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1. Introduction

This paper proposes an Encryption Scheme
that possess the following property:

An adversary, who knows the encryption
algorithm and is given the cyphertext, can-
not obtain any information about the clear-
text.

Any implementation of a Public Key Cryptosys-
tem, as proposed by Diffie and Hellman in [8],
should possess this property.

Our Encryption Scheme follows the ideas in
the number theoretic implementations of a
Public Key Cryptosystem due to Rivest, Shamir
and Adleman [13], and Rabin [12].

Security is based on Complexity Theory and
the intractability of some problems in number
theory such as factoring, index finding and
deciding whether numbers are quadratic resi-
dues with respect to composite moduli is
assumed. In this context, impossibility means
computational infeasibility and proving that a
problem is hard means to show it equivalent to
one of the above mentioned problems.

The key idea in both the RSA scheme and
the Rabin scheme is the selection of an
appropriate trapdoor function; an easy to
evaluate function f such that z is not easily
computable from f(z), unless some extra
information is known. To encrypt a message
m, one simply evaluates f (m).
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We would like to point out two basic weaknesses
of this approach:

1) ‘The fact that f is a trapdoor function does
nol rule oul the possibility of computing z
from f(z) when z is of a special form.
Usually messages do not consist of numbers
chosen at random but possess more struc-
ture. Such structural information may help
in decoding. For example, a function f,
which is hard to invert on a generic input,
could conceivably be easy to invert on the
ASCII representations of English sentences.

2) The fact that f is a trapdoor function does
not rule out the possibility of easily com-
puting some partial information about x
(even every other bit of x) from f (x). The
danger in the case that z is the ASCII
representation of an English sentence is
self evident. Encrypting messages in a way
that ensures the secrecy of all partial infor-
mation is an extremely important goal in
Cryptography. The importance of this point
of view is particularly apparent if we want
to use encryption to play card games over
the telephone. If the suit or color of a card
could be compromised the whole game
could be invalid.

Though no one knows how to break the RSA or
the Rabin scheme, in none of these schemes is
it proved that decoding is hard without any
assumptions made on the message space. Rabin
shows that, in his scheme, decoding is hard for
an adversary if the set of possible messages has
some density property.

The novelty of our contribution consists of

1. The notion of Trapdoor Functions is
replaced by Probabilistic Encryption. To
encrypt each message we make use of a fair
coin. The encoding of each message will
depend on the message plus the result of a
sequence of coin tosses. Consequently,
there are many possible encodings for each
message. llowever, messages are always
uniquely decodable?

'Probabilistic Encryption is completely different from

the technique of appending random bits'to a message as
suggested in [i2} and [i€].
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2. Decoding is easy for the legal receiver of a
message, but provably hard for an adver-
sary. Therefore the spirit of a trapdoor
function is maintained. In addition, in our
scheme, without imposing any restrictions
on the message space, we can prove that
decoding is equivalent to deciding qua-
dratic  residuosity modulo composite
numbers.

3. No Partial Information about an encrypted
message could be obtained by an adver-
sary. Assume that the message space has
an associated probability distribution and
that, with respect to this distribution, an
easy to compute predicate P (such as "the
exclusive or of all the bits in the message is
1") has probability p to be true. Letp = .5
without any loss of generality. Then,
without any special ability, an adversary,
given the cyphertext, can always guess
that P is true for the cleartext, and be
correct with probability p.

Based on the assumption that deciding qua-
dratic residuosity modulo composite
numbers is hard, we prove that an adver-
sary cannot guess correctly with probabil-
ity p+e.from the cyphertext, whether the
cleartext satisfies the predicate P, where ¢
is a non negligible positive real number.

Probabilistic Encryption has been useful for the
solution of Mental Poker. The problem whether
it is possible to play a "fair" game of Mental
Poker has been raised by Robert Floyd.
Shamir, Rivest and Adleman proposed an
elegant solution to this problem in [14] using
commutative encryption functions, but they
could not prove that partial information could
not be compromised using their scheme.
Indeed, several problems in the implementa-
tion of their scheme have been pointed out by
Lipton in [10].

We present a solution for Mental Poker, for
which we can prove, based on the assumption
that factoring and deciding quadratic
residuosity modulo composite numbers is hard,
that not a single bit of information about a card
which should remain hidden can be discovered.
Our solution does not use commutative encryp-
tion functions.

2. The Security of a Public Key Cryptosystem.

All the number theoretic notation used in
this section will be defined in section 3.1.

2.1 What is a Public Key Cryptosystem?

The concept of a Public Key Cryptosystem
was introduced by Diffie and Hellman in their
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ingenious paper [8]. Let M be a finite message
space, A, B,... be users, and let m € M denote a
message. Let E4:M-+M be A's encryption func-
tion, which is ideally bijective, and D, be 4's
decryption function such that DyE4(m)) =m
for all m € M. In a Public Key Cryptosystem Ey
is placed in a public file, and user 4 keeps D,
private. D, should be difficult to compute
knowing only ¥,. To send message m to A, B
takes E, from the public file, computes E,(m)
and sends this message to A. A easily computes
D4y(E4(m)) Lo obtain m.

2.2 The RSA scheme and the Rabin scheme

The two implementations of a Public Key
Cryptosystem most relevant and inspiring for
this paper are the RSA scheme [13], due to
Rivest, Shamir and Adleman, and its particular-
ization suggested by Rabin [12].

The key idea in both the RSA scheme and
the Rabin scheme consists in the selection of
an appropriate number theoretic trapdoor
function. In the RSA scheme, user A selects N,
the product of two large primes p, and p, and a
number s such that s and ¢(N) are relatively
prime , where ¢ is the Euler totient function. 4
puts N and s in a public file and keeps the fac-
torization of N private. Let Zy'={z |
l=x < N-1and z and N are relatively primej.
For every message m € Zy", E4(m)=m® mod
N. Clearly, the ability to take sth roots mod N
implies the ability to decode. 4, who knows the
factorization of N, can easily take sthroots mod
N. No efficient way to take sth roots mod Nis
known when the factorization of N is unknown.

About the RSA scheme Rabin remarks that,
for all we know, inverting the function z* mod
N may be a hard problem in general, and yet
easy for a large percentage of the z's.

He suggests to modify the RSA scheme by
choosing s=2. Thus, for all users A, E4(z) = z?
mod N. Notice that £, is a 4-1 function because
our N is the product of two primes. In fact,
every quadratic residue mod N, i.e every q
such that g=z% mod N for some z € Zy", has
four square roots mod N: +z mod N and zy
mod N. As A knows the factorization of N, upon
receiving the encrypted message m? mod N, he
could compute its four square roots and get the
message m. The ambiguity in decoding could
be eliminated, for example, by sending the first
20 digits of m in addition to m2 mod N. Such
extra information cannot effectively help in
decoding: we could always guess the first 20
digits of m.

The following theorem shows how hard is it
to invert Rabin's function 22 mod N.

Theorem (Rabin): If for 1% of the q's quadratic



residues mod N one could find one square root
of g, then one could factor N in Random Poly-
nomial Time.

The theorem follows from the following
lemma that we state without proof.

Lemma 1: Given z, y € Zy" such that z? =y?
mod N and £ # t¥ mod N, there is a polyno-
mial time algorithm to factor N. (In fact the
greatest common divisor of N and z+y is a fac-
tor of N).

Informal proof of Rabin's theorem: Assume
that we have a magic box B such that given q, a
quadratic residue mod N, for 1% of the g's it
outputs one square root of q mod N. Then we
could factor N by iterating the following step:

Pick i at random in Zy® and compute q =i?
mod N. Feed the magic box B withq. If M
outputs a square root of q different from i
or -i mod N, then (by the above lemma)
factor N.

The expected number of iterations is low, as at
each step, we have a 0.5% chances to factor N.

2.3 Objections to Cryptosystems based on
Trapdoor Functions

Covering ones face with a handkerchief cer-
tainly helps to hide personal identity. However:

1) It will not hide from me the identity of a
special subset of people: my mother, my
sister, close friends.

I can gather a lot of information about the
people 1 cannot identify: their height, their
hair color and so on.

Essentially, the same kind of problems may

arise in the RSA scheme and in the Rabin

scheme and, more generally, in any other Pub-

lic Key Cryptosystem based on Trapdoor Func-

tions:

1) The fact that f is a Trapdoor Function does
not rule out the possibility of computing x
from f(x) when x is of special form.

2)

2) The fact that f is trapdoor function does not
rule out the possibility of easily computing

some partial information about x from f(x).

2.4 Discussion of Objection 1

One may argue that Rabin’s Public Key
Cryptosystem is as hard to break as factoring
in the following way; whoever can get a mes-
sages m from their encryptions m2 mod N 1%
of the time, is actually realizing the magic box
of Rabin’'s theorem and thus could efficiently
factor n.

We would like to point out the following
fact.

Claim: If M, the set of messages, is "sparse’’
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in Zy', the ability to decode 1% of all messages
does not yield a random polynomial time algo-
rithm for factoring.

By "sparse” we mean that for a randomly
chosen z € Zy*, the probability that x is a mes-
sage is virtually 0.

Let f(z) = z? modN. Assume that we are
able to invert the function f only on f(H#).
Then we would have a magic box MB which, fed
m? mod N, would output m whenever m € M;
and fed g, outputs nothing whenever
qe{m?®mod N|m € M}, except, at most, for a
negligible portion of the g's. With the use of
such a magic box we could decode, but not fac-
tor N efliciently. Using such MB, let us look at
the above informal proof of Rabin's theorem . If
we pick m € ¥ and feed m? mod N into MB,
then we get back m and we cannot factor. If
we pick i€M and feed i® mod N to MB, then the
probability that one square root of i®* mod N
different from i, belongs to M is practically 0
and we get no answer.

2.5 Discussion of Objection 2

We would like to define a Public Key Cryp-
tosystem to be secure if an adversary, given
the cyphertext, cannot obtain any partial infor-
mation about the cleartext. This latter notion
needs to be formalized:

Let P be any easy to evaluate, non con-
stant, boolean predicate defined on the
message space M. Let m € M. If, given the
encryption of wm, an adversary can
efliciently compute the value of P(m),
then partial information about m can be
obtained from the encryption of m

Notice that, according to the above definition,
no Public Key Cryptosystem based on trapdoor
Sunctions is secure. In fact, if £, is a trapdoor
function, the following predicate P, defined on
the cleartext, is easy to evaluate from the
cyphertext: P(z) is true if and only if £ (x) is
even. We can avoid such problems using Proba-
bilistic Encryption.

We know that some decision problems may
be hard to solve for particular inputs, but easy
to solve for most of the inputs. In view of the
special purpose of Cryptography, the require-
ment that obtaining partial information should
be difficult needs to be strengthened.

Assume that the message space has an
associated probability distribution and that,
with respect to this distribution, a predicate P
has a probability p to be true. Without loss of
generality, let p = 0.5.

Definition: An adversary has an £ advantage
in evaluating the predicate P, if he can
correctly guess the value of P relative to the
cleartext with probability greater than p+e¢.



We are now able to restate the previous
partial information definition.

Definition: A Public Key Cryptosystem is ¢
secure if an adversary does not have an ¢
advantage in evaluating, given the cyphertext,
any easy to compute predicate relative to the
cleartext.

Based on the assumption that deciding qua-
dratic residuosity modulo composite numbers
is hard, we introduce an e-secure Public Key
Cryptosystem, for every non negligible, posi-
tive, real number £. Let us first deal with the
question of sending securely a single bit in a
Public Key Cryptosystem. This question,
closely related to the security of Partial Infor-
mation, has been raised by Brassard in [#].

2.6 Attempts to Send a Single Bit Securely in
Public Key Cryptosystems based on TrapDoor
Functions

Suppose that user B wants to send a single
bit message to user A in great secrecy. The bit
is equally likely to be a 0 or a 1. B wants no
adversary to have a 1% advantage in guessing
correctly his message. B knows that £4 is hard
to invert and tries to make use of this fact in
the following way.

Idea 1: All users in the system agree on an
integer i. User B selects r €M at random,
except for the ith bit of », which will be his
message. B sends E,(r) to A. .

A can decode and thus get the desired bit. But
what can an adversary do ?

Danger: let y = E4(x), where E, is a one
way function. Then, given y, it could be
difficuit to compute x but not a specific bit of x.

Example: let p be a large prime such that
p—1 has at least one large prime factor. Let g
be a generator for Z,*. Then y=g® mod p is a
well known one-way function. But, even though
it is difficult to compute x from g* mod p (the
index finding problem), it is easy to get the last
bit of x. In fact, x ends in 0 if and only if y is a
quadratic residue mod p, For p prime we have
fast random polynomial time algorithms to test
quadratic residuosity, see [10].

The following idea was suggested by Donald
Johnson.

Idea 2: B selects B <1 = 100 at random, and
sets the ith bit of £ to the bit he wants to
communicate. The remaining 93 bits of x are
chosen at random, except for the first 7 bits of
x, which specify location i. B sends E4(x) to A.

Danger: If, given E4(x), we can easily com-
pute the first 7 bits of x and one of the last 93
bits of x, then we could guess B’'s message with
a 1/93 advantage.
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Summarizing: There are many ways in
which a single bit could be "embedded" in a
binary number x. Taking the "exclusive or" of
all the digits of x is just one more example.
However, given y =E4(x), being able to discover
some particular bits embedded in x DOES NOT
CONTRADICT the fact that it is hard to compute
x. Then, what is a secure way to send a single
bit ? The answer to this problem is discussed in
the next section.

3. DECIDING QUDRATIC RESIDUOSITY IS HARD
ON THE AVERAGE

The symbol {z,N) will denote the greatest
common divisor of z and N. We use Pr(X) to
denote the probability of the event X. We let
Zy'={z | l<2z=<N-1and (z,N)=1}.

3.1 Background and Notation

Given g € Zy", is g=z% mod N solvable ? If
N is prime, then the answer to this question is
easily computed. If a solution exists, q is said
to be a quadratic residue mod N. Otherwise q is
said to be a quadratic non-residue mod N.
From now on let p; and p, be odd, distinct
primes and N =p,p, Then, g=z? mod N is
solvable if and only if both g=2% mod p, and
g=z? mod p, are solvable. If this is the case, q
is said to be a quadratic residue mod N, other-
wise q is said to be a quadratic non-residue
mod N. We will call the problem of determining
whether an element g € Zy* is a quadratic resi-
due, the quadratic residuosity problem.

Let p be an odd prime and q € Z,", then the
Jacobi symbol (g /p) equals 1 if ¢ is a quadratic
residue mod p and -1 otherwise. The Jacobi
symbol (q/N), is defined as (g/N)=
(g/p1)(g/p3). Despite the fact that the Jacobi
symbol (g/ N) is defined through the factoriza-
tion of N, (g/ N) is computable in polynomial
time even when the factorization of N is not
known !

It is easy to see, from the above definitions
that if (g/ N) = —1 then g must be a quadratic
non-residue mod N. In fact, g must be a qua-
dratic non-residue either mod p, or mod p,.
However, if (q/ N)=+1, then either ¢ is a qua-
dratic residue mod N or g is a quadratic non-
residue for both the prime factors of N.

Let us count how many of the g's, such that
(g/ N) = 1, are actually quadratic residues.

Theorem: Let p be an odd prime. Then Z,*
is a cyclic group.

Theorem: Let g be a generator for Z;°,
then g¥ mod p is a quadratic residue if and
only if s is even.

Corollary: Half of the numbers in Zp° are

quadratic residues and half are quadratic non-
residues.



Theorem: Let N = p;p, where p,; and p, are
distinct odd primes. Then half of the numbers
in Zy* have Jacobi symbol equal to -1 and thus
are quadratic non-residues. The Jacobi symbol
of the rest of the numbers is 1. Exactly half of
these latter ones are quadratic residues.

3.2 A Difficult Problem in Number Theory.

If the factorization of N is not known and

{q/N) =1, then there is no known procedure for
deciding whether q is a quadratic residue mod
N. This decision problem is well known to be
hard in Number Theory. It is one of the main
four algorithmic problems discussed by Gauss
in his '"Disquisitiones Arithmeticae" (1801). A
polynomial solution for it would imply a polyno-
mial solution to other open problems in
Number Theory, such as deciding whether a
composite n, whose factorization is not known,
is the product of 2 or 3 primes, see aopen prob-
lems 9 and 15 in Adleman [3].
Recently, Adleman([1] showed that a generaliza-
tion of quadratic residuosity is equivalent to
factoring. Using this generalized notion in our
protocol, we could base the security of our
cryptosystem on factoring. At present, we
await the final version of Adelman’s paper.

Assumption: Let 0<e<1. For each positive
integer k, let G, , be the minimum size of cir-
cuits C that decide correctly quadratic resi-
duosity mod n for a fraction &£ of the k bit
integers n. Then, for every 0<e<1 and every
polynomial @, there exists 6, such that
k>6, o implies C,p > Q(k)

3.4 A number theoretic result.

We want to show that deciding whether q is
a quadratic residue mod N, is not hard in some
special cases, but is hard on the average in a
very strong sense. In order to do so, let us
recall the weak law of large numbers:

If ¥4, Y2 -...Yx are k independent Ber-
noulli variables such that y; = 1 with proba-
bility p, and Sy = y,+...+¥,, then for real

numbers ¥, 6>0, k=

implies that
SR P

S

Pr( l—’:———p }>1p) <.
Notice that k is bounded by a polynomial in ¢~}
and 671,

Let Ay'={z | z€Zy* and (z/ N)=1§.
Definition: For a composite number N, and for
real number 0<e< —;— we say that we can
guess with ¢ advantage whether ¢ drawn at ran-
dom from A4y' is a quadratic residue mod N if

we can, in polynomial(|N]|) time, guess qua-
dratic residuosity mod N correctly for at least

+& of the elements of Ay".

R

Theorem 1: lLet 0<es%—, 0<d6=<1 be non-
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negligible numbers. Suppose we could guess,
with an ¢ advantage whether g, drawn at ran-
dom from A4y°, is a quadratic residue mod N.
Then we could decide quadratic residuosity of
any integer mod N with probability 1 —§ by
means of a polynomial in [N}, £~! and §~! time
probabilistic algorithm.

Proof: Assume, to the contrary, that we have a
polynomial time magic box MB which guesses
correctly whether g € Ay" is a quadratic resi-

due mod N, for o te of the elements of 4y°.
Let,

o = Pr(MB answers "q is a quadratic residue’ | q
is a quadratic residue mod n)

g = Pr(MB answers ''q is a quadratic residue” |
q is a quadratic non-residue mod N, g € Ay *).

The fraction of Ay on which MB is correct
equals -;—ow ;—(1—5). In order for MB to have a ¢
advantage, it must be that a - § > 2¢. How-
ever, a need not be equal to s+%—, We will now

show how to get a good estimate for a.

Construct a sample of k quadratic residues
chosen at random in Zy"' (the value of k will be
defined later on). This can be easily done by
picking si,...,5; at random in Zy"' and squaring
them mod N.

Initialize two counters R and NR to 0.

Feed each s;2 to MB. Every time that MB
answers "'quadratic residue”, increment the R
counter. Every time that MB answer "quadratic
non residue”. increment the NR counter.

Let '¢=-Z-. If k is chosen to be suitably

large, k& = 3 L i the weak law of large numbers
assures that

R
a—

Pr( Ic

s,
>11/)<4,

i.e. R/ k is a very good approximation to how
well MB guesses if the inputs are only quadratic
residues.

We are now ready to determine the quadratic
residuosity of elements in Ay .

Let ¢ be an element of 4y that we want to
test for quadratic residuosity. Randomly gen-
erate k quadratic residues, z,, ...,Z;, ele-
ments of Zy' and compute y;=qz; mod N for i
=1,....,k. Notice that

a) if q is a quadratic residue, then the y;’s are
random quadratic residues in Zy°

if q is a quadratic non-residue in Ay*, then
the y,;’s are random quadratic non-residues
in AN *

Let us postpone the proof of (a) and (b) and
assume, for the time being, that they are true.

b)



Initialize two counters R*' and NR® to 0. Feed
the sample {y;} into MB. Increment R' every
time that MB answers ''quadratic residue”, and
NR® every time that MB answers "quadratic
non-residue’”. We know, that if ¢ is a quadratic
residue, then the

. 2
pr(|%—— :;|521//)2(1——3—), and if ¢ is a

quadratic non-residue then

P By coyy < 1-0-9°  Thus it
k k 47"

-]Ii—— = < 2y then with probability greater

than 1-4, g is a quadratic residue mod N, oth-
erwise, again with probability greater than 1-6,
q was a quadratic non-residue mod N.

We still need to prove (a) and (b). We will
only prove (a) as the proof for (b) is similar. It
will suffice to prove that, given any quadratic
residue g, any other quadratic residue y in Z°
can be uniquely written as y = q £ where z is
a quadratic residue mod N. It is a well known
theorem in algebra that Zy* = Z, *xZ, " Thus
let @ and b be generators for Z,° and Z,,’
such that (a,pp)=1 and (b,p;) = 1. Then any
element of Zy* can be written uniquely as atb?
where 1 =i<p;-1 and 1< j< p,-1. Moreover, q
is a quadratic residue mod N if and only if it
can be written as q = a®b?% where 1< 2i<p,-
1 and 1<=2j=<p,-1. Thus if ¥y = a®b? is any
quadratic residue and x = a2(s~Vp2(t-7) then
Yy = qz part (a) is proved. []

Theorem 2: Let r € 4y" be a publicized qua-

mod N. Let 0<€$%—,

0 <6 =1 be non-negligible numbers. Suppose
we could guess with an & advantage whether q,
drawn at random from A,:, , is a quadratic resi-
due mod N. Then we could decide quadratic
residuosity of any integer mod N with probabil-
ity 1—-6 by means of a polynomial in |[N|, e~! and
67! time probabilistic algorithm.

Proof:

Assume first that given any r quadratic
non-residue mod N, r€4y®, someone could
build a polynomial time magic box MB, that
has a ¢ advantage in distinguishing between
quadratic residues and non-residues mod N. We
will show that even if one is not given such an r,
quadratic residuosity can still be decided.

Construct a set T consisting of 20 elements
chosen at random from Ay°. With probability
1- (1/2)?%0 one of the elements in T will be a
quadratic non-residue mod N. For each z€ T
do the following:

Choose k as in theorem 1. Construct M5B,
and test its performance on k random qua-
dratic residues, S={s{, ..., s}, as we did

dratic non-residue
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in Theorem 1. Also pick ¥, ... ,Ygo at ran-
dom from Ay°. Again, with very high proba-
bility, at least one of the y;'s will be a
quadratic non-residue. Now, construct
samples H;={y; s | s € S}, and feed them
into MB,.

a) f MB, performs on all the H;'s as it per-
formed on S, then go to the next element in 7.
Halt if all elements in T have been used.

b) If MB, performs ‘significantly’ differently
on, say H;, than it did on S, halt.

If case (b) occurs then y; is a quadratic
non-residue and, most importantly, we obtain a
magic box, MB,, which distinguishes between
quadratic residues and non-residues in random
polynomial time.

Case (b) occurs when there is an z€ 7T
which is a quadratic non-residue mod N, and at
least one of its corresponding ¥;’s is a qua-
dratic non-residue mod N. z'I‘hus case (b)

20
occurs with probability -7 This contrad-

2
icts our assumption that deciding quadratic
residuosity is hard.

In the above, we assumed that given any
quadratic non residue 7‘€AN°, one could con-
struct a magic box MB,, having a ¢ advantage
in deciding quadratic residuosity, and we
derived a contradiction.

Suppose one is able to build a MB,, having a
¢ advantage in deciding quadratic residuosity,
only for 1% of the quadratic non-residues,
r € Ay'. Then all that would be changed in the
above proof would be the size of the set T, so
that T will include a suitable r. {]

4. HOW TO SEND MESSAGES IN A PUBLIC KEY
CRYPTOSYSTEM IN A PROVABLY SECURE WAY

Every user in the system publicizes a large
composite number N whose factorization, N =
PP, he alone knows, and ¥y € Ay such that y
is a quadratic non-residue mod N.

Let N be the public key of user A. Suppose
user B wants to send A a binary message
m=(m,, ...,my). Then, for each m;, B ran-
domly picks an z; € Zy and sets

z;2 modN if m; isa 0
ey « 2 : . .
yz;* modN if m; is al

Bsends (e,,...,e;) toA.

To decode m, user A, who knows the factors
of N, reconstructs m by letting

m,;t—l

1if e; is a quadratic residue mod N
0 if e; a is quadratic non residue med N



Testing whether q € Ay is a quadratic residue
mod N, when the factorization of N is known, is
easy by the following lemma.

Lemma 2: If the factorization of N is known, we
can test whether there exists an x such that
g=z?mod N in polynomial time.

Proof: q is a quadratic residue mod N if and
only if ¢ is a quadratic residue mod p; AND p,.
For a prime p, g is a quadratic residue mod p
if and onlyif q®~1Y/2=1 mod p. Thus, to
test whether g is a quadratic residue mod N we
need only compute g®+! mod p; and
g®= 2 mod Pa

We now address the question of the security
of the newly proposed Public Key Cryptosys-
tem. Let F(z) stand for our new encryption
function and let ¥ be the set of all possible
messages.

The definition of security in a Public Key
Cryptosystem is very difficult. It depends on
the model assumed of the possible behavior of
an adversary. At present, we assume that an
adversary may intercept E(m) and try to
extract information about m. He can make use
only of a computer, the cyphertext and the a
priori knowledge of the message space M. No
restrictions on M are assumed.

Notice that in our scheme, differently from
the RSA, an adversary, given E(m), may be
lucky in guessing correctly m and yet not able
to prove the correctness of his guess. However,
the possibility of wnderstanding a message,
without being able to prove what it is, is still
dangerous for the security of the Public Key
Cryptosystem.

We show that, given E(m) for m € M, if an
adversary can do better than guessing m at
random, then deciding quadratic residuosity of
any integer mod N, is easy.

Recall that 4y *={z € Z,° [(z/ N)=1}.

Definition: Let z € Ay".
oy(z) is defined as

The signature of z,

1 if ¢ is a quadratic residue mod N

on(z) « 0 if z a is quadratic non residue mod N
Let Sy™ be the set of all sequences of n ele-
ments from Ay ".

Definition: Let s = (z4,...,2,)€ Sy™. The n-
signature of s, Iy(s), is defined to be the
string Zy(s) = oy(x,) on(z2) - - - on(zy)
Definition: A decision function is a function
d:SE-+{0,13.

Let a =(a,, ...
be n-signatures.

,a,) and b = (by, ..., b,)
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Definition: The distance between a and b is
defined to be the number of positions in which
a and b differ. We say that @ and b are adja-
cent if the distance between them is 1.

For any decision function d and n-signature I,
let Py4(l):{0,1{™ > [0,1] be defined as

Py(l)=Pr(d(z)=1| Zy(z)=1 forz € Sy™)

Theorem 3: Let O<esé—and 0<d=1 be

non-negligiblenumbers. If there exists a decision

function d which is easy to compute and two
n-signatures, © and v, have been found such
that |Pgz(w) — Pg(v)|>e, then we can decide
quadratic residuosity of any integer mod N
with probability 1—§ by means of a polynomial (
in |N|, ¢!, and 6~!) time probabilistic algo-
rithm.

Proof: Suppose there exists a decision function
d and two m-signatures u and v such that
|Py(u) — Pg(v)|>e. Let A be the distance
between w and v. Let aga,,...,a, be a
sequence of m-signatures such that ag = u,
a, =2 and gy is adjacent to g;,{ for 0 =1 < m.
As |Pg(u) — Py(v)| > &, there must exist
1, 0si=sA-1, such that
| Pg(a;) — Pglay,.,)| = e/n. For convenience,
lets =a; and t = a;,.

1

Let us choose ¢ = £ Also, let k& = ——
4n

5y
Choose k elements, z,, .. ., % at random from
O,=fz €Sy™ | Zy(z) =s] and &k elements,
Y1, - - - Yk at random from
=f{zeSy" | Zy(z) =t]. Then, by the weak
law of large numbers,
d(zq)+...+d(z)
Pr(|Pa(s) - =k 5 gy < &
and
d(yy+.. . +d(y,
Pr(1Pa(t) - =2 >4y < &
Set,

d(y1)+...+d(yk)

_ d(x1)+...+d(zk) _
- k B = k

As s=(sy,...,s,) and t=(t,,...,t,) are
adjacent, they differ in exactly one location.
Call this location . Let us assume, without loss
of generality, that s, = 1 and ¢, = 0.

We will now show that we can decide qua-
dratic residuosity mod N with probability
grefter than 1-6. Let ¢ be an element of 4y°
that we want to test for residuosity. Choose &
random quadratic residues in Ay*: z#, ..., 22
and compute y; = q-:l:,-2 mod N for1<j <k. By
theorem 1, the y;’s are all quadratic residues if



q is a quadratic residue and all quadratic non-
residues in Ay, otherwise.

In theorem 2 we showed that knowing a
non-residue in Ay does not help in deciding
quadratic residuosity. Therefore we can
assume that such a non-residue, h, is known.
This allows us to pick quadratic non-residues at
random from Ay (by computing hz?).

We are now ready to decide whether q is a
quadratic residue.

(* Construct a random sample of £ elements
Wit Yin) oWl Yem) ESKT
such that for
1<si<sn,i#7, 1sjsk,o'N(yj_,;)=s,;
foralll<j <k, y,=y;. *)

all
and

Fori=1,.,7r-1,r+1l .. n do
begin
Forj =1,...k do
draw z € Ay at random.
if s; =1 theny,; :=z*mod N
elseif s; =0 theny;,; := hz® mod N
end.
(* Evaluate the decision function d on each
member of the sample *)

Forj =1,..,k do
X; =AW Yjr-1Yj YirsreoYin )
Notice that the entire sample

Wi - Y1 Vi YjrerYim |15 ki is
either a subset of {)g or a subset of {};. Thus
with probability greater than 1—6 one of the fol-

lowing two mutually exclusive eyents will occur:
(X1+.“+Xk) &
(1)\] k R
or
(X1+...+X) £
@) l k B <

If case (1) occurs, we conclude, with probability
greater than 1-4, that ¢ is a quadratic residue.
Otherwise, we conclude, again with probability

greater than 1—¢ that ¢ is a quadratic non-

residue. []

The notion of a decision function is immedi-
ately generalized to that of a discriminating
function. This is a decision function which can
takeé on more than 2 values. For any non empty
set (, let D:Sy"-0 Let a€fl, then
Ppol)=Pr(D(z)=a | Zy(z) =1L forzx € Sy™).
The following theorem is an easy extension of
theorem 3 and we will state it without proof.

Theorem 4: Let 0<cs—;— and 0<6<1 be

non-negligible numbers. If there exists a
discriminating function D:Sy™-A4, which is
easy to compute and two m-signatures, uw and
v, have been found such that
| Ppo(uw)—Ppq(v)|>e, then we can decide qua-
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dratic residuosity of any integer mod N with
probability 1—8 by means of a polynomial ( in
|N|, €71, and 6~1) time probabilistic algorithm.

Let us introduce some more notation. Let,
M™ = {m,m, ...,| be the set of messages
whose length is n, where n is bounded by a
polynomial function in |N|. Set k = |M"|. Let
M, be the set of all possible encodings of mes-
sage m; € M™, using the scheme described at
the beginning of this section. Clearly, M; ¢ Sy™
and for all i and j, |M;| = |M;|. Set x =|M;].

4.1 The Security of Partial Information

In the present version of the paper, we
assume that all messages in M™ are equally
likely. Let P be an easy to evaluate predicate,
defined on M™. Let p be the probability that
P(z) is true for a random z € ™. Since M" is
uniformly distributed, and |M™| = k&, P must
evaluate to 1 on pk messages in M™.

Let MB be a magic box that receives as
input the cyphertext E(m)€Sy™, where
m € M™, and outputs 0 or 1, its guess for the
value of P(m). Let 0, be the number of 0's and
let 1, be the number of 1's that MB guesses on
encodings of m;. Clearly, 0; + 1; = x. Let

1; if P(my) =1

C, =

J 0; if P(m;)=0.

C; represents the number of encodings of mes-

sage m; on which MB correctly guesses the

value of P(m;).

Theorem 5: Let 0 <6 <1 be a non negligible

real number. If ;:72 C; =pte, for some non-

o

negligible real £ > 0, then we could decide qua-

dratic residuosity of any integer mod N with

probability 1-§ by means of a polynomial in

|N|, £7!, and 6~! time probabilistic algorithm.

Proof:lg,/et us partition M™ into 10/ & buckets,
&

M™= J B,, such that m € B; if and only if

i=1
(i—l)TEO— < <1',T80—. We show that there
exist two non-adjacent buckets, each contain-
ing a non-negligible portion of the messages.
More formally, we show there exist g,h where
1<h+1<g =<10/¢ such that IByl,IBhl

that B if

m

> ———k Say, is Dbig
(10e~1)?

|By| > 5k and small otherwise. Then we
£

want to show that there are two non adjacent
big buckets. Assume, for contradiction, that
this is not the case. Then one of the following
cases must apply:

1) There are no big buckets.

2) There is only one big buckst: B;



3) There are exactly two adjacent big buckets:
B; and B;_, .
Note that case 1 can never be true; otherwise
Ic—l%i_llB | = k <k .Incase2 3, C;is
_«;=1 ' 10e~! ' ’ijBt 7
% and if all messages m;

, i.e when MB

maximum for i =
for which P(m;) = 1 belong to B,

10
guesses 1 for all the encodings of all the mes-
sages for which the predicate is true.

X G

1
Thus, pt+e = kx

m’EM"
=2 . £
=7 Y G+ X ‘Cj)sp+lo <p+e
X myeh my € B k#1
Incase3, } C;+ 3 (;is maximum when
my € By m; € B,

L = —%and all the messages for which P is true
belong to B, and all the messages for which P

10
is false belong to B..E .
10

Thus, p+e < ;1—— Y G=
myeM"

Elx—[(zcﬂ S o)+ 5 c,-}

Mj€B¢ m,€H(_| mjegb.k¢i.‘l:+1

= ;1_{[ka+(1—]1)2810"11¢>< l+kxe107? ]
X

< k—lx—(pkx+3e10‘1kx ) <p+§-

In all three cases we reach a contradiction.
Thus there exist two non adjacent Euckets
B, and B, each containing at least 18_0k mes-

sages. By sampling, we can find, in a small
expected time, two messages © and v in By
and Bj, , respectively. We view MB as a decision
function D:Sym-[0,1]. Then,

Pp(u)=Pp(v) > leTand theorem 3 applies. []

Next, we will see that an adversary cannot
decode more than a negligible fraction of the
encodings of all messages.

4.2 An Adversary Cannot Decode.

Let MB be a magic box that receives as
input £(m) for m € ", and outputs m;. MB's
output can be interpreted as MB's guess of
what m is.

Let r; ; denote the number of encodings of mes-
sage m;, on which MB answers m,. Clearly, 7;;
will denote the number of times, over all possi-
ble encodings of m,, that MB answers correctly.

Theorem 68: Let 0 < <1 be a non negligible

k Tig 1
real number. I 3} > £+ +— for some
i=1 kX k
non-negligible ¢ < 1—%—, then we can decide

quadratic residuosity mod N with probability
1-6 by means of a polynomial in |N|, 7! and
6~! time probabilistic algorithm.

Proof: Say that a message m, is well decoded if

r,;.¢>(é—s)x. Let, W be the set of well-decoded
messages and W' = M™ - W.
Claim 1: There exist at least iwell-decoded

2
messages.
Proof: N
ehx <ek+x < T = Y rigt 3 T
i=1 ieW te k'

1 1 1
SxIW!+(k—IWI)§fx=x[(1—§f)IWl+k§f)]

(W] _e/2
k (1-¢e/2)

Hence, > —g— (claim 1) []

Clearly, if we pick messages at random
from M™, we expect to find a well-decoded mes-
sage in 2¢”! trials. Let QcW such that

_ 1
Q]>2¢~landletp > ————
19l £ 2e 1 (2e71+1)

Claim 2: There exists two well-decoded mes-
Tid "‘.;‘(,i > p
proof: Fix m;€Q. How many messages m, €0

sages m;, m; €2 such that

i Tia
can be such that ——-X— < p ? There are at

most ————<2¢~!+1 such messages. Thus

there exists an m; €() that satisfies the claim.
(claim 2) []

Let us transform MB into a discriminating
function D:Sy™->M™ yiy). If z € Sy™ and MB, on
input z, outputs m;, then set D(z)=m;. Ifyis
not the encoding of any message, then one of 3
cases must occur:

1) MB outputs m; for

D(y)=m;.

%) MB outputs m; for i <1 or i >t. Set

D(y)=7».

3) MB does not answer within a certain time

limit. Set D(y)=y.

Now, note that in claims 1 and 2 just proved
above, we showed that we can quickly find two
well-decoded messages m; and my; such that
IPD'm‘(mi)—PD‘m‘(mj)l > p. Thus the
hypothesis of theorem 4 holds and deciding
quadratic residuosity mod N is polynomial in
NI, 7Y and 671 []

1l<i<t. Set
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Theorem 8 shows that inverting the func-
tion E on the encrypted messages is as hard as
deciding quadratic residuosity, independently
of the sparsity of M".

5. MENTAL POKER

Mental Poker is played like regular poker
except that there are no cards and no deck
The game is played over the telephone lines, or
over a computer network. Since we cannot
send physical cards over the phone lines, deal-
ing and playing must be simulated by exchang-
ing messages between the players. The players
do not trust each other more than ordinary
players do. A fair game on the telephone
should ensure that:

1) Neither player can have any partial infor-

mation about the cards in his opponent's
hand or in the deck,

2) There is no overlap in the cards dealt to
players,

3) All possible hands are equally probable for
both players.

4) At the end of the game each player can ver-

ify that the game was played according to
the rules and no cheating occurred.

Note that in a fair game of Mental Poker it
is not enough to show that it is computationally
difficult to get the exact value of a card. We
must also show that no partial information
about the card can fall into the hands of an
adversary.

We present a protocol for two people to play
a fair game of Mental Poker, using encryption.
We prove that there is no way a player can get
any information about cards not in his hand
under the assumption that deciding quadratic
residuosity is hard.

There are two main tools used in our imple-
mentation of Mental Poker. One is a method
for coin-flipping over the telephone([5] and the
other is the method for sending a single bit
securely in a Public Key Cryptosystem
presented here.

A different solution to the problem of Men-
tal Poker has been obtained independently by
Manuel Blum in [6]. His solution is based on the
assumption that factoring is hard and that
completely secure one way functions exist.

5.1 Background For Coin Flipping

To flip a coin in the well - A and B stand far
apart from each other. B is standing next to a
deep well. A throws a coin into the well from a
distance. Now, B knows the outcome of the flip
(by looking into the well) but can not change it,
and A has no way of knowing the outcome.
Later on when B would like to prove to A that he
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won (or lost), he lets A come closer and look
into the well.

Essentially, if we can simulate a flip in the
well by exchanging messages over the
telephone, A can send a random bit to B, where
A does not know what he sent, but B can, if
necessary, prove to A what the bit was. This is
especially applicable to cryptographical games.

The notion of coin flipping in the well has
been introduced by Blum and Micali in [5], in
which, based on the assumption that index
finding is hard, they show how to flip a coin in
the well over the telephone lines. Another
method based on the assumption that factori-
zation is hard has been found by Blum in [4].
We sketch a third method, based on the
difficulty of distinguishing quadratic residues
from non-residues with respect to composite
moduli.

A and B want to flip a coin. A generates two
large odd primes at random, P and € and
sets N=P*Q. A publicizes N and y €4y’
such that y is a quadratic non-residue mod
N. A picks a number g at random from
A" and asks B, who does not know the fac-
torization of N, whether g is a quadratic
residue mod N or not. B tells A what his
guess his. A now knows whether B won
(lost), and can later prove to B that he
indeed won(lost) by releasing the factoriza-
tion of N.

To avoid adding new assumptions to the
ones that we already have, we propose to use
one of these latter two coin flipping methods in
our protocol for Mental Poker.

The next section will list some known
results that will be used in the proof of the pro-
tocol.

5.2 Useful Results
Let p, p; be odd primes and N = p, p,.

Lemma 3: If the factorization of N is known, we
can find g € Zy"' such that (g/N) =1 and q is a
quadratic non-residue, in random polynormial
time.

Proof: Pick a€Z, such that (e/p;)=—1
This can be done in 2 expected trials. Similarly,
pick b € Z,, such that (b/pz)=~1. Using the
Chinese Remainder theorem compute the
unique g € Zy* such that g = a ( mod p,) and
g =b (mod p,). Now, g is a quadratic non-
residue and (g/ N ) = (q/pp2) =

(g/p1) (@/pz) =(a/p1) (b/Pz)=1.
Lemma 4 Let AN=p;pp such that
Py=P =3mod 4. For all =z ,yeZy', if
z°=y*mod N and z # xy mod N then (z/N)
=-(y/N).



Proof: Let
1 {(mod p,)

|

d < l 0 (mod p,)
We can find ¢ and d through the Chinese
Remainder Theorem. Let a?=2z? ( mod p, )
and 6% = z? ( mod p;). Then the four square
roots ( mod N ) are given by
ac +db, —ac +db, —(ac +db) and (ac—db). Let
T =ac+db, and y = —ac+bd. Since N=1 mod
4 implies (2/ N)=(—z/ N), we need only prove

1 (mod py)

that (+z/N)=—(+y/N). Thus, (z/N) =
{ac+bd/ N) = (ac+bd/py)(ac +bd/ pjy)
=(ac/p;)(bd/py). And (y/ N) =

(—ac+bd/ N)=(—ac+bd/p;)(—ac+bd/py)=
(~ac/p)(bd/py)=(-1/p,){z/ N). Since p; = 3
(mod 4), (-=1/p,)=—1.

0

By a theorem of de la Vallee Poussin[15],
approximately half of all primes of a given
length are congruent to 3 mod 4. Thus, compo-
site numbers of the form N=p;p, where
P.=p2=3 mod 4 constitute approximately 1/4
of all composite numbers which are a product
of two odd primes of a given length. Thus fac-
toring and deciding quadratic residuosity
modulos such special N's remains a hard prob-
lem. Another method, which does not use spe-
cial composite numbers, but increases the
number of messages exchanged in the protocol,
will appear in the final paper.

5.3 THE PROTOCOL

To represent 52 cards in binary we must
use at least 6 bits per card. Thus at first A and
B agree on 52 different bit patterns which
correspond to the 52 cards.

From now on, when we say that A flips & to
B, we mean that B receives a number k at ran-
dom from A, and A has no information whatso-
ever about k. k is actually sent bit by bit
through a sequence of coin flips into a well.

5.3.1 The Algorithm

STEP 1: B chooses at random 52 pairs of large
prime numbers: (p,, g1), (P2 92), (P3 93) .-\
(®s2. 952) such that p;=¢,=3 mod 4 for
1=1 =52, and produces 52 large composite
numbers whose factorization she knows, i.e
Ni=pi'q1, Na:=ps-qz.... Nszi=psz gs2
Next, she shuffles the deck of cards in her
hands and assigns Ny,...,, N5z to the shuffled
deck, an N; per the i th card. She publicizes
the ordered 52 tuple < N; N  Ngg>.

.....

STEP 2: A does the same. Let us denote the
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primes chosen by him as (s, t), (53 t2),
(53, ta),..., (552, t5z) such that SiEtiES mod 4
for 1 =1 =52, and his 52 composite numbers
by M1:=Sl't1, .M21= Sz'tz,...,
Mso := 852 t5o. He shuffles the deck of cards
and assigns M;,..., M3 to the shufiled deck, an
M; per the © th card. He publicizes the
ordered 52 tuple < My My Mgz >.

STEP 3. B publicizes his entire deck. The deck
is encrypted in the following way. For every
card C; (with public key N;), B publicizes an
ordered list of 6 numbers in 4y°, (¢;.....q6)
such that for 1 <=7 <6, ¢q; is a quadratic resi-
due if and only if the jth bit of (; isa 1.

For example, let the first card in B's deck
be 010010. Then B publicizes (g4, 2. 93, 94, q5
gg) where ¢4, 93, ¢4 and gg are quadratic non-
residues mod N;, and ¢, g5 are quadratic resi-
dues mod N; with Jacobi symbol 1. The g;'s are
chosen at random among the elements of AM.
with the desired properties. This can be done
in random polynomial time, by Lemma 3.

NOTE that, by Lemma 2, if A can factor N;, he
can also determine whether the numbers that
B posed as corresponding to the bits in the
encoding of (; are quadratic residues or not
and therefore determine what the card is. 1f A
can not factor N;, he can not tell whether the
numbers corresponding to bits in the cards
encoding are quadratic residues or not, and
therefore can not tell what the remaining cards
are.

STEP 4: A publicizes his deck in the exact same
way that B did.

STEP 5 [B deals a card to A]: Suppose A decided
to pick the K- th card from B’s deck. Repeat
the following procedure for each card in B's
encrypted deck. We describe it for the i-th
card, to which N; corresponds. B flips z € Zy, to
A. A computes z?mod N; and (z/N;). At this
point A must follow one of two procedures: P1 if
1=K and P2 otherwise.

P1: A sends % mod N; and -(z /N;) to B.
P2: A sends z% mod N; and (z /N;) to B.

B computes the square roots of 2% mod N;. Let
the square roots be z, n—z, ¥y and n-y. Next,
B sends the root whose Jacobi symbol she
received from A : y if she received -(x/N;) from
A, and z otherwise. By lemma 4, (z/N;)
uniquely identifies z, and —(z/N;) uniquely
identifies ¥. Thus if A followed Pl then he will
receive 4 square roots of z2 mod N;, and by
lemma 1 can factor. If A followed P2, he will get
no new information as to the value of C;. B



from her side has no information as to which
card A selected. Later, B can verify what he
flipped to A, and hence verify that B has only
found out the factorization of a single card.

STEP 6: At this point A knows the factorization
of Ng. To reconstruct the actual card Cg, A
applies the polynomial time test of Lemma 2 to
the encrypted  representation  of Ck,
(g4, ---.9¢). Next, A must delete Cg from his
encrypted deck. B can see which encrypted
element in A's deck is being erased, but this
does not enable her to decrypt it.

STEP 7[A deals a card to B]: Clearly, the same
procedure as in Step § and 6 is done with the
roles of A and B reversed. Now B will discover
the factorization of one of M,..,M5;.

STEP 8 If any more cards need to be dealt
throughout the game, a similar protocol takes
place. Whenever A needs a card, he will pick a
card from B’s deck, by following the procedure
in step 5 and 6. And similarly whenever B
needs a card, she will pick it from A’s deck.

STEP 9 [after game verification]: After the
game is over, A can prove to B that everything
he claims she flipped him, was indeed flipped by
her and in what order. B can do the same. A
releases the factorization of each of the M; for
all 1 =1 =52, and B releases the factorization
of each of the N; for all 1 =1 =52 They can
both prove to each other whatever claim they
made in the game such as "N is a product of
two primes"”, "all cards where present at the
deck at all times”, "these are the quadratic
residues you flipped to me', or "I won'".

5.3.2 Proof Of Correctness:

Claim 1: all hands are equally probable.

Proof: In step 9, A and B verify that both
encrypted decks contained all 52 cards. In
step 5, A himself chooses which encrypted
value from B's deck he wants, thus he is equally
likely to get any card in the deck. Similar rea-
soning holds for B.

Claim 2: no overlapping or repeating hands.
Proof: When A is dealt a card, he erases that
card from his encrypted deck. Thus B can
never be dealt the same card. A knows which
cards he picked from B’'s deck, and thus will
never pick the same card twice.

Claim 3: If player A knows the factorization of
N; he can reconstruct C; in O(| N |3) time.
Proof: We are given N; = p; ps, and (g4,....qg)
such that for all j, g; € Zy' and (g;7N;) =1. To
reconstruct, (;, we must test whether g; is a
quadratic residue mod N; for all j. That can be
done in O( | N |3) steps by Lemma 2.
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It still remains to be shown that neither
player can have, at any stage of the game, any
partial information about a single encrypted
card not in his hand, or any subset of
encrypted cards not in his hand. A complete
proof will be found in the final paper. Here we
restrict ourselves to proving that when two
players A and B publicize their respective
encrypted decks, neither A nor B can answer
quickly with 1% advantage a 1 bit question
about a single card in the opponents deck.
Examples of such 1 bit questions are: is the i-th
card in the deck black?, Are the first and third
bit of the i-th card equal? Is the mod 2 sum of
the bits in the i-th card 0 or 1?

Theorem 7: If A, when B publicizes her
encrypted deck, can answer, in polynomial
time, a 1-bit question @ about a single card in
B’s deck with 1% advantage, then he can decide
quadratic residuosity modulo a random compo-
site N with probability 1, by means of a
polynomial([N]) time probabilistic algorithm.

Proof: Suppose A can answer a 1-bit question
about card i, to which composite N;
corresponds. A's ability to answer @ with a 1%
advantage can be viewed as a decision function
d:5%-0,1 (S® = all 6-long sequences of ele-
ments from 4y,"). Since A answers @ correctly
51 times out of a 100, we can efficiently find two
6-signatures U and v such that
|Pg(u) - Pg(v)| = 1/ 100. Thus we can apply
theorem 3 and decide quadratic residuosity
modulo N; in polynomial time. Contradiction!

U

53.3 Implementation Details

In order to perform the protocol we must
be able to do the following:

1. Generate large prime numbers. This can be
done using Gary Miller’s test for primality[11] .

2. Find square roots of 2 mod N when the fac-
torization of N is known. Use Adleman, Manders
and Millers polynomial time algorithm([2] for
finding square roots.

8. Remarks and Further Improvements

In this paper we showed that it is possible
to encrypt messages in such a way, that an
adversary, given the cypheriext, cannot
extract information about the cleartext. Thisis
sufficient for protocols such as Mental Poker or
for encrypting one’s private files. An adversary
can read these files but cannot understand-
them.

We also showed that Probabilistic Encryp-
tion can be used in a Public Key Environment.
However, in a Public Key Cryptosystem, getting
hold of the cyphertext and trying to under-
stand it is the most obvious attack to the secu-



rity of the scheme.

*  An adversary could, as a user, try to break
the scheme by comrmunicating.

» He could try to break the scheme by inter-
cepting some other user's messages and
changing them.

*  Finally, he may try to break the scheme by
making use of the decoding equipment !

The Public Key Cryptosystem presented in this
paper is not secure against these possible
attacks. However, by forcing the users to fol-
low a particular protocol for exchanging mes-
sages, we have built a Public Key Cryptosystem
which is provably secure against the above
mentioned attacks. These results will appear in
a future paper.
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