
ARTICLES

Managenlent of
Computing

Robert W. Znrud
Editor

Departmentalization
in Software
Development and
Maintenance
Exploring the strengths and weaknesses of three alternative bases for
sys terns staff departmentalization suggests the benefits of an organizational
form in which maintenance is separate from new system development.

E. Burton Swanson and Cynthia Mathis Beath

Software maintenanc:e-the correction, adaptation, and
perfection of operational software [37]-has been a rel-
atively neglected subject in the literature of software
engineering and management. Attention has instead
focused primarily on improved techniques for new sys-
tem development. The virtues of these techniques are
often held to include ease of maintenance on imple-
mentation. However, such claims are seldom validated
through empirical study. It has not been shown that the
maintenance burden is reduced by user involvement,
prototyping, or the use of fourth generation develop-
ment techniques. Systems beget systems; better systems
generate more systems, subject data bases, and strategic
information systems. The installed software base grows
larger and more diversified as end user developed sys-
tems, third party developed systems, and purchased
packages are added. ‘The maintenance burden grows
too. (For background, see [lo, 11, 30, 35, 471.)

The allocation of organizational resources to new sys-
tem development and installed system maintenance
has rarely been studied as a joint problem. Among the
few studies which touch upon this issue are those of
Lientz et al. [28] and Lientz and Swanson [26, 271, who
report, based on their surveys of application software
maintenance, that information systems (IS) organiza-
tions generally devote about the same amount of effort
to maintenance as to new system development. Lientz
and Swanson [26] also report that the expenditure of
staff time to maintain a system tends to increase with
both its age and size. Further, growth in size averages a
substantial 10 percent per year, a finding which closely
parallels that of Belady and Lehman [6] in their classic
study of the growth of Operating System/360 over suc-
cessive releases. In both studies, the provision of addi-
tional features and functionality is found to largely ac-

01990 ACM OOOl-0782/90/0600-0658 $1.50

count for the common pattern of growth. Thus, older
systems tend to be larger and harder to maintain; one
reason for the increased difficulty is they have been
enhanced to meet the needs of their users. (See also
related studies by [20, 21, 421.)

The mature IS organization is therefore responsible
for a substantial accumulation of installed application
systems, which undergoes continuous growth and
“evolution” [6, 7, 251, and which must be managed in
conjunction with the acquisition and development of
those new systems to which the organization also com-
mits itself. With growth in the size of the IS organiza-
tion often limited by management fiat despite contin-
ued growth in the size of the application system
portfolio, the proper organization of work to carry
out the joint tasks of maintenance and development
is a subject of substantial management interest (see
[15, 461).

IS productivity in system development and mainte-
nance is recognized. to be a major concern [23]; the
typical organizational backlog of programs to be written
stretches to a period of three years or more [24, 321.
The business risks of failure both in development and
maintenance are also significant. A notorious case of
such failure is Bank of America’s attempt to develop a
new trust accounting system at an estimated cost of
$80 million; among many difficulties the staff bore the
brunt of working concurrently on both the new system
and the older operational system it was designed to
replace [16]. The frequently reported failures of critical
operational software also illustrate the risks involved
(see [22]).

Two issues form the crux of the organizational prob-
lem: The first is whether the individual professional
analyst or programmer should divide his or her time
between maintenance and new system development
work. Here, the matching of the motivating potential of

656 Communications of the ACM]une 1990 Volume 33 Number 6

http://crossmark.crossref.org/dialog/?doi=10.1145%2F78973.78976&domain=pdf&date_stamp=1990-06-01

Articles

the work to the “growth need strength” of the individ-
ual is an important consideration in any assignment,
according to Couger and Colter [13], who found that
development work has higher motivating potential than
does maintenance work. The second issue, which arises
only where it is decided that an individual should not
divide his or her time between the two tasks, is
whether or not maintenance staff should be organized
as a separate department. In this case, considerations of
productivity gains through specialization, efficiency of
communication, and management control have been
suggested to be of primary importance [38]. This article
will focus on the departmentalization issue.’

We begin by presenting three alternative bases for
departmentalization of the systems staff. The strengths
and weaknesses of the three alternatives are discussed.
Then, data taken from a set of twelve case studies are
used to describe current departmentalization practice.
In subsequent discussion, an historical interpretation of
the pattern of practice is suggested, and it is argued that
a life cycle based organizational form, in which mainte-
nance is organized separately from new system devel-
opment, deserves closer scrutiny by IS management.
Implications for current practice and further research
are drawn in conclusion.

ALTERNATIVE BASES
FOR DEPARTMENTALIZATION
Issues in the organization of work have long been stud-
ied by management and organizational researchers, as
well as by other social scientists interested in the im-
pacts of organizational practice on society. Classical
management theory, dating from the early 1900s origi-
nating in Adam Smith’s 18th century work, provides
much of the contemporary theoretical vocabulary. (For
a review, see Galbraith [IT].) Among its basic concepts
are the horizontal division of labor among workers
based upon specialization; and the vertical division of
labor between workers and managers, and among levels
of management, typically based on principles of com-
mand and control. Closely related is the concept of
departmentalization, the aggregation of work roles
to form groups, units, departments and divisions.
Galbraith [17], whose information-processing theory
of organization design we draw upon here, suggests
three fundamental bases for departmentalization:
input resources (grouping by function, technical spe-
cialty, or process), outputs (grouping by product, mar-
ket, or customer) and physical location.

Our own analysis of application software develop-
ment and maintenance suggests that three particular
bases for the division of labor and the departmentaliza-
tion of systems staff are of importance:

Work type: systems analysis versus programming

‘While users have significant roles to play in both development and mainto-
nance activities, WC are concerned here with the standing organization of the
technical staff. Of COUISC. if technical staffs are decentralized to user organiza-
tions. similar questions of organization structure might ark and could be
addressed using the logic presented in this article.

Application type: application group A versus application
group B
Life cycle phase: development versus maintenance

Here the term “versus” indicates simply that a formal
distinction is made for the purpose of organizing work.
As we shall indicate, these bases relate closely to orga-
nizing around inputs or outputs as described by [17].

Division of labor by work type implies job specializa-
tion according to distinctive work skills. Historically,
the most common work type distinction has been be-
tween systems analysis and programming, with systems
analysts specializing in the functional specification of a
system, and programmers in its computer-based imple-
mentation (121. Where departmentalization is also
based on this specialization-systems analysts and pro-
grammers are organized into separate departments-
the organization may similarly be said to have a work
type (W-type) form (also referred to in the general man-
agement literature as a “functional” form; see [46]). The
W-type form corresponds to the concept of departmen-
talizing around input resources. Its distinguishing fea-
ture is concurrent multidepartment responsibility for a
system’s development or maintenance. This is neces-
sary even though systems analysis precedes program-
ming within the task sequence because analysis as a
whole is iterative and continuous.

Division of labor by application type constitutes the
second basic alternative. Here, the distinction is be-
tween individuals being assigned work on one system
or group of systems versus their being assigned work on
another system. Specialization is in the knowledge as-
sociated with the domain of application, rather than in
certain work skills. Such a domain often, though not
always, maps closely to one or more user departments.
(In some instances, the domain may be integrative
across departments.) Where departmentalization is also
based on application domain, the organization may sim-
ilarly be said to have an application type (A-type) form
which corresponds closely to the “product” form dis-
cussed in the general management literature. The A-
type form corresponds to the concept of departmental-
izing around outputs. Its distinguishing feature is that a
single department is responsible for the development
and maintenance of a system over the system’s life.

A third alternative is the division of labor by life
cycle phase. The distinction here is typically between
development work on new systems or on new versions
of installed systems, and maintenance work on in-
stalled systems [37]. Specialization is in the skills and
management of the development or maintenance
phases of the life cycle. Where departmentalization is
also based on this distinction-developers and main-
tainers are organized into separate departments or work
units-the organization may similarly be termed a life
cycle based (L-type) organization. Less obviously than
the A-type form, the L-type form also corresponds to
the concept of departmentalizing around outputs. In
this case, the development unit focuses upon software
products as its output, while the maintenance unit con-

]une 1990 Volume 33 Number 6 Communications of the ACM 659

Articles

centrates on service to users of installed systems. The
important distinguishing feature of the L-type form is
the transfer of responsibility for a system’s development
and maintenance between departments at the time the
system becomes operational.

The L-type form, based on a distinction between de-
velopment and maintenance work, is an idea that has
been around for years (see [34]). It may be employed
in several variations. Among these are the centralized
development unit with decentralized maintenance at
multiple installation locations; the location of a “fire
fighting” maintenance team within the computer opera-
tions unit [38]; and the integration of maintenance into
the user organization [8].

The choice of any particular organizational structure
necessitates trading off the strengths and weaknesses of
the three alternatives, (i.e., departmentalization by
work type, application type, or life cycle phase). In Ta-
ble I we summarize these basic trade-offs. Following
Galbraith’s [17] theory of organization design, focal
strengths and weaknesses of the three forms are pre-
sented in terms of their knowledge development and
information processing implications. Uncertainty in the
development and maintenance tasks is understood to
be the basis of information and communication require-
ments within the IS organization, both laterally and
hierarchically. Increased uncertainty requires that the
IS organization find ways to increase its capacity to
process information, or reduce its need for information,
The preferred IS organizational form is in general that
which is best matched to the task uncertainty faced.
(See [17, 451 for details.)

The unique strength of the W-type form, in which
programmers and systems analysts are organized into
separate departments, is the development and speciali-
zation of programming skills. Here, the role of the sys-
tems analyst is to buffer the programmer from the user,
allowing the programmer to focus on translating specifi-
cations into software. Where programming is a formida-
ble task-as it is where machine constraints are tight
and the programming language is close to that of the
machine-the development of programming knowledge
and skills may be critical and the advantage of the
W-type form decisive. However, the weakness of the
W-type form is also significant. Costs of coordination
between systems analysts and programmers may be
substantial for two reasons: the software specification
bears the burden of formally mediating work between
the two departments, often with considerable difficulty;
and resulting interdependency problems between the
departments may require frequent and costly resolution
within the management hierarchy. These costs may, of
course, be moderated where software specification is
relatively straightforward and few problems need reso-
lution. However, where software specification is partic-
ularly problematic and subject to ambiguity or instabil-
ity, the weakness of the W-type form may be its
undoing.

The A-type form in which departmentalization is
based on application type has its own unique strength

TABLE I. Trade-Offs Among Alternative Organizational Forms

W-Type Departmentalization by work type (systems analysis
versus programming)

Focal strength: development and specialization of
programming knowledge and skills

Focal weakness: costs of coordination between
systems analysts and programmers

A-Type Departmentalization by application domain
(application group A versus application group B)

Focal strength: development and specialization of
application knowledge

Focal weakness: costs of coordination and integration
among application groups

L-Type Departmentalization by life-cycle phase (development
versus maintenance)

Focal srrengrh: development and specialization of
service orientation and maintenance skills

Focal weakness: costs of coordination between
develooment and maintenance units

and weakness. Its strength is the development and spe-
cialization of application knowledge [15]. In contrast to
the W-type form in which specialization focuses on in-
puts, such as programming skills, specialization in the
case of the A-type form focuses on outputs, (i.e., upon
the functionality of the applications). To the extent that
applications share substantial communality within
areas, such specialization is likely to be particularly
important. However, there is a weakness here regarding
the cost of coordinating and integrating across applica-
tion areas. An overall information architecture may be
needed to formalize application interdependence and
autonomy. A strategy may also be required to establish
priorities for resource claims across domains. However,
such formal mechanisms will not always suffice. Where
application areas are strongly interdependent, the re-
sulting frequent conflicts, problems, and ambiguities
will require resolution by the management hierarchy,
at significant further costs.

In the case of the L-type form, in which development
and maintenance are organized as separate depart-
ments, the particular strength is in the specialization
and provision of services in support of day-to-day busi-
ness operations which rely on installed information sys-
tems. These services, which focus on improving the
value of installed systems to their users, have histori-
cally taken a back seat to new system development. In
particular, the system development life cycle has fo-
cused almost entirely upon aspects of the task that pre-
cede system installation and maintenance. In the IS
organization, maintenance has been a background
rather than a foreground task. But where the installed
base of systems is large and mature, the advantages of
specializing in the maintenance and enhancement of
their services may be substantial. Like the other forms,
the L-type form has a weakness. It is in the cost of
coordination during implementation and in transferring

660 Communications of the ACM June 1990 Volume 33 Number 6

Org Staff

1 148
2 102
3 7
4 67
5 46
6 266
7 45
6 19
9 117

10 102
11 118
12 108

Dw
6
4
A

3
18
4
1
9
8
5
4

TABLE II. Twelve Cases in Information Systems Organization

Span Form M-Sys D-Sys R-Sys M-Role

6.4 A-L 51 16 4 38%
7.5 L-A 2 22 9 28%
2.5 L-A 11 11 100%

10.2 A 14 3 0 34%
5.6 A-L 103 15 10 26%

13.8 A
2.8 t

!i 21 11 42%
3 31%

5.3 33
ii

z
26%

12.0 A 22 0 10000
11.8 A 30 3 0%
8.8 A-W 25 10

:
44%

3.5 A-L 171 0 0 93%

Articles

D-Role S-Role

59% 3%
62% 10%

0% 0%
16% 42%
48% 26%
31% 27%
38% 3100
16% 58%
0% 000
0% 100%

28% 28%
7% 0%

Notes: Organizations are numbered In the sequence in which the cases were units; the LA type organizations are departmentalized according to maintenance and
oreoared. Staff counts reoresent aoolicatlon develooment and maintenance oerson- new svstem develooment. with subunits subordinated accordlna to aoollcatlon fvoe.
net kdy. Deparbment (Dup) counts represent units &porting to fir&level mauagers. Numb& of system’s maintained (M-Sys), new systems under duvelugment (D-&s),
Span of control (Span) is the average number of staff reporting to a first-level manager and replacement systems among the new systems under development (RSys) are
or supervisor. Organlzaflonal forms refer to the predominate basis of departmentallza- based on differing levels of system deflnltion acmss organlzatlons. Numbers of maln-
tion: the A-type organizations are departmentalized by application type; A-L type talners (M-role) spend two-thirds or more of their effort on maintenance; developers
organizations Include subordinated maintenance and/or new system development (D-role) spend two-thirds or more of their effort on new system development; others
units; the A-W type organization tncludes subordinated analyst and programmer (S-role) split their efforts between maintenance and development more evenly.

responsibility for development and maintenance be-
tween departments. Here again, it will be necessary for
the management hierarchy to resolve problems, espe-
cially in coordinating a system replacement; as with the
A-type form, the costs may be significant.

No form is perfect. Fortunately, the three alternatives
are by no means mutually exclusive as bases for orga-
nizing, and thus their strengths and weaknesses can be
balanced through combination. For example, an indi-
vidual work assignment may consist wholly of mainte-
nance programming of a single application system or
subsystem. In the case of departmentalization, IS orga-
nizations may combine two or even all three of the
basic alternatives into a hybrid form. In deciding
whether and how to combine the basic alternatives
IS organizations have an opportunity to trade off the
pluses and minuses of the three forms, if they so
choose.

How do IS organizations currently make choices
among alternative forms? What hybrid forms, if any,
are employed, with what frequencies? What stresses
and strains result with what implications? The design
choices of 12 contemporary IS organizations will
now be presented and analyzed to illuminate current
practice.

A STUDY OF CURRENT PRACTICE
A set of 1.2 cases on application software maintenance
was recently developed as part of an ongoing research
project. These cases focus on the comparative mainte-
nance environments of IS organizations, and on alterna-
tive IS management strategies for maintenance of the
application system portfolio, including alternative ap-
proaches to organization design; task definition and as-
signment; work technique; and policies for coordination
and control.

Development of the cases concluded in the summer

of 1985. Among the participating organizations were
four high technology manufacturers, two food and bev-
erage producers, one oil company, a retail grocery firm,
an aerospace company, a research and development
laboratory, a public utility, and a university. Six of the
organizations are based in southern California; the rest
are dispersed throughout the U.S. Significant diversity
among the participants, in terms of organizational size
and type, was sought. The sample is not representative
of a specific population. Rather, its purposes are inten-
tionally exploratory and the appropriate logic of com-
parative analysis is that of theoretical replication,
where each case is roughly analogous to a separate ex-
periment [44], in which a single research question is
studied from several different experimental vantage
points. Thus, diversity among participants may be com-
pared to variety among experimental arrangements,
with the expectation that the findings should also be
rich across cases.

Questionnaires, on-site interviews, and reviews of
organizational documents were used in data gathering.
Both quantitative and qualitative data were obtained,
following a common protocol [do]. Together, the cases
appear in Swanson and Beath [41]. Selected data are
presented in Table II.

Across the 12 cases, classification of the organi-
zational forms employed is based on the three basic
forms discussed earlier: the work type (W-type); the
application type (A-type); and the life cycle based (L-
type) forms. Both pure and hybrid forms are identified,
with the latter described in terms of principal and sub-
ordinate bases of departmentalization as explained in
Table II. Remarks on each of the cases included in
Table III explain each instance of the forms and provide
additional perspective. Considerable diversity is seen to
exist, and it is further apparent that various temporal
and contextual factors (e.g., company reorganization or

rune 1990 Volume 33 Number 6 Communications of the ACM 661

Articles

Org Form Remarks

TABLE III. Remarks on Organizational Forms

1 A-L Maintenance has a significant profile in this organization. Of six departments, four are responsible for application systems grouped by user
functional areas. A fifth is responsible for development of a majior new system. A sixth provides planning and technical support. Within
departments, staff are assigned to either new system developmlent or maintenance. A few years ago, maintenance was centralized as a
separate department. Now, management is weighing whether to return to this arrangement.

2 L-A Maintenance! is a major function in this organization. Of four departments, two work primarily on new system development, with division of
labor by user area. A third maintains systems developed by the first two. A fourth develops and maintains systems for another area of use.
Management considers the arrangement cost-effective, but worries about the “stigma of maintenance” and its effects.

3 L-A A single small department works wholly on maintenance and local plantsite support. Within the department, two supervisors are responsi-
ble for distinct application groups. New systems are developed and supplied by the parent organization. A major group of Manufacturing
Resource Planning (MRP) systems is soon to be implemented, and one supervisor is working full time on the project.

4 A Of six departments in this organization, four develop and maintain systems according to area of application. Within one of these, a team of
five individuals maintains a major system. However, this reflects the scale of the system, more than a commitment to maintenance
organiza0on. Two other departments develop and maintain supporting common systems. Management envisions a transition to a
distributed processing environment with user-developed applications.

5 A-L Management in this organization believes that maintenance and development appeal to different types of people. Maintenance was once
centralized. Now two departments develop and maintain systems for distinct user divisions. Within each, separate staffs are associated
with maintenance and new system development. Each has its own supervisor. A third department develops and maintains office systems.

6 A This large organization is departmentalized by groups of applications. Eighteen units are formed within five departments under one
manager. There is no formal distinction between maintenance <and new system development staff. Enhancement of existing systems oc-
cupies a substantial proportion of staff time, and the age and maintainability of applications is a concern. User dissatisfaction with the
backlog of work is also a problem.

7 A In this organization, four departments develop and maintain systems grouped by area of application. Responsibility for production systems,
as opposed to new systems, is a formal requirement for career advancement. However, there is no division of labor based on maintenance
versus development, and, in fact, the distinction is blurred. Responsibility for production systems includes their further development.

9 A In this organization, the systems staff is departmentalized by area of application. Each of three groups has full responsibility for develop-
ment and maintenance within its area of jurisdiction. Necessarily, more time is spent on maintenance than on development, but an attempt
is made to spread development opportunities equitably. Responsibility for the maintenance of several systems critical to business opera-
tions is reserved for senior people.

9 A This new organization is responsible for the development and Imaintenance of manufacturing information systems, and reports directly to
the manager or manufacturing. It has just been spun off from a large, centralized IS function. New system development is frozen during
the present transition period. Staff include programmers as well as analysts who formerly worked in user departments. All now work as
programmer/analysts. Departmentalization is by area of application.

10 A This organization is departmentalized by area of application into two major groups. Each unit within a group is responsible for both
development and maintenance. Staff tend to split their efforts evenly between the two tasks. Nearly half the systems in the current portfolio
are more than ten years old. New system development is motivated by changes in the core business technology supported.

11 A-W This organization consists of five departments, four of whose supervisors divide development and maintenance responsibility for the
applications portfolio. Systems are allocated to supervisors by client area, for the most part. Separate staffs for programming and systems
analysis exist within each department. Analysts tend to work in a liaison role between users and programmers.

12 A-L New system development is currently frozen in this large organization, while the business seeks a major new government contract. Three
departmenls are responsible for systems grouped by area of application. A fourth department provides system support, which will shortly
include acceptance of all systems put into production, as well as primary responsibility for corrective maintenance in the event of opera-
tional difficulties.

strategic realignment) also shape the organizational de-
sign choices. (Zmud, [46], makes a similar argument.)

Overall, the A-type form is represented in all 12
cases, and is the primary basis of departmentalization
in 10 instances. The L-type form is currently repre-
sented in five cases, though most frequently as a subor-
dinate basis of departmentalization. The W-type form
appears only once in a subordinate role. While the
A-form dominates current practice, the less-recognized
L-form is well represented.

The cases provide a good illustration of the ways in
which IS organizations seek to strike a balance among
the advantages and disadvantages of the three principal
forms. Half the cases present hybrid forms. In several
cases, transitions between forms occurred prior to or
subsequent to the data gathering. Organization 1 has

recently changed from L-A form to A-L form. In the
words of one manager, however, this “was probably a
mistake.” (A task force was appointed at this site to
examine the issue, and subsequent to our study, the
department returned to an L-A form.) Organization 5,
which used an L-A form for about 14 years, recently
changed to A-L, retaining many desirable features of
their L-A form in the process. Organizations 11 and 12
are both in the process of establishing groups dedicated
to maintenance. Small groups dedicated to the mainte-
nance of an important or problematic system were
found at other organizations.

On balance, the predominant trade-off that concerns
IS managers is between (a) forms in which most of the
application staff members split their time between
maintenance and development (the A and A-W forms

662 Communications of the ACM June 1990 Volume 33 Number 6

Arficles

in our cases), and (b) forms in which development and
maintenance staff are separated to some extent (the
L-A and A-L forms in our cases).

We analyzed the data of Table II to compare these
two alternatives-the more traditional A or A-W forms
with the two L-forms (L-A and A-L). Specifically, we
asked whether separating maintenance and develop-
ment (as in the two L-forms) was related to (i) orga-
nizational size; (ii) management span of control;
(iii) application portfolio maturity, as indicated both by
systems maintained as a proportion of the total under
new development and maintenance, and by replace-
ment systems as a proportion of the total under new
development; and (iv) the percentages of staff effort al-
located to development and maintenance. No statisti-
cally significant differences were found, except for the
percentages of staff effort allocated to development and
maintenance.’ Here it was found that relatively more
staff time was allocated to development work, on aver-
age, where development and maintenance were orga-
nized separately. Figure 1 summarizes,

Interpretation of Figure 1 is by no means straightfor-
ward. Our own interpretation provides for an almost
paradoxical finding. While caution is in order, given
the sample, we believe that separating maintenance
from development is associated with a focusing of man-
agerial attention on maintenance, with the result that
the maintenance staff is more efficient and more pro-
ductive at maintaining systems. Therefore, more re-
sources are available for development work. Of course,
other interpretations are conceivable. The firms in our
sample with separate maintenance departments may
simply be understaffing maintenance, or they may have
relatively smaller maintenance burdens for reasons we
have not considered. In any case, a more systematic
study of this issue is clearly needed.

How do we account for the pattern of organizational
practice found here? Why does the A-form dominate
while the W-form is barely represented? What features
of the L-form account for its apparent efficiencies, and
what are its overall benefits and costs when examined
in more depth? What are the likely implications for the
future? We will now turn to these questions.

DISCUSSION
We suggest a process of historical change underlies cur-
rent IS departmentalization practice. During the early
years in which IS organizations emerged, almost three
decades ago, division of labor was frequently based on
work type, by distinguishing between the programming
and systems analysis tasks [43]. Because systems were
typically constructed in lower-level languages (fre-
quently, assembler languages) and utilized an expen-
sive and scarce computing resource, the programmer’s

’ Unpaired T-tests were used to compare six A and A-W form cases to three
L-A and A-L form cases. Three cases were excluded from the analvsis-
Organizations 3. 9. and la-because in each case no development was being
performed at the time due to various organizational exigencies. T-values
and significance levels were: Development work (D-role plus half of S-role),
T = -4.66. p + ,001: Maintenance work (M-role plus half of S-role). t = 5.62.
p = ,001.

task was to work close to the machine, while systems
analysts inherited the problem of mediating between
the programmers and users who knew little if anything
of computing technology. Overall task uncertainty de-
rived in large part from the computing resource and its
efficient deployment, and the development of comput-
ing expertise was critical.

Over the years, however, as user organizations have
become more computer-sophisticated, and as computer
technology itself has become more user-friendly, the
systems analysis task (and with fourth-generation tools,
even the programming task) has increasingly been
shared between IS and user organizations. Moreover,
because programming work no longer takes place so
close to the machine, and because the mediating role of

FIGURE 1. Comparison of Allocation of Effort

When maintenance receives managerial attention,
in A-L or L-A form organizations, relatively more

resources are available to be used for development
than in A or A-W form organizations.

A and A-W Form Organizations
(N = 6)

A-L and L-A Form Organizations

~~ -1
>2/3 time doing Doing both

maintenance maintenance and
S/3 time doing

Note:
development

development

Cases 3,9 and 12 are excluded here. Case 3 (L-A form) does
only maintenance work; development is done at corporate head-
quarters. Case 9 (A-form) and Case 12 (A-L form) are currently
doing only maintenance due to other organizational factors.

]une 1990 Volume 33 Number 6 Communications of the ACM 663

Articles

TABLE IV. The Life Cycle Based on Organizational Form
(Departmentalization by Maintenance and Development)

Overall Strengths

1. Clear accountability for both maintenance expenses and the
investment costs of new system development.

2. Buffering of new system development personnel from the in-
termittent demands of maintenance.

3. Facilitation of software quality assurance, in that the main-
tenance unit is motivated to require a meaningful acceptance
test prior to accepting responsibility for a system.

4. Supports a focus on improved level of service to the user, by
means of maintenance specialization.

5. Increased productivity in maintenance, through concentration
of system familiarity.

Overall Weaknesses

1. Potential status differential between development and
maintenance units, with consequential degradation of
maintenance work and demotivation of those who perform it.

2. Loss of knowledge about system in transferring it from
development to maintenance.

3. Costs of coordinating between the development and
maintenance units during implementation period, especially
where new systems are replacement systems.

4. Increased costs of system acceptance.
5. Possible duplication of communication channels to user

organizations.

systems analysis spans less of a knowledge gap, the
distinctive features of both jobs have become blurred
even within IS: apparently this basis for the division of
labor has eroded. Increasingly, more individuals possess
the skills necessary for both roles, and the integrated
programmer/analyst job is now a realistic alternative.
For example, at Organization 9 a recent reorganization
has merged programmers with analysts, who formerly
worked in user departments. The new department
hopes for “synergism in the programmer/analyst
activity.”

Also, since the early years, the IS organization has
gradually shifted its task focus to its application out-
puts. Beyond the automating of routine accounting pro-
cedures, the application domain has been extended to
almost all corners of the enterprise. Certain applica-
tions have further come to be recognized as strategic
[33]. Therefore, task uncertainty for the systems staff
has increasingly derived less from computing resources
than from complexities and risks associated with appli-
cations. Development of these applications has accord-
ingly required the nurturing of application expertise
among systems staff, and as a substantial and diver-
sified base of applications has been accumulated,
increased specialization by application type has been
pursued. Thus, the application domain has come to
constitute the predominant basis for departmentaliza-
tion in today’s IS organization.

Nevertheless, as depicted earlier, a significant num-

ber of organizations do make use of the life cycle based
alternative in which a distinction between system de-
velopment and maintenance forms at least some basis
for departmentalization. Use of this alternative may
also be on the rise. A recent study in the UK (cf. [36])
found the percentage of IS departments that organize
maintenance into separate groups was significantly
higher (40 percent vs. 16 percent) than the level found
by Lientz and Swanson [26]. Why should use of the life
cycle based alternative persist? In our view, L-forms
(here, the L-A and A-L forms; more generally, any form
that separates developers from maintainers) offer cer-
tain important advantages for the contemporary IS or-
ganization. Diversity among applications is not the only
source of task uncertainty for the systems staff; a more
important source of uncertainty may lie in the immedi-
ate organizational impacts of installed applications.

This suggests that the overall strengths and weak-
nesses of L-forms should be examined more closely.
Based on the present study, in addition to drawing from
other related work, we present our own assessment. As
summarized in Table IV, five overall strengths and five
weaknesses are suggested. We discuss each briefly. As a
matter of practical interest, we include mentioning
‘ways in which adopters of L-forms may attempt to com-
pensate for its weaknesses. In doing so, we do not mean
to suggest that L-forms are in genera1 superior, but
rather they need to be more deeply examined and more
broadly understood.

Strengths
A first strength of the L-forms is clear accountability for

both maintenance expenses and the investment costs of new
system development, which has long been a problem for
IS management. When personnel are assigned both
maintenance and new system development work, they
have some discretion in the charging of their time be-
tween the two classes of activity. Our case observations
suggested that under- or overcharging to maintenance
is commonplace and follows the management pressures
of the moment. Campaigns to “reduce the time spent
on maintenance” or “meet those development targets”
may thus be deceptive in their appearance of success.
L-form departmentalization puts an end to this situa-
tion, and gives better visibility to both maintenance
expenses and the costs of new system development.

Buffering of new system development staff from the inter-
mittent demands of maintenance is a further advantage of
L-forms, our studies suggest. Maintenance problems are
by their nature largely unpredictable, and they play
havoc with the more orderly process of new system
development. A manager at Organization 10 com-
plained that a major problem for developers was being
drawn into “answering user questions” about installed
systems, which he noted, was “the biggest chunk of
maintenance.” At Organizations 1, 2 and 5 we were
told that maintenance had been separated from devel-
opment in part to buffer the development staffs from
the demands of maintenance, allowing the developers
to concentrate on their projects. Many failures to de-

664 Communications of the ACM]une 1990 Volume 33 Number 6

Articles

liver new systems on schedule have been attributed to
the siphoning off of staff time to meet the exigencies of
maintenance. With an L-form this drain is much more
apparent and can be more easily resisted.

Facilitution of software quality assurance is also sup-
ported by the L-forms. The maintenance unit is clearly
motivated to require a meaningful acceptance test prior
to assuming responsibility for a newly-developed sys-
tem. At Organization 12, an elite group “possessing the
best talent within IS,” is being formed to provide the
first line of support for installed systems. Of necessity,
this group is expected to design and administer accep-
tance criteria for new systems. These criteria may be
more or less formal, our case studies indicate, depend-
ing upon the working relationships between the main-
tenance and new system development work units.
Acceptance tests provide leverage for assuring that
quality standards are not unduly compromised by the
pressures of new system development schedules and
budgets.

A focus on un improved level of user service, particularly
regarding responsiveness to user requests for mainte-
nance, is also encouraged by L-form departmentaliza-
tion. In contrast to new system development, which
orients itself more toward delivering a software prod-
uct, maintenance is by its nature a service activity,
undertaken largely in response to a continuing stream
of user requests. Thus, maintenance managers at Orga-
nization 5 pointed with pride to the “big in-basket and
big out-basket” aspect of maintenance. Centralization of
maintenance also allows users and IS to more closely
evaluate responsiveness in meeting these IS requests.

Where user service is particularly important, pockets
of staff dedicated to maintenance are often found in an
overwise A-form organization. At Organization 8, for
example, the IS department’s principal mission is to
provide high reliability operations of a few critical ap-
plications in a highly dynamic business environment.
Maintenance of critical systems is reserved for a small
group of highly skilled senior people who have devel-
oped elaborate and reliable techniques for making
changes and retesting these systems while providing
continuous service to their users.

Finally, productivity gains in maintenance may also ap-
parently be achieved through specialization and L-form
departmentalization, as originally suggested by Mooney
[31]. Why might this be the case? Recall that familiarity
with systems is fundamental to maintenance [l, 261.
Where staff split their time between maintenance and
new system development, more staff must generally be
assigned to maintain a given portfolio of systems with
the consequence that their collective familiarity is
more fragmented. We suspect fragmented familiarity
is difficult to deploy and sustain. Loss of efficiency
follows.

Separate maintenance groups may also be more effi-
cient because their analysts and programmers develop
expertise in maintenance and because their managers
learn how to manage maintenance. At Organization 9,
for example, after the manager began distributing a

simple report of processing times and maintenance as-
signments for a group of systems, processing times for
the systems were cut by half. Centralization of main-
tenance also makes it easier to justify investment in
modern maintenance tools, such as restructuring or
code analyzer packages.

Weaknesses
These strengths of L-forms are clearly compelling.

However, against these strengths there are a number of
weaknesses.

A potential status differential between the new system
development and maintenance units is a first concern.
Among the most discussed subjects in the literature is
the low status and motivating potential of maintenance
work ([1S, 29, 341). To the extent that maintenance is
seen as undesirable work, an L-form is disadvantaged,
in that it creates two classes of citizens in system devel-
opment and maintenance. When an L-A form was
adopted 14 years ago at Organization 5, it was feared
that everyone might quit. They did not. But at Organi-
zation 2, which uses an A-L form, the maintenance
manager’s principal worry is morale.

Some argue that maintenance is inherently less moti-
vating than new system development, because, for ex-
ample, the hours are unpredictable and it involves
routine work with older technology. Others disagree,
arguing that maintenance offers at least as great a
work challenge, involving, for example, expert trouble-
shooting under substantial operational pressure requir-
ing a sensitive, experienced touch. Among our cases,
for instance, at Organizations 5, 11 and 12, manage-
ment’s experience is that some people prefer mainte-
nance work to development work. Our own view,
based on the case studies, is that managerial attitudes
and traditional IS career paths may explain much of the
present motivational differential where it exists. At Or-
ganization 10 (A-type), for example, the IS manager told
us he believes that maintenance work is not as chal-
lenging as development; his lower level managers told
us that development assignments had more impact on
upward career movement. Similarly, at Organization 2
where the maintenance manager worries about morale,
IS management’s attention is on development, and a
common career path is from operations, through main-
tenance, and “up” to development.

Too many careers begin or end in maintenance.
Newcomers are often initiated in maintenance before
advancing to new system development. Similarly, old-
timers skilled in earlier technologies too frequently find
themselves retired to the maintenance pastures. At Or-
ganization 11 (A-W form), managers try to avoid the
“second-class citizen syndrome” by rotating mainte-
nance assignments, but they are reluctant to do this if it
means sacrificing in-depth knowledge of a system. So,
some maintenance assignments drift on indefinitely.

Career paths in which responsibility for a major in-
stalled system is recognized as a significant and neces-
sary mid-career achievement might do much to alle-
viate the current motivational issue. At Organization 7,

June 1990 Volume 33 Number 6 Communications of the ACM

Articles

an A-type organization where management neverthe-
less devotes attention and resources to maintenance, a
period of responsibility for a “production” (installed)
system is a prerequisite for advancement to manage-
ment. [See [Z, 4, 5, 181.)

Investment in new maintenance technology should
also contribute to mol.ivation, in that staff skills may be
upgraded. In fact, managerial attention to maintenance
in almost any form seems to alleviate some of the mo-
rale problem.

Loss of knowledge about systems in transferring them
from new system development to maintenance is a second
potential disadvantage of L-forms. As discussed earlier,
knowledge about a system is fundamental to its effi-
cient maintenance. To mitigate against this loss, the use
of maintenance escorts is recommended [26]. At Orga-
nizations 2 and 5, ma.intainers sometimes participate in
development projects and then rejoin the maintenance
staff to maintain the system. An even simpler approach,
also used at Organization 5, is for developers to take a
few days to teach the maintainers the general data flow
of the new system.

The costs of coordinating between the new system devel-
opment and maintenance units, especially for replacement
systems, is a related disadvantage of L-forms. Here the
problem is not so much the permanent loss of knowl-
edge about the system in transferring responsibility
from development to maintenance as it is the tempo-
rary sharing of knowledge needed to effect a smooth
changeover. Where the new system replaces one or
more existing systems, as it increasingly does (see
Table II), this process is particularly delicate and
trouble-prone. Required coordination costs may, how-
ever, be moderated by employing implementation
teams as lateral integrating mechanisms [17, 381.

Increased costs of system acceptance by the maintenance
unit must also be weighed against the quality benefits
associated with acceptance tests. When systems are
turned over to L-form maintenance units, some accep-
tance criteria established by that unit typically must be
met. Documentation must be complete, all functions
must be implemented, loose ends must be tied up.
Sometimes meeting these acceptance criteria will re-
quire short-term investments which have unpredict-
able long-term value--documentation may never again
need to be referenced or functions agreed to in specifi-
cations may ultimately not be needed. In A-type organi-
zations these costs may be avoided or simply postponed
until much later.

In L-form units, ou.r studies suggest, acceptance costs
may be moderated over time by the growth of mutual
trust between departments, founded on their long-term
relationship. In Organization 5, trust between units
evolved over the 14 year period in which maintenance
was centralized, and acceptance standards and methods
were worked out in cooperation with the system devel-
opment unit, eventually easing the acceptance process.
Over time, the development group improved its compli-
ance with standards and the maintenance group gained
a better understanding of which standards were really
important to them.

Finally, possible duplication of communication channels
to user organizations is a concern with L-forms. Users
must work with both new system development and
maintenance units. Nevertheless, the costs of such
duplication may be offset by other considerations. For
example, the use of separate channels to resolve main-
tenance and new system development issues may be
more effective in practice in that the integrity of each
process is less easily compromised. However, we have
no direct evidence that this is so from our cases.

CONCLUSION
In our view, the most significant insight in the above
analysis lies in the trade-offs among the classical sys-
tem parameters of quality, schedule, and budget. The
most compelling advantage of the L-forms may be their
potential for quality assurance and improved user ser-
vice, which may have been neglected in application
systems work due to the pressures of schedules and
budgets associated with new system development.
Adoption of an organizational form in which maintain-
ers are separated from developers brings about a shift of
emphasis to improved quality assurance and user ser-
vice, we believe. This shift is also responsive to rising
user expectations for information services, which
have been fueled by user experiences with micro-
computer products and services available in the
marketplace.

Because of its quality and productivity improvement
potential, we believe an L-form structure, in some vari-
ation, deserves consideration by many IS organizations,
especially those with mature, well-developed applica-
tion system portfolios, where services to day-to-day
business operations are of central importance. At the
same time, we would caution the unwary manager
against seizing upon an L-form as a general solution to
problems of IS productivity and service. Good organiza-
tion design makes a difference in IS, as it does else-
where, but organization design is more than orga-
nization structure [IP’]. The benefits of a separate main-
tenance unit are also dependent on good management
at the head of the maintenance unit, recognition and
rewards for its members, and viable systems acceptance
criteria, our research suggests.

Most of the IS managers in our c:ases are attempting
to derive some of the benefits of an L-form arrangement
while maintaining the benefits they have achieved
with A-form designs. Both forms are ways of depart-
mentalizing around outputs. In the L-forms, the output
focus is user service; with A-forms, it is software prod-
ucts. Since both of these are important outputs of the IS
department, some combination of approaches seems ap-
propriate. As possible combinations we note the various
L-A and A-L forms, and also the design adopted at Or-
ganization 7, where an A-type form is combined with
explicit managerial commitment to the installed system
base.

Much remains to be learned about organization de-
sign for IS. Additional research is needed to investigate
the relative productivity and quality benefits of A-
forms and L-forms. Of particular interest may be the

666 Communications of the ACM June 1990 Volume 33 Number 6

Articles

user’s response to differences in form. The task for IS
researchers, in our view, is to accompany practitioners
in their various organizational redesigns: they will ob-
serve their reforms as experiments, as originally sug-
gested by Campbell [g], to better reveal the complex
workings of the organizational process in the variety of
settings in which it unfolds so that future practice may
continue to be better informed.

Acknowledgments. We are grateful to Chris Kemerer
and to three anonymous reviewers and the department
editor for their helpful comments on earlier versions of
this article.

REFERENCES
1. Bankar, RD.. Datar. S.M., and Kemerer. C.F. Factors affecting soft-

ware maintenance productivity: An exploratory study. In Proceed-
ings of fhe Eighth lnternafional Conference on Information Sysfems
(Pittsburgh. Dec. 6-9, 1987). pp. 160-175.

2. Baroudi, 1.1. The impact of role variables on IS personnel work atti-
tudes and intentions. MIS Q. 9, 4 (19851, 341-356.

3. Baroudi, J.J.. and Ginzberg. M.J. Impact of the technological environ-
ment on programmer/analyst job outcomes. Commun. ACM 29, 6
(1986), 546-555.

4. Bartol, K.M. Turnover among DP personnel: A causal analysis. Com-
mun. ACM 26,lO (1983). 807-811.

5. Bartol, K.M., and Martin. D.C. Managing information systems per-
sonnel: A review of the literature and managerial implications. MIS
Q.. Special Issue (198’2), 49-70.

6. Belady, L.A.. and Lehman, M.M. A model of large program develop-
ment. IBM Syst. 1. 15, 3 (1976). 225-252.

7. Bendifallah, S.. and Scacchi. W. Understanding software mainte-
nance work. IEEE Trans. Softm. Eng. SE-13, 3 (19871, 311-323.

8. Boehm. B. The economics of software maintenance. Software Main-
tenance Workshop. Naval Postgraduate School, Monterey. Calif.,
Dec. 6-8. 1983, in R.S. Arnold (Ed.). Software Maintenance Work-
shop Record, IEEE Computer Science Press. N.Y.. 9-37.

9. Campbell, D.T. Reforms as experiments. Am. Psych. 24,4 (1969),
409-429.

10. Canning, R.G., Ed. That maintenance ‘iceberg’. EDP Analyzer,
(Oct. 1972), l-14.

11. Canning, R.G., Ed. Easing the software maintenance burden. EDP
Analyzer (Aug. 1981). l-14.

12. Cheney. P.H., and Lyons, N.R. Information systems skill require-
ments: A survey. MIS Q. 4. 1 (1980), 35-43.

13. Gouger, J.D.. and Colter, M.A. Mainfenance Programming: Improved
Productivity Through Motivation. Prentice-Hall, Englewood Cliffs.
N.J.. 1985.

14. Gouger, J.D.. and Zawacki. R.A. Mofivaring and Managing Computer
Personnel. Wiley Press. New York. 1980.

15. Dickson. G.W.. and Wetherbe, J.C. The Management of Informafion
Systems. McGraw-Hill, New York, 1985.

16. Frantz, D. BofA’s plans for computer don’t add up. L.A. Times (Feb.
7. 1988). 1 ff.

17. Galbraith, J. Desixniny Complex Organizations. Addison-Wesley, Read-
ing, Mass.. 1973.- -

18. Ginzberg. M.J., and Baroudi. J.J. MIS careers-A theoretical perspec-
tive. Commun. ACM 31, 5 (1988). 586-594.

19. Goldstein, D.K., and Rockart, J.F. An examination of work-related
correlates of job satisfaction in programmer/analysts. MIS Q. 8, 2
(1984), 103-115.

20. Gremillion, L.L. Determinants of program repair maintenance re-
quirements. Commun. ACM 27, 8 (19841, 826-832.

21. Guimaraes. T. Managing application program maintenance expendi-
tures. Commun. ACM 26, 10 (1983), 739-746.

22. Haffner. K. Is your computer secure? Bus. Week (Aug. 1, 19881,
64-72.

23. Izzo, J.E. The Embaftled Fortress: Sfrategies for Restoring Information
Systems Productivity. Jossey-Bass, San Fran., Calif., 1987.

24. Kim, C., and Weston, S. Software maintainability: perceptions of
EDP professionals. MIS Q, 12, 2 (1988), 167-185.

25. Lehman. M.M. Programs, life cycles, and laws of software evolution.
In Proceedings of the IEEE. Special Issue on Soffurare Engineering. 68, 9
(Sept. 1980). 1060-1076.

26. Lientz, B.P., and Swanson, E.B. Software Maintenance Management.
Addison-Wesley, Reading, Mass., 1980.

27. Lientz, B.P.. and Swanson, E.B. Problems in application software
maintenance. Conlmun. ACM 24. 11 (1981). 763-769.

28. Lientz. B.P.. Swanson, E.B., and Tompkins. G.E. Characteristics
of application software maintenance. Commun. ACM 21, 6 (19781,
466-471.

29. Liu. C.C. A look at software maintenance. Dahnndon 22, 11 (1976).
51-55.

30. Martin, J.. and McClure. CL. Soffware Maintenance: The Problem and
11s Solutions. Prentice-Hall, Englewood Cliffs, N.J., 1983.

31. Mooney, J.W. Organized program maintenance. Dafantation 21, 2
(1975). 63-64.

32. Port, 0. The software trap: Automate-Or else. Bus. Week Special
Reporr. (May 9, 1988), 142-154.

33. Porter. M.E., and Millar. V.E. How information gives you competi-
tive advantage. Hnrvard Bus. Rev. 63, 4 (1985). 149-160.

34. Riggs. R. Computer systems maintenance. Datnntafion 15, 9 (1969).
227.231-2.

35. Schneidewind. N.F. The state of software maintenance. IEEE Trans.
Softw. Eng. SE-13. 3 (1987). 303-310.

36. Software Maintenance News. Numbers from England. 7 (July 1989), 8.
37. Swanson, E.B. The dimensions of maintenance. In Proceedings of the

Second International Conference on Software Engineering (San Fran.,
C&f., Oct. 13-15. 1976), pp. 492-497.

38. Swanson, E.B. Organizational designs for software maintenance. In
Proceedings of the Fifth lnternatiomzl Conference on information Systems
(Tucson, Ariz.. Nov. 28-30, 19841, pp. 63-72.

39. Swanson, E.B., and B&h. C.M. The demographics of software main-
tenance management. In Proceedings of rhe Sevenrh Infernational Con-
ference on Information Syskms (San Diego, Calif., Dec. 15-17. 1986),
pp. 313-326.

40. Swanson. E.B., and Beath. CM. The use of case study data in soft-
ware management research. J. Syst. Soffm. 8 (1988). 63-71.

41. Swanson. E.B., and Beath, C.M. Maintaining Information Systems in
Organizations. Wiley, Chichester, England, 1989.

42. Vessey, 1.. and Weber, R. Some factors affecting program repair
maintenance. Commun. ACM 26, 2 (1983), 128-134.

43. Willoughby, T.C. Staffing the MIS function. Comput. Surveys, 4, 4
(1972), 241-259.

44. Yin, R.K. Case Study Research: Design and Methods. Sage. Beverly
Hills. Calif., 1984.

45. Zmud. R.W. Management of large software development efforts. MIS
Q. 4, 2 (1980). 45-55.

46. Zmud. R.W. Design alternatives for organizing information systems
activities, MIS Q. 8, 2 (1984). 79-93.

47. Zvegintzov. N. Immortal software. Dafamation (June 15. 1984),
170-l 80.

CR Categories and Subject Descriptors: D.2.9 [Software Engineer-
ing]: Management-productivity: K.6.3 [Management of Computing and
Information Systems]: Software Management-software maintenance

General Terms: Departmentalization
Additional Key Words and Phrases: Development, maintenance,

management, organizational forms

ABOUT THE AUTHORS:

E. BURTON SWANSON is associate professor of Information
Systems at the Anderson Graduate School of Management. His
research interests include the organizational uses of computer-
based information systems, and organizational approaches to
system development, implementation and maintenance. Au-
thor’s Present Address: Anderson Graduate School of Manage-
ment, University of California, Los Angeles, CA 90024.

CYNTHIA MATHIS BEATH, assistant professor of Information
and Decision Sciences at the University of Minnesota, is cur-
rently a visiting assistant professor at the Anderson Graduate
School of Management, UCLA. Her research interests focus on
the partnership between the IS function and its users. Author’s
Present Address: Carlson School of Management, University of
Minnesota, Minneapolis, MN 55455.

Permission to copy without fee all OI part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

June 1990 Volume 33 Number 6 Communications of the ACM 667

