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9. While either the octal cardinals or their b inary 
numbers have shown complementary  characteristics of 7 
about  the dot ted axis X X ' ,  both octal diagrams (a) and 
(b) reveal likewise in exactly the same manner.  

10. The fact  t ha t  the binary trinities have the  char- 
acteristics of being complements  lend themselves to the 
addition of the complement  of a number  in lieu of its 
subtraction just  as a purely binary machine does. 

I n  closing, it m a y  be noted with significant implica- 
tions that ,  while the Chinese abacus [7] consti tutes the 
oldest bi-quinary comput ing device, the binary trinities 
of the octal diagrams, which were derived by  the Chinese 
ancients circa 26 centuries before the earliest pro to type  
of the Chinese abacus, reveal all the necessary charac- 
teristics tha t  are required in the internal number  repre- 
sentat ion in an ultra-inodern electronic digital computer.  
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Multi-Dimensional Least-Squares 
Curve Fitting* 

Polynomial 

FRED H. LESH, California Institute of Technology, Pasadena, Calif. 

I n t r o d u c t i o n  

The  theory of least-squares polynomial curve fitting is 
well-known and m a n y  computer  programs have been 
written to fit polynomials of arbi t rary  order to da ta  in 
one dimension. The extension of the  theory to more than 
one dimension, however, is seldom seen in the li terature; 
few programs have been written which will do multi- 
dimensional least-squares polynomial curve fitting. One 
reason for this may  be that  s tandard  notations make  the 
s ta tement  of the theory  difficult to write. This paper  pre- 
sents a notat ion whieh makes the s ta tement  of the multi- 
dimensional theory almost  as simple as tha t  of the  one- 
dimensional theory and shows, using this notation, how 

* This paper presents one phase of research carried out at the 
Jet Propulsion Laboratory, California Institute of Technology, 
under Contract No. NASw-6, sponsored by the National Aero- 
nautics and Space Administration. 

to construct  a general multi-dimensional least squares 
polynomial  curve fitting routine. 

S t a t e m e n t  o f  the  M u l t i - D i m e n s i o n a l  Theory  

Suppose we have a function F defined a t  N points of 
Euclidean n-space R .... Then a point  in R~ has n coordinates 
which we call x l ,  :c2, • .. , x~. Let  X designate the vector 
(x l ,  - - .  , x,~), and let the N points at  which F is defined 
b e X i ,  i =  1 , . . . , N .  Let  

r i  = F ( X i )  = F(x,~ , . . . ,  x,¢). 

Define an exponent vector  E as a vector of positive integers 
(~'1, " "  , ~r,,) and define X ~ as xl , x~ , . . .  , x .  . 

A s ta tement  of the least-squares problem in R,~ using 
this notat ion is as follows: 

Given a set of exponent vectors ~, .,. , ~,, and a set 
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of data X~, F.~, i = 1 , - - - ,  N. Find the coefficients 
ct ,  . . .  , c,, of the polynomial  

P ( X )  = c~X ~ + " "  + e,,~JC "~ 

which minimize E where 
N 

E = [ F ,  - 
i= t  

The arralysis now proceeds just as in the one<limen- 
sional case. Ill order fox" E to be a n l i n i t n u r n ,  all the partials 
of E with respect to the c; must  be zero. 

~ aP(X~)  OE _ 2 ~ [F~ - P (Xi ) ]  ~ - 0 
Oc~ ~ Oc~ 

but  

O P ( X i )  _ X~j. 
Ocj 

So the normal equations are 

c, X: + . . .  + x :  
7 

i 

or m matrix notation 

A r T =  b r 

where 

j = l, . . "  , m  

.-~ - . .  ~ X~ 

. . .  . . . .  

i / 

v = . . . ,  c , , , )  

b = ( ~ F , X ~ - ~ , . . . , ~ F . , ~ X  %~ / 

and u r indicates u transpose. 

/ / 51 

ZERO MATRIX L ~ R ~ - ' - I m d  CA C_ 
SET M o TO THE L ULATE 

t I 4 1 4 
/ 

END OF FILE 

F -L_lSOLVE  ORMAq 
[ EOO +,O S ,] 

I'~C#oAD L_____U CALCULATE L____JP(x,)-7"B I 1 

L-------END OF FILE --I,.OUT - I 

FIG. 1. F l o w  c h a r t  fo r  m a c h i n e  p r o g r a m  

It. is impor tan t  to the org:mization of the 1)rogram to 
note tha t  : 

t.  ,4 = ~ B,:~[B,: 
i 

2. b = ~ l"iB~ 
i 

3. P( X~) = v" Bi 

where B,,. ( hT~ ~ X ~''~ 

D e v e l o p m e n t  o f  the C o m p u t e r  P r o g r a m  

The data are organized into records where each record 
contains X,~, F¢ for one point, and these records are stored 
sequentially on paper  tape, magnetic tape, magnetic 
drum, or magnetic core. After the last, record is a mark 
called end of file which will enable the computer  to tell 
when it, has read in all the data .  

The exponent vectors el, • - • , ~,,, are stored in the work- 
ing memory  of the computer  since it is f requently neces- 
sary to tr T several different sets of e for a given set of data 
in order" to get a sat isfactory fit. 

Let  B [  > be the vector (X~.~, . . .  , X~ -m, F i), and note 
tha t  the matr ix  ~ B +TR + ..~ with the bo t tom row left off 
is the augmented  matr ix  of the normal equations. Since 
tile matr ix  ~ B,[rB~ is symmetr ic ,  only the elcnlents on 
and above the main diagonal are needed and  only those 
elements need be stored. The reason for constructing the 
vector  B (  ~ is tha t  the logic involved in fornling the upper 
half of B~+rB + • ~ is much simpler than the logic necessary 
to form the upper  hMf of B~TB~ and insert the elements of 
F~B~ to augment  it. 

Figure 1 is a flow chart  for the machine program. Note 
tha t  in box 5 only the elements on and above  the main 
diagonal and above the bo t tom row are calculated and 
stored. Note  also tha t  the final ou tput  of the subroutine 
consists of: 

(1) The vector V generated by  box 6. 
(2) The  new file [X~, F i ,  P ( X i ) ] ,  i = 1 , . . . , N ,  

generated by box 11. 
This new file cart be writ ten on any  medium desired. 

The main programming effort is required in tile writing 
of the routine for generating the vector' B~ f rom the vector 
X~ and the set of vectors e~, • • • , e,,~ for a rb i t ra ry  m and n. 
Once the form of the exponent  is decided on, and the 
program for calculating B~ has been written, tile rest of 
the program is s traightforward:  

A subroutine is now being wri t ten a t  the J e t  Propulsion 
Labora to ry  for fitting least-squares polynomials  to data 
which m a y  be distr ibuted in any  fashion wha tever  through- 
out a space of as many  as seven dimensions. The fitting 
polynomial  can consist of any  desired combination of 
terms and the calling sequence will determine whether 
single or double precision ar i thmetic  is used in tile com- 
putation.  
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