changes in the sizes of the Chl antennae associated with PS Il and PS | are
involved in balancing light absorption and utilization (reviewed in 7, 103). Dur-
ing long-term acclimation to growth in different light intensities, changes in
antenna size are due to changes in LHC gene expression (54,101, 150) and/or
LHC protein degradation (96). No mutants affecting acclimatory changes in
Chl antenna size have yet been reported.

Short-term alteration of the relative antenna sizes of PS Il and PS | can occur
because of state transitions. According to the state transition model (reviewed
in 2), overexcitation of PS Il relative to PS | reduces the plastoquinone pool and
activates a kinase that phosphorylates the peripheral LHC associated with PS II.
Subsequent detachment of phospho-LHC from PS |l decreases the effective size
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of the PS Il antenna, and the phospho-LHC may then transfer excitation energy
to PS I. Although the state transition is often suggested to be photoprotective
(for example, see 8, 13), there is no convincing evidence for its role in photo-
protection, at least in excessive light. In fact, the LHC kinase system seems to
be inactivated in high light (46, 130, 136). Mutants affecting the state transition
would be useful to test the hypothesis.

THERMAL DISSIPATION OF EXCESS
ABSORBED LIGHT ENERGY

In excessive light, an increase in the thylakaighH regulates PS Il light
harvesting by triggering the dissipation of excess absorbed light energy as
heat (reviewed in 31,47,48,49,51,65,76,77). Over 75% of absorbed pho-
tons can be eliminated by this process of thermal dissipation (50), which in-
volves de-excitation ofChl and which is measured (and often referred to) as
nonphotochemical genching of Chl fluorescence (NPQ). Thermal dissipation
is thought to protect photosynthesis k&) flecreasing the lifetime dichl to
minimize generation o0, in the PS Il LHC and reaction centeb) preventing
overacidification of the lumen and generation of long-lived P6&mid €) de-
creasing the rate of @eduction by PS I. Although thermal dissipation is usually
reversible within seconds or minutes, sustained thermal dissipation (also called
gl) can be manifested as photoinhibition, which may actually be due to a pho-
toprotective mechanism (52, 77, 82,92, 116). | focus on the rapidly reversible
(pH-dependent) type of thermal dissipation (also called gE) that predominates
under most circumstances.

pH-dependent thermal dissipation occurs in the PS Il antenna pigment bed
and involves specific de-epoxidized xanthophyll pigments (31, 47-49, 51;
65,76,77). The increase in the thylakalgH in excessive light is thought
to result in protonation of specific LHC polypeptides associated with PS II,
namely LHCB4 (CP29) and LHCB5 (CP26) (42, 75, 151, 152). Alpél also
activates the enzyme violaxanthin de-epoxidase, which converts violaxanthin
associated with the LHCs to zeaxanthin (and antheraxanthin) via the so-called
xanthophyll cycle (see Figure 2) (55, 125). Binding of zeaxanthin and protons
to the LHC may cause a conformational change, monitored by an absorbance
change at 535 nm (23-25, 132), that is necessary for thermal dissipation. The
actual mechanism d8Chl de-excitation may involve a direct transfer of energy
from Chl to zeaxanthin (37,62,120). Alternatively, xanthophylls (and pro-
tons) may act as allosteric effectors of LHC structure, leading to “concentration
guenching” by Chlis (77) or quenching via Chl dimer formation (42).

Mutants of Chlamydomonasind Arabidopsis that affect thermal dissipa-
tion have been isolated by video imaging of Chl fluorescence quenching (109,
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Figure 2 The pathway for carotenoid biosynthesis in green algae and plants. The steps blocked
in mutants ofChlamydomonaand Arabidopsis are designated by the boxes, with the names of the
mutants shown in the left half of the box f@hlamydomonaand the right half for Arabidopsis.
Strains defective in some of these reactions have also been identifzbiredesmus obliquus
(26,28). The xanthophyll cycle that operates in fhearotene branch of the pathway involves
zeaxanthin, antheraxanthin, and violaxanthin. The carotenoids that normally accumulate in the
chloroplast are underlined; zeaxanthin accumulates in excessive light.

111,140). Characterization of mutants affected in xanthophyll metabolism
(Figure 2) has confirmed a role for zeaxanthin in thermal dissipation (81,
109,111, 144). Thepg2 mutants ofChlamydomonasnd Arabidopsis, to-
gether with the existingbalmutant of Arabidopsis (90) armba2mutant of
tobacco (100), are defective in zeaxanthin epoxidase activity; they accumulate
zeaxanthin and contain only trace amounts of antheraxanthin, violaxanthin,
and neoxanthin (53,100, 109,111, 131). The constitutive presence of zeaxan-
thin in the PS Il LHCs ofhpg2 and abal mutants is not sufficient for ther-

mal dissipation, which also requires tidgpH. However, induction of NPQ

by illumination with high light is more rapid in the mutants compared to
wild type (81,109,111, 144), presumably because it is driven solely by the
build-up of the ApH. During short-term illumination with high light, some
abalmutants exhibited the same sensitivity to photoinhibition as the wild type
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(81), whereas aabal mutant with a different allele appeared more sensitive
(144).

TheChlamydomonas npagtiutant, which is unable to convert violaxanthin to
zeaxanthin, is partially defective in NPQ but retains substantial, pH-dependent
NPQ, which suggests that some but not all thermal dissipation depends on
operation of the xanthophyll cycle (109). Characterization oflthngé mu-
tant, which lacks xanthophylls derived framcarotene (38, 110), indicates a
possible role for lutein in thermal dissipation (110). Neitheql nor lorl
is particularly sensitive to photoinhibition during growth in high light. How-
ever, annpgl lorldouble mutant lacks almost all pH-dependent NPQ and is
very susceptible to photo-oxidative bleaching in high light. Although this re-
sult seems to provide evidence for the importance of thermal dissipation for
photoprotection in vivo, the phenotype is complicated by the fact that xantho-
phylls are also involved in quenching &hl and'O, and inhibition of lipid
peroxidation, as described below. Another mutaipi4 lacks NPQ but has
normal xanthophyll composition. It is able to survive in high light, suggest-
ing that thermal dissipation itself is not required for photoprotection (D Elrad,
KK Niyogi & AR Grossman, unpublished results).

Results with Arabidopsis xanthophyll mutants, although generally similar
to results withChlamydomonagevealed that the relative contributions of dif-
ferent xanthophylls to thermal dissipation vary in different organisms. Like
npqlof ChlamydomonasArabidopsisnpglmutants are unable to convert vi-
olaxanthin to zeaxanthin in high light. Genetic and molecular analyses (111)
demonstrated that the phenotypenpijlis due to a recessive mutation in the
Arabidopsis violaxanthin de-epoxidase gene (35). In contrast to the results
with Chlamydomonasinduction of pH-dependent thermal dissipation in the
Arabidopsisnpglmutant is almost completely inhibited, suggesting that most
of the thermal dissipation in Arabidopsis depends on de-epoxidation of vio-
laxanthin (111). Leaves ofpglplants sustain more photoinhibition than wild
type following short-term illumination with high light, in agreement with ex-
periments that used dithiothreitol as an inhibitor of violaxanthin de-epoxidase
in detached leaves (23, 156). However, growtmpfj1plants that are accli-
mated to high light is not noticeably different from that of the wild type, which
suggests that, in the long term, other photoprotective processes can compensate
for the defect impq1(111).

As in Chlamydomonasanalysis of Arabidopsis mutants lacking lutein sug-
gests that the residual pH-dependent NP@aglmay be attributable to a con-
tribution of lutein-dependent NPQ (127). Th&2 mutant, which lacks lutein
owing to a mutation in the lycopenecyclase gene (126), exhibits slower in-
duction and a lower maximum extent of NPQ (127), anchpgl lut2double
mutant lacks almost all pH-dependent NPQ (@mBjhan, C Shih, B Pogson,
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D DellaPenna & KK Niyogi, unpublished results). Lutein may have adirectrole
in thermal dissipation, or the lack of lutein iorl andlut2 mutants may have

an indirect effect. In mutants lacking lutein, zeaxanthin may be sequestered in
binding sites that are normally occupied by lutein but inactive in thermal dissi-
pation, thereby lowering the relative effectiveness of zeaxanthin (AM Gilmore,
KK Niyogi & O Bj'orkman, unpublished results).

The requirement for different proteins in the PS || LHC for thermal dissipa-
tion has been addressed using mutants lackingbClihese mutants, such as
barleychlorina f2and Arabidopsishl, are impaired in the synthesis and/or as-
sembly of LHC proteins, especially the peripheral LHC of PS Il, due to the lack
of Chl b (32,93,108). Measurements of NPQ and Chl fluorescence lifetime
components in these mutants suggest that only the minor LHC proteins, such as
LHCB4 and LHCBS5, are necessary for thermal dissipation, although maximal
NPQ requires the presence of the entire LHC (12, 34, 66, 68, 69, 97; KK Niyogi,
unpublished results). To testthe role of specific LHC proteins in thermal dissipa-
tion, mutants or antisense plants affecting individual genes will be very useful.

Several othenpgmutants exhibit normal pigment composition and xantho-
phyll interconversions. These mutants presumably identify factors besides the
ApH and xanthophylls (perhaps LHC components) that are required for ther-
mal dissipation irChlamydomonagl09; D Elrad, KK Niyogi & AR Grossman,
unpublished results) and Arabidopsis (KK Niyogi, C 88 O Bjorkman, un-
published results). For example, the Arabidopgisi4 mutant exhibits the
same lack of NPQ as ampql lut2double mutant, which suggests that it is
defective in all pH- and xanthophyll-dependent thermal dissipation, yet it is
indistinguishable from wild type in terms of xanthophyll interconversion and
growth inlow light. In additionnpg4lacks the absorbance change that presum-
ably reflects the conformational change that is necessary for thermal dissipation
(KK Niyogi, C Shih & O Bjorkman, unpublished results). Determination of
the molecular basis for mutations suchas|4will likely provide new insights
into the molecular mechanism of thermal dissipation.

PHOTOPROTECTION THROUGH PHOTOCHEMISTRY

Assimilatory Linear Electron Transport

Much of the light energy absorbed by the LHCs is utilized through photochem-
istry that drives linear electron transport from@®ito NADPH, resulting in

0, evolution and reduction of CQNO3, and SG~. The maximum rate of
photosynthesis is a dynamic parameter that can be altered during acclimation
to growth in different light environments (reviewed in 30, 37) through changes

in enzyme activities and gene expression. These acclimation responses gener-
ally occur during a period of several days, and there are few or no molecular
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genetic data that address the importance of long-term acclimation responses for
photoprotection.

Oxygen-Dependent Electron Transport

There is abundant evidence that nonassimilatory electron transport to oxygen
plays an important role in consuming excess excitation energy. Oxygen can
function as an electron acceptor either through the oxygenase reaction catalyzed
by Rubisco (photorespiration) or by direct reduction of oxygen by electrons on
the acceptor side of PS | (102), and there is much debate about which process
is more important for photoprotection (for example, see 22,71, 119, 124, 155).

PHOTORESPIRATION In C3 plants, especially under conditions of Zinita-

tion, photorespiratory oxygen metabolism is capable of maintaining consider-
able linear electron transport and utilization of light energy (reviewed in 117).
The role of photorespiration in photoprotection can be conveniently assessed
by varying the gas composition to inhibit the oxygenation reaction of Rubisco.
Blocking photorespiration with mutations or inhibitors leads to inhibition of
photosynthesis and photo-oxidative damage, and the cause of inhibition varies
(14). Accumulation of photorespiratory metabolites or depletion of carbon in-
termediates can inhibit the Calvin cycle and shut down the photochemical sink
for excitation energy. To assess the importance of photorespiration without the
complications of accumulating toxic intermediates, mutants of Rubisco that
lack oxygenase activity would be required.

Manipulation of glutamine synthetase activity, a rate-limiting step in pho-
torespiratory metabolism, in transgenic tobacco plants has provided additional
evidence for the role of photorespiration in photoprotection (91). Antisense
plants with less glutamine synthetase are more sensitive to photo-oxidation
under conditions of C@limitation because of accumulation of photorespira-
tory NHs, in agreement with previous results with mutant barley plants lacking
glutamine synthetase (149). In contrast, plants that overexpress glutamine syn-
thetase have a higher capacity for photorespiration and are more resistant to
photoinhibition and photo-oxidative damage (91).

PHOTOREDUCTION OF OXYGEN BY PHOTOSYSTEM I Direct reduction of Qby

PS lis the first step in an alternative electron transport pathway that has been
variously termed pseudocyclic electron transport, the Mehler-ascorbate perox-
idase reaction, and the water-water cycle. Because a comprehensive review of
this pathway appears in this volume (17), itis only briefly outlined here. The O
produced on the acceptor side of PS | by reduction p@fficiently metabo-

lized by thylakoid-bound isozymes of superoxide dismutase (SOD) and ascor-
bate peroxidase (APX) to generatg®and monodehydroascorbate, which can
itself be reduced directly by PS | to regenerate ascorbate (15-17). Thus the four
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electrons generated by oxidation of®lby PS Il are consumed by reduction
of O, to H,O by PS I. This pseudocyclic pathway generatespdd for ATP
synthesis, but neither NADPH nor ne} @ produced.

Like photorespiration, the water-water cycle may help to dissipate excitation
energy through electron transport. However, the capacity of this pathway to
support electron transport is unclear; estimates range between 10% and 30%
of normal linear electron transport in algae and C3 plants (22,99,119). The
pathway may also be involved in maintainingAgpH necessary for thermal
dissipation of excess absorbed light energy (135).

Genes encoding SOD and APX have been identified from several plants,
including Arabidopsis (83, 86), and this should enable dissection of the water-
water cycle by analysis of antisense plants or mutants. However, the mutant
analysis will be complicated by the dual roles of these enzymes in scavenging
reactive oxygen intermediates and in electron transport.

Cyclic Electron Transport

Within PS 11, cyclic electron transport pathways, possibly involving cytochrome
bsso, have been suggested to dissipate excitation energy (reviewed in 37, 154),
but convincing evidence for their occurrenceinvivois lacking. Cytochiamge

may function to oxidize Pheoor reduce P680to protect against photodamage

to PS 11 (154). Site-directed mutagenesis of the chloroplast genes encoding the
« and g polypeptides of cytochromiassg in Chlamydomonasl, 107) will be
useful to dissect the possible role of this cytochrome in cyclic electron transport
and photoprotection.

Cyclic electron transport around PS | is also suggested to have an important
role in photoprotection. In addition to dissipating energy absorbed by PS I,
cyclic electron transport may be involved in generating or maintaining the
ApH that is necessary for downregulation of PS Il by thermal dissipation of
excess absorbed light energy (72). Biochemical approaches have led to the
conclusion that there are at least two pathways of PS | cyclic electron transport,
one involving a ferredoxin-plastoquinone oxidoreductase (FQR) and the other
involving an NADPH/NADH dehydrogenase (NDH) complex (reviewed in 21).
The FQR has not yet been identified, although the PsaE subunit of PS | is
possibly involved. The NDH pathway involves a protein complex bound to the
thylakoid membrane thatis homologous to the NADH dehydrogenase complex |
of mitochondria. Several subunits of this complex are encoded by genes on the
chloroplast genome of many plants (reviewed in 63).

Mutants affecting the NDH complex have been generated by disrupdihg
genes in the chloroplast genome of tobacco by homologous recombination
(36, 88, 139). These mutants have no obvious phenotype under normal growth
conditions. However, measurements of Chl fluorescence and PS | reduction
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kinetics revealed that cyclic electron transport is partially impaired (36, 139).
Induction of thermal dissipation upon sudden illumination was slightly delayed
in mutants subjected to water stress, consistent with the idea that PS | cyclic
electron transportis involved in maintaining\@H for thermal dissipation (36).
Thorough examination of photoprotection in these mutants under less favorable
growth conditions should be very informative, although the existence of other
cyclic pathways may complicate interpretations.

SCAVENGING OF REACTIVE OXYGEN SPECIES

Several antioxidant systems in the chloroplast can scavenge reactive oxygen
species that are inevitably generated by photosynthesis (15,57, 128). In many
cases, increases in antioxidant molecules and enzymes have been observed
during acclimation to excessive light (for example, see 67), and the specific
roles of these molecules are starting to be tested using mutant and transgenic
organisms (3-5, 57).

Antioxidant Molecules

CAROTENOIDS Carotenoids, including the xanthophylls, are membrane-bound
antioxidants that can quené@hl and'O,, inhibit lipid peroxidation, and stabi-

lize membranes (reviewed in 51, 60, 61, 70). The genes and enzymes involved
in their biosynthesis have been reviewed recently in this series (43). Xantho-
phylls bound to the LHC proteins are located in close proximity to Chl for
efficient quenching ofChl and'O, (94). p-carotene in the PS Il reaction cen-

ter quenche0, produced from interaction 32680 and Qbut is not thought

to quench®P680 itself (145). As discussed above, specific xanthophylls are
also involved in quenching dChl during thermal dissipation.

Carotenoids in general have essential functions in photosynthesis and pho-
toprotection, as demonstrated by the bleached phenotypes of algae and plants
that are unable to synthesize any carotenoids owing to mutations affecting early
steps of carotenoid biosynthesis (6, 133). However, characterization of xantho-
phyll mutants blocked in later steps in the carotenoid pathway (Figure 2) has
demonstrated that no single xanthophyll is absolutely required for photopro-
tection (109-111, 126). For examp@hlamydomonamutants lacking lutein
and loroxanthin lor1), antheraxanthin, violaxanthin, and neoxanthipd2),
or zeaxanthinr{pql) are all able to grow as well as wild type in high light
(209, 110).

Eliminating combinations of xanthophylls in double mutants has revealed
a redundancy among xanthophylls in terms of photoprotection. Construction
of an npgl lorl double mutant has demonstrated that accumulation of
either zeaxanthin or lutein is necessary for photoprotection and survival of
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Chlamydomonais high light (110). The light sensitivity of thepgl lorlstrain
probably reflects the multiple roles of specific xanthophylls in photoprotection;
quenching of'Chl, *0,, and possibly also inhibition of lipid peroxidation are
impaired in the absence of both zeaxanthin and lutein (110). A similar sensi-
tivity to very high light is observed in older leaves of the Arabidopgig1 lut2
double mutant, but the photo-oxidative damage is not lethal to the entire plant
(O Bjorkman, C Shih, B Pogson, D DellaPenna & KK Niyogi, unpublished
results).

Zeaxanthin is sufficient for photoprotection. Double mutant€bfamy-
domonagnpg2 lorl) and Arabidopsisgbal lutd, as well as the C-2A67,3b
strain ofScenedesmus obliqu{®&6), that contain zeaxanthin as the only chloro-
plast xanthophyll are viable, although the photosynthetic efficiency of the
Scenedesmustrain is decreased (27), and growth of the Arabidopisasl lut2
is impaired (127). In the case 6hlamydomonas npg2 lorthe mutant grows
as well as wild type in high light (KK Niyogi, unpublished results). Selective
elimination of all the xanthophylls derived frof-carotene to test whether
lutein is sufficient for photoprotection may be difficult using mutants, because
the same3-hydroxylase seems to be involved in synthesis of both zeaxanthin
and lutein (43).

TOCOPHEROLS Another important thylakoid membrane antioxidantisoco-
pherol (vitamin E), which can physically quench or chemically scavé@ge

O, and OH in the membrane to prevent lipid peroxidation (57). Whereas the
xanthophylls are largely bound to proteirstocopherol is free in the lipid
matrix of the membrane and appears to have a role in controlling membrane
fluidity and stability (64). In additiony-tocopherol participates in the efficient
termination of lipid peroxidation chain reactions with concomitant formation
of its «-chromanoxyl radical (64).

Although «-tocopherol is the most abundant tocopherol in the chloroplast,
other tocopherols such g5 and y-tocopherols are also present at low lev-
els. The minor tocopherols are intermediates in the synthesigsaopherol
that differ in the number of methyl groups on the chromanol head group. The
relative abundance of the tocopherals£ B8 > y) parallels their effective-
ness as chemical scavengers of reactive oxygen species and as chain reaction
terminators (64).

Unfortunately, there are few genetic data that address the importance of spe-
cific tocopherols, or tocopherols in general, in photoprotectioSBcénedesmus
mutant lacking all tocopherols has been reported (29), but the lesion in the
mutant appeared to affect the synthesis of phylloquinones and phytylbenzo-
quinones in addition to tocopherols (74). The Arabidopsislandpds2mu-
tants lack both tocopherols and quinones due to blocks in the biosynthetic
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pathway common to both types of molecules (113). Interestingly, the mutants
also lacked carotenoids, uncovering a role for plastoquinone in the desaturation
of phytoene (113). A gene encoding one of the later steps of tocopherol biosyn-
thesis has recently been identified in cyanobacteria and Arabidopsis (140a), and
application of reverse genetics promises insights into the photoprotective role
of specific tocopherols in the near future.

ASCORBATE The soluble antioxidant ascorbate (vitamin C) has a central
role in preventing oxidative damage through direct quenching®f O,

and OH, in regeneration ofr-tocopherol from thex-chromanoxyl radical,

and as a substrate in both the violaxanthin de-epoxidase and APX reactions
(112,141). Although ascorbate is very abundant in chloroplases (mM),

the biosynthetic pathway for ascorbate in plants was elucidated only very re-
cently (153), and the importance of ascorbate in photoprotection has not been
determined. Ascorbate-deficient mutants affecting the biosynthetic pathway
have been identified recently in a screen for ozone-sensitive mutants in Ara-
bidopsis (40, 41). One mutant, originally callsdz1but renameditcl, accu-
mulates approximately 30% as much ascorbate as wild type. In addition to its
ozone sensitivity, thetcl mutant is more sensitive to exogenougds, SO,

and illumination with UV-B, but sensitivity to high light has not yet been
examined.

GLUTATHIONE Another important soluble antioxidant in the chloroplastis glu-
tathione, which is capable of detoxifyif@, and OH. Glutathione protects
thiol groups in stromal enzymes, and it is also involvedvitocopherol re-
generation and ascorbate regeneration through the glutathione-ascorbate cycle
(16,59). Biosynthesis of glutathione proceeds by the reaction of glutamine
and cysteine to forny-glutamylcysteine, followed by the addition of glycine
catalyzed by glutathione synthetase. The Arabidopmsi®?mutant is deficient

in glutathione (78) owing to a defect in the gene encodirgjutamylcysteine
synthetase (39). The level of glutathioneced2leaves is approximately 30%

of that in the wild type. As in the case of the ascorbate-deficient mutant, the
sensitivity ofcad2to photoinhibition remains to be determined.

Scavenging Enzymes

The enzymes SOD and APX are involved in scavenging reactive oxygen species
in the chloroplast. As discussed above, Generated by reduction of by

PS | is metabolized enzymatically by SOD to produg®l The subsequent
reduction of HO, by APX produces the monodehydroascorbate radical, which
can be directly reduced by PS | (via ferredoxin) in the water-water cycle (17).
Ascorbate can also be regenerated in the stroma by the set of enzymes com-
prising the glutathione-ascorbate cycle (16, 59).
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Both SOD and APX exist in multiple isoforms within the chloroplast. The
SOD isozymes are generally classified according to their active site metal (33):
copper/zinc (Cu/ZnSOD), iron (FeSOD), or manganese (MnSOD). Most plants
have FeSOD and Cu/zZnSOD in their chloroplasts, whereas most algae appear
to lack the Cu/ZnSOD completely (45). Thylakoid-bound forms of SOD (114)
and APX (104) may efficiently detoxify Dand HO, at their site of production
(16, 58) and prevent inactivation of Calvin cycle enzymes (84). Soluble forms
of SOD and APX react with @ and HO, that diffuse into the stroma from the
thylakoid membrane.

Mutants or antisense plants have the potential to reveal roles of different
SODs and APXs in photoprotection. Arabidopsis has at least seven SOD genes:
three encoding Cu/ZnSOD, three encoding FeSOD, and one encoding MnSOD
(86). One of the Cu/ZnSOD and all three of FeSOD gene products are located
in the chloroplast. Mutants that are deficient in expression of plastidic and
cytosolic Cu/ZnSODs or plastidic FeSODs have been isolated (DJ Klieben-
stein & RL Last, unpublished results), but the phenotypes of these mutants in
high light have not been tested. Genes encoding the stromal and thylakoid-
bound forms of APX have been cloned from Arabidopsis (83), but mutants or
transgenic plants with altered expression of chloroplast APX have not yet been
reported.

Transgenic plants overexpressing SOD have been generated by several
groups, and the results of these experiments were recently reviewed (3-5, 57).
Photoprotection has been examined specifically in only a few cases. An en-
hancement of tolerance to a combination of high light and chilling stress
has been observed in tobacco plants overexpressing chloroplast Cu/ZnSOD
(137, 138) but not in plants overexpressing chloroplast FeSOD (147). This is
consistent with the localization of Cu/ZnSOD at the thylakoid membrane where
O; is reduced by PS | (114). However, chloroplast APX activity is induced in
the Cu/ZnSOD transgenic plants; the combination of increased Cu/ZnSOD and
APX activities may result in enhanced photoprotection (138). The photopro-
tection phenotype of @hlamydomonamutant that overexpresses chloroplast-
localized FeSOD has not been reported (85).

REPAIR OF PHOTODAMAGE

Despite multiple lines of defense, damage to the photosynthetic apparatus is an
inevitable consequence of oxygenic photosynthesis, and the PS Il reaction cen-
ter is especially susceptible to photo-oxidative damage. Therefore, oxygenic
photosynthetic organisms have evolved an elaborate but efficient system for
repairing PS 1l that involves selective degradation of damaged proteins (pri-
marily D1) and incorporation of newly synthesized proteins to reconstitute
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functional PS 1l (13). Under some circumstances, damaged PS Il reaction
centers may also be sites of thermal dissipation (qgl) (92, 116).

The repair of PS Il is an important photoprotective mechanism, because the
rate of repair must match the rate of damage to avoid photoinhibition resulting
from net loss of functional PS Il centers. Therefore, continual new synthesis of
chloroplast-encoded proteins, especially D1, is critical for photoprotection at all
light intensities. Blocking chloroplast protein synthesis with inhibitors during
exposure of algae or plants to light results in photoinhibition and net loss of D1
protein (for example, see 19, 146). Similarly, attenuation of chloroplast protein
synthesis in rRNA mutants @hlamydomonaleads to chronic photoinhibition
and lower levels of D1 during growth in high light (73). To analyze the effect
of a specific limitation of D1 synthesis, rather than a general inhibition of
all chloroplast protein synthesis, it may be possible to isolate partial loss-of-
function alleles of mutations such &hlamydomonabk35, which specifically
affects expression of D1 (157).

Otherfactorsinvolved in repair of PS Il are being identified by various genetic
approaches. A screen f@hlamydomonamutants that are more sensitive to
PS Il photodamage has uncovered mutants that may be defective in PS Il repair,
including a mutant that accumulates more D1 protein than wild type (158). A
possible role for thgosbTgene (originally known agcf8) in the chloroplast
genome ofChlamydomonam protection of PS 11 in high light has been sug-
gested by characterization ofpsbTdisruption mutant (105). In transgenic
tobacco plants, decreasing the unsaturation of chloroplast glycerolipids results
in greater sensitivity to low-temperature photoinhibition, apparently because of
inhibition of PS Il repair (106).

CONCLUSIONS AND PROSPECTS

Photoprotection of photosynthesis is a balancing act. Thermal dissipation and
alternative electron transport pathways, together with changes in antenna size
and overall photosynthetic capacity, help to balance light absorption and utiliza-
tion in the constantly changing natural environment. The generation of reactive
oxygen species is balanced by the capacity of antioxidant systems. The capacity
for repair must match the damage that is not prevented by other photoprotective
processes.

Multiple, partially redundant mechanisms acting in concert help to prevent
net photo-oxidative damage that results from generation of reactive molecules
through photosynthesis. The redundancy is not surprising given how crit-
ical photoprotection is for fithess and survival of algae and plants in most
environments. Indeed, many of the molecules and enzymes involved in photo-
protection have roles in more than one photoprotective mechanism. For
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example, xanthophylls are involved in both thermal dissipation and quench-
ing of *0,, whereas SOD and APX enzymes scavenge reactive oxygen species
while maintaining electron transport via the water-water cycle.

The use of molecular genetic approaches to study photoprotection is just
beginning, but the potential for rapid progress is obvious. Mutants affecting
many chloroplast processes are now available, and assessment of their relative
importance for photoprotection is under way in several laboratories. Because
photoprotective processes comprise several lines of defense against the damag-
ing effects of light, construction of double and perhaps even triple mutants in
some cases may be necessary in order to obtain clear phenotypes. In the future,
other genetic approaches, such as screening for suppressors or enhancers of
these phenotypes, may uncover previously unrecognized mechanisms of pho-
toprotection.
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