
I. Introduction

Operating R.S. Gaines
Systems Editor

Protection in
Operating Systems
Michael A. Harrison and Walter L. Ruzzo
University of California, Berkeley
Jeffrey D. Ullman
Princeton University

A model of protection mechanisms in computing
systems is presented and its appropriateness is argued.
The "safety" problem for protection systems under
this model is to determine in a given situation whether a
subject can acquire a particular right to an object.
In restricted cases, it can be shown that this problem is
decidable, i.e. there is an algorithm to determine
whether a system in a particular configuration is safe.
In general, and under surprisingly weak assumptions,
it cannot be decided if a situation is safe. Various
implications of this fact are discussed.

Key Words and Phrases: protection, protection
system, operating system, decidability, Turing machine

CR Categories: 4.30, 4.31, 5.24

Copyright Q 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Research was sponsored by NSF Grants GJ-474 and GJ-43332.
Work was performed while the third author was on leave at the
University of California at Berkeley.

Author's addresses: M.A. Harrison and W. L. Ruzzo, Depart-
ment of Computer Science, University of California, Berkeley,
CA 94720; J.D. Ullman, Department of Electrical Engineering,
Computer Science Laboratory, Princeton University, Princeton,
NJ 08540.

One of the key aspects of modern computing sys-
tems is the ability to allow many users to share the
same facilities. These facilities may be memory, proces-
sors, databases, or software such as compilers or sub-
routines. When diverse users share common items, one
is naturally concerned with protecting various objects
from damage or from misappropriation by unauth-
orized users. In recent years, a great deal of attention
has been focussed on the problem. Papers [4-6, 8-13,
15] are but a sample of the work that has been done.
In particular, Saltzer [15] has formulated a hierarchy
of protection levels, and current systems are only
halfway up the hierarchy.

The schemes which have been proposed to achieve
these levels are quite diverse, involving a mixture of
hardware and software. When such diversity exists, it
is often fruitful to abstract the essential features of such
systems and to create a formal model of protection
systems.

The first attempts at modeling protection systems,
such as [4, 6, 10] were really abstract formulations of
the reference monitors and protected objects of par-
ticular protection systems. It was thus impossible to
ask questions along the lines of "which protection
system best suits my needs?" A more complete model
of protection systems was created in [8], which could
express a variety of policies and which contained the
"models" of [4, 6, 10] as special cases. However, no
attempt to prove global properties of protection
systems was made in [8], and the model was not com-
pletely formalized.

On the other hand, there have been models in which
attempts were made to prove results [2, 3, 13]. In [2],
which is similar to [8] but independent of it, theorems
are proven. However, the model is informal and it
uses programs whose semantics (particularly side ef-
fects, traps, etc.) are not specified formally.

In the present paper, we shall offer a model of
protection systems. The model will be sufficiently
formal that one can rigorously prove meaningful
theorems. Only the protection aspects of the system will
be considered, so it will not be necessary to deal with
the semantics of programs or with general models of
computation. Our model is similar to that of [6, 10],
where it was argued that the model is capable of de-
scribing most protection systems currently in use.

Section 2 describes the motivation for looking at
decidability issues in protection systems. Section 3 pre-
sents the formal model with examples. In Section 4 we
introduce the question of safety in protection systems.
Basically, safety means that an unreliable subject can-
not pass a right to someone who did not already have it.
We then consider a restricted family of protection
systems and show that safety can be decided for these
systems. In Section 5 we obtain a surprising result:
that there is no algorithm which can decide the safety

461 Communications August 1976
of Volume 19
the ACM Number 8

http://crossmark.crossref.org/dialog/?doi=10.1145%2F360303.360333&domain=pdf&date_stamp=1976-08-01

question for arbitrary protection systems. The proof
uses simple ideas, so it can be extended directly to
more elaborate protection models.

2. Significance of the Resu l t s

To see what the significance for the operating
system designer of our results might be, let us consider
an analogy with the known fact that ambiguity of a
context free grammar is undecidable (see [7], e.g.).
The implication of the latter undecidability result is
that proving a particular grammar unambiguous might
be difficult, although it is possible to write down a
particular grammar, for Algol, say, and prove that it
is unambiguous. By analogy, one might desire to show
that in a particular protection system a particular
situation is safe, in the sense that a certain right cannot
be given to an unreliable subject. Otar result on general
undecidability does not rule out the possibility that
one could decide safety for a particular situation in a
particular protection system. Indeed, we have not ruled
out the possibility of giving algorithms to decide safety
for all possible situations of a given protection system,
or even for whole classes of systems. In fact we provide
an algorithm of this nature.

By analogy with context free grammars, once again,
if we grant that it is desirable to be able to tell whether
a grammar is ambiguous, then it makes sense to look
for algorithms that decide the question for large and
useful classes of grammars, even though we can never
find one algorithm to work for all grammars. A good
example of such an algorithm is the LR(k) test (see
[7], e.g.). There, one tests a grammar for LR(k)-ness,
and if it is found to possess the property, we know the
grammar is unambiguous. If it is not LR(k) for a
fixed k, it still may be unambiguous, but we are not
sure. It is quite fortunate that most programming
languages have LR(k) grammars, so we can prove
their grammars unambiguous.

It would be nice if we could provide for protection
systems an algorithm which decided safety for a wide
class of systems, especially if it included all or most of
the systems that people seriously contemplate. Un-
fortunately, our one result along these lines involves a
class of systems called "mono-operat ional ," which are
not terribly realistic. Our attempts to extend these
results have not succeeded, and the problem of giving a
decision algorithm for a class of protection systems as
useful as the LR(k) class is to grammar theory appears
very difficult.

3. A F o r m a l M o d e l o f Protec t ion S y s t e m s

We are about to introduce a formal protection
system model. Because protection is but one small
part of a modern computing system, our model will

be quite primitive. No general purpose computation is
included, as we are only concerned with protect ion--
that is, who has what access to which objects.

Definition. A protection system consists of the fol-
lowing parts:
(1) a finite set of generic rights R,
(2) a finite set C of commands of the form:

command , x (X 1 , X 2 , . . • , X k)

if rl in (X,~, Xo~) and
r2 in (X~2, Xo2) and

r~in (Xs~ , Xo~)
then

o171
op2
. . .

op~
end

or if m is zero, simply

command ~(X1 , Xk)
o/71

opn
end

Here, a is a name, and X 1 , . . . , X~ are formal parame-
ters. Each op~ is one of the primitive operations

enter r into (X . , X o)

delete r from (X,, Xo)
create subject X,
create object Xo
destroy subject X,
destroy object Xo

Also, r, r l , . . •, rm are generic rights and s, s l , . . . , s~
and o, o l , . . . , on are integers between 1 and k. We
may call the predicate following if the conditions of

and the sequence of operations o p l , . . . , op~ the
body of a.

Before explaining the significance of the commands
we need to define a configuration, or instantaneous
description of a protection system•

Definition. A configuration of a protection system
is a triple (S, O, P), where S is the set of current subjects,
O is the set of current objects, S c O, and P is an access
matrix, with a row for every subject in S and a column
for every object in O. P[s, o] is a subset of R, the ge-
neric rights. P[s, o] gives the rights to object o possessed
by subject s. The access matrix can be pictured as
in Figure 1. Note that row s of the matrix in Figure
1 is like a "capability list" [4] for subject s, while
column o is similar to an "access list" for object o.

Now let us interpret the parts of a protection system.
In practice, typical subjects might be processes [4], and
typical objects (other than those objects which are
subjects) might be files. A common generic right is
read, i.e. a process has the right to read a certain file.
The commands mentioned in item (2) above are meant
to be formal procedures.

Since we wish to model only the protection aspects

462 Communications August 1976
of Volume 19
the ACM Number 8

of an operating system, we wish to avoid embedding
into the model unrestricted computing power. The
commands therefore, are required to have a very
simple structure. Each command may specify a test
for the presence of certain rights in certain positions of
the current access matrix. These conditions can be used
to verify that the action to be performed by the com-
mand is authorized. For example, "if r in (X~, Xo)
t h e n . . . " i n d i c a t e s that the subject x, needs right r
to object Xo, where x, and Xo are the actual parameters
corresponding to formal parameters X, and Xo. I f
the conditions are not satisfied, the body of the com-
mand is not executed. The command body is simply
straight line code, a sequence of primitive operations
containing no conditional or unconditional branches,
no loops, and no procedure calls.

Each primitive operation specifies some modification
which is to be made to the access matrix. For example,
enter r into (X~, Xo) will enter right r into the matrix
at position (x , , xo), where x, and Xo are the actual
parameters corresponding to the formals X, and Xo.
That is, subject x, is granted generic right r to object Xo.
The effect of a command will be defined more for-
mally after an example.

Example 1. Let us consider what is perhaps the
simplest discipline under which sharing is possible.
We assume that each subject is a process and that the
objects other than subjects are files. Each file is owned
by a process, and we shall model this notion by saying
that the owner of a file has generic right own to that
file. The other generic rights are read, write, and execute,
although the exact nature of the generic rights other
than own is unimportant here. The actions affecting
the access matrix which processes may perform are as
follows.

(1) A process may create a new file. The process
creating the file has ownership of that file. We represent
this action by

command CREATE(process, file)
create 9bject file
enter own into (process, file)

end

(2) The owner of a file may confer any right to
that file, other than own, on any subject (including the

Fig. 1. Access matrix.

ob~cts

subjects

subjects
m m

.~. r ights of subject s

to object o

463

owner himself). We thus have three commands of the
form

command CONFER~ (owner, friend, file)
if own in (owner, file)
then enter r into (friend, file)

end

where r is read, write, or execute. Technically the r
here is not a parameter (our model allows only objects
as parameters). Rather, this is an abbreviation for the
three commands CONFERreaa, etc.

(3) Similarly, we have three commands by which
the owner of a file may revoke another subject's access
rights to the file.

command REMOVEr (owner, exfriend, file)
if own in (owner, file) and

r in (exfriend, file) x
then delete r from (exfriend, file)

end

where r is read, write, or execute.
This completes the specification of most of the

example protection system. We shall expand this ex-
ample after learning how such systems "compute . "

To formally describe the effects of commands, we
must give rules for changing the state of the access
matrix.

Definition. The six primitive commands mean ex-
actly what their names imply. Formally, we state
their effect on access matrices as follows. Let (S, O, P)
and (S', O', P ') be configurations of a protection system,
and let op be a primitive operation. We say that:

(s, o, P) ~o~ (s', o', P')

[read (S, O, P) yields (S', 0 ' , P') under op] if either:

(I) op = enter r in to (s, o) and S = S', O = 0' , s E S,
o E O, P'[sl, ol] = P[sl, ol] if (sl , ol) # (s, o)
and P'[s, o] = P[s, o] U {r}, or

(2) o p = delete r from (s,o) and S = S', O = O',
s C S , o C O,P '[s l , ol] = P [s l , 0 1] i f (s l , 0 2)
(s, o) and P'[s, o] = P[s, o] -- {r}.

(3) op = create subject s', where s ' is a new symbol
not in O, S' = S O {s'}, O' = 0 O {s'}, P'[s, o] =
P[s, o] for all (s, o) in S X O, P'[s', o] = ~ for all
o C O', and P[s, s'] = ~ for all s 6 S'.

(4) op = create object o', where o' is a new symbol
not in O, S ' = S, O' = O [3 {o'}, P'[s, o] = P[s, o]
for all (s, o) in S X O and P'[s, o'] = ,~ for all
s C S .

(5) op = destroy subject s', where s ' C S, S ' = S -- {s'},
O' = O -- {s'}, and P'[s, o] = P[s, o] for all (s, o) C
S' X O'.

(6) op = destroy object o', where o' C 0 - S, S' = S,
O ' = O - {o'1, and P'[s,o] = P[s,o] for all
(s, o) ~ S ' X O'.

1 This condition need not be present, since delete r from (ex-
friend, file) will have no effect if r is not there.

2 ~ denotes the empty set.

Communications August 1976
of Volume 19
the ACM Number 8

The quantification in the previous definition is
quite important. For example, a primitive operation

enter r into (s, o)

requires that s be the name of a subject which now
exists, and similarly for o. If these conditions are not
satisfied, then the primitive operation is not executed.
The primitive operation

create subject s'

requires that s' is not a current object name. Thus
there can never be duplicate names of objects.

Next we see how a protection system executes a
command.

Definition. Let Q = (S, O, P) be a configuration of
a protection system containing:

command a(X1 Xk)

ff rl in (X,1, Xol) and

r,~ in (X,= , Xo~)
then op l , . . . , opn

end

Then we say

.... Q' Q ~(~ ,~k)

where Q' is the configuration defined as follows:

(1) If a's conditions are not satisfied, i.e. if there is some
1 _< i < m such that r~ is not in Pixie, xo~], then

0 = 0
(2) Otherwise, i.e. if for all i between 1 and m,

r~ { P[x,~, Xo,], then let there exist configurations
Q0, Q, , • • . , O~ such that

Q = Q0 ~om* Q1 ~op= ~o~.. Q,

where opt* denotes the primitive operation op~ with
the actual parameters x ~ , . . . , xk replacing all
occurrences of the formal parameters X ~ , . . . , Xk,
respectively. Then Q' is Q , .

We say that Q [-, Q' if there exist parameters
xx, . . . , Xk such that Q [-,<~ ~) Q'; we say Q ~- Q'
if there exists a command ~ such that Q ~-, Q'.

It is also convenient to write Q ~-* Q', where ~-*
is the reflexive and transitive closure of ~-. That is, ~-*
represents zero or more applications of ~-.

There are a number of points involved in our use of
parameters which should be emphasized. Note that
every command (except the empty one) has parameters.
Each command is given in terms of formal parameters.
At execution time, the formal parameters are replaced
by actual parameters which are object names. Although
the same symbols are often used in this exposition for
formal and actual parameters, this should not cause
confusion. The "type checking" involved in deter-
mining that a command may be executed takes place
with respect to actual parameters. For example, consider

command c~(X, Y, Z)
enter rl into (X, X)

destroy subject X
enter r~ into (Y, Z)

end

There can never be a pair of configurations Q and Q'
such that

Q ~--(.. . . .) a '

since the third primitive operation enter r2 into (x, z)
will occur at a point where no subject named x exists.

Example 2. Let us consider the protection system
whose commands were outlined in Example 1. Suppose
initially there are two processes Sam and Joe, and no
files created. Suppose that neither process has any
rights to itself or to the other process (there is nothing
in the model that prohibits a process from having
rights to itself). The initial access matrix is:

Sam Joe

Joe (~ (~

Now, Sam creates two flies named Code and Data,
and gives Joe the right to execute Code and Read
Data. The sequence of commands whereby this takes
place is:

CREATE(Sam, Code)
CREATE(Sam, Data)
CONFERexeeute(Sam, Joe, Code)
CONFERread(Sam, Joe, Data)

To see the effect of these commands on configura-
tions, note that the configuration (S, O,P) can be
represented by drawing P, and labeling its rows by
elements of S and its columns by elements of O, as
we have done for the initial configuration. The first
command, CREATE(Sam, Code), may certainly be
executed in the initial configuration, since CREATE
has no conditions. Its body consists of two primitive
operations, create object Code and enter own into
(Sam, Code). Then, using the ~ notation, we may
show the effect of the two primitive operations as:

Sam Joe

Sam] (~ (Z)).
Joe [~ ~ create object Code

Sam Joe Code
s m ololo
Joe ~ (Z) enter own into (Sam, Code)

Sam Joe Code
Sam I ~

,oo o l o F'°: "'
Thus, using the ~-notation for complete commands we
can say that:

464 Communications August 1976
of Volume 19
the ACM Number 8

Sam Joe

SamlOlO "
Joe ~ CREATE (Sam, Code)

Sam Joe Code

sa L ° L ° I'° Joe ~ ~ ,. t

The effect on the initial configuration of the four
commands listed above is:

Sam Joe

Sam ~ - - ~ ~ - ~
Joe

Sam Joe Code
Sam ~

I o l o '°:'t
Sam Joe Code Data

Sam ~ ~ 1 1 0 ~
Joe t~

Sam Joe C o d e Data
Sam ~ ~ [own} {own} I

9] Joe ~ ~ {execute}

Sam Joe C o d e Data
Sam ~ [~
Joe ~ I {own} {ownl

execute read I

We may thus say:

Sam Joe

Joe ~9

Sam Joe C o d e Data

Joe ~3 @ {execute}]lread!J

It should be clear that in protection systems, the
order in which commands are executed is not prescribed
in advance. The nondeterminacy is important in model-
ing real systems in which accesses and changes in
privileges occur in an unpredictable order.

It is our contention that the model we have pre-
sented has sufficient generality to allow one to specify
almost all of the protection schemes that have been
proposed: cf. [6] for many examples of this flexibility.
It is of interest to note that it is immaterial whether
hardware or software is used to implement the primi-
tive operations of our model. The important issue is
what one can say about systems we are able to model.
In the next two sections, we shall develop the theory of
protection systems using our model. We close this
section with two additional examples of the power of
our model to reflect common protection ideas.

Example 3. A mode of access called "indirect" is
discussed in [6]. Subject sl may access object o indi-
rectly if there is some subiect s2 with that access right
to o, and sl has the "indirect" right to s~. Formally,
we could model an indirect read by postulating the
generic rights read and iread, and

command I R E A D (s z , s~ , o)
ff

read in (s~, o) and
iread in (s t , s~)

then
enter read into (sl, o)
delete read from (st, o)

end

It should be noted that the command in Example 3
has both multiple conditions and a body consisting of
more than one primitive operation, the first example
we have seen of such a situation. In fact, since the
REMOVE commands of Example 1 did not really
need two conditions, we have our first example where
multiple conditions are needed at all.

We should also point out that the interpretation of
1READ in Example 3 should not be taken to be null,
even though the command actually has no net effect
on the access matrix. The reason for this will become
clearer when we discuss the safety issue in the next
section. Intuitively, we want to show that sl temporarily
has the read right to o, even though it must give up
the right.

Example 4. The UNIX operating system [14] uses a
simple protection mechanism, where each file has one
owner. The owner may specify his own privileges
(read, write, and execute) and the privileges of all
other users, as a group. ~ Thus the system makes no
distinction between subjects except for the owner-
nonowner distinction.

This situation cannot be modeled in our formalism
as easily as could the situations of the previous ex-
amples. It is clear that a generic right own is needed,
and that the rights of a user u to a file f w h i c h u owns
could be placed in the (u,f) entry of the access matrix.
However, when we create a file f , it is not possible in
our formalism to express a command such as "give all
subjects the right to read f , " since there is no a priori
bound on the number of subjects.

The solution we propose actually reflects the soft-
ware implementation of protection in UNIX quite well.
We associate the rights to a file f with the (f, f) entry
in the access matrix. This decision means that files
must be treated as special kinds of subjects, but there
is no logical reason why we cannot do so. Then a
user u can read (or write or execute) a file f if either:

(1) own is in (u,f), i.e., u owns f , and the entry "owner
can read" is in (f f) , or

(2) the entry "anyone can read" is in (f , f) .

3 We ignore the role of the "superuser" in the following discus-
sion.

465 Communications August 1976
of Volume 19
the ACM Number 8

Now we see one more problem. The conditions
under which a read may occur is not the logical con-
junction of rights, but rather the disjunction of two
such conjuncts, namely

(1) own E P[u,f] and oread E Plf , f] or
(2) aread E P[f , f]
where oread stands for "owner may read," and aread
for "anyone may read." For simplicity we did not
allow disjunctions in conditions, However, we can
simulate a condition consisting of several lists of rights,
where all rights in some one list must be satisfied in
order for execution to be permissible. We simply use
several commands whose interpretations are identical.
That is, for each list of rights there will be one com-
mand with that list as its condition. Thus any set of
commands with the more general, disjunctive kind of
condition is equivalent to one in which all conditions
are as we defined them originally. We shall, in this
example, use commands with two lists of rights as a
condition.

We can now model these aspects of uNIx protection
as follows. Since write a n d execute are handled exactly
as read, we shall treat only read. The set of generic
rights is thus own, oread, aread, a n d read. The first
three of these have already been explained, read is
symbolic only, and it will be entered temporarily into
(u, f) by a R E A D command, representing the fact
that s can actually read f read will never appear in the
access matrix between commands and in fact is not
reflected directly in the protection mechanism of
uNIX. The list of commands is shown in Figure 2.

4. S a f e t y

We shall now consider one important family of
questions that could be asked about a protection system,
those concerning safety. When we say a specific pro-
tection system is "safe," we undoubtedly mean that
access to files without the concurrence of the owner is
impossible. However, protection mechanisms are often
used in such a way that the owner gives away certain
rights to his objects. Example 4 illustrates this phe-
nomenon. In that sense, no protection system is "safe,"
so we must consider a weaker condition that says, in
effect, that a particular system enables one to keep
one's own objects "under control."

Since we cannot expect that a given system will be
safe in the strictest sense, we suggest that the minimum
tolerable situation is that the user should be able to
tell whether what he is about to do (give away a right,
presumably) can lead to the further leakage of that
right to truly unauthorized subjects. As we shall see,
there are protection systems under our model for which
even that property is too much to expect. That is, it is
in general undecidable whether, given an initial access
matrix, there is some sequence of commands in which
a particular generic right is entered at some place in

466

Fig. 2. UNIX type protection mechanism.

command CREATEFILE(u, f)
create subject f
enter own into (u, f)

end
command LETORE.4D(u, f)

if own in (u,f)
then enter oread into (f,f)

end
command LETA READ (u, f)

if own in (u,f)
then enter aread into (f,f)

end
command READ (u, f)

if either
own in (u, f) and
oread in (f~f)

or
aread in (Z,f)

then
enter read into (u, f)
delete read from (u, f)

end

the matrix where it did not exist before. Furthermore,
in some restricted cases where safety is decidable, the
decision procedures are probably too slow to be of
practical utility.

This question, whether a generic right can be
"leaked" is itself insufficiently general. For example,
suppose subject s plans to give subject s' generic right
r to object o. The natural question is whether the
current access matrix, with r entered into (s', o), is
such that generic right r could subsequently be entered
somewhere new. To avoid a trivial "unsafe" answer
because s himself can confer generic right r, we should
in most circumstances delete s itself from the matrix.
It might also make sense to delete from the matrix
any other "reliable" subjects who could grant r, but
whom s "trusts" will not do so. It is only by using
the hypothetical safety test in this manner, with "re-
liable" subjects deleted, that the ability to test whether
a right can be leaked has a useful meaning in terms of
whether it is safe to grant a right to a subject.

Another common notion of the term "safety" is
that one be assured it is impossible to leak right r to a
particular object o l . We can use our more general
definition of safety to simulate this one. To test
whether in some situation right r to object ol can be
leaked, create two new generic rights, r ' and r". Put
r' in (ol, Ol), but do nothing yet with r". Then add

command DUMMY(s, o)
if

r in (s, o) and
r' in (o, o)

then
enter r" into (o, o)

end

Then, since there is only one instance of generic right r',

Communications August 1976
of Volume 19
the ACM Number 8

o must be ol in command D U M M Y . Thus, leaking r"
to anybody is equivalent to leaking generic right r
to object ol specifically.

We shall now give a formal definition of the safety
question for protection systems.

Definition. Given a protection system, we say com-
mand a(X1, . . . , Xk) leaks generic right r from configu-
ration Q = (S, O, P) if a, when run on Q, can execute
a primitive operation which enters r into a cell of the
access matrix which did not previously contain r.
More formally, there is some assignment of actual
parameters x l , • • •, xk such that

(I) a (x l , . . . , xk) has its conditions satisfied in Q, i.e.
for each clause "r in (X~, X~.)" in a's conditions
we have r ~ P[x~ , xy], and

(2) if a's body is opl, • . . , op , , then there exists an m,
1 _< m < n, and configurations Q = Q0, Q ~ , . . .

! t,'

Q,,_x = (S', o , P') , and Qm = (S", O , P"),
such that

Q0 ~o,1. Q1 ~o~2 Q,,-1 ~o~,~. Q,,

where opt* denotes op~ after substitution of
x ~ , . . . , Xk for X I , . . . , Xk and moreover, there
exist some s and o such that

r ~i P'[s,o] but r C P"[s,o]

(Of course, opm must be enter r into (s, o)).

Notice that given Q, a and r, it is easy to check
whether a leaks r f rom Q. Also note that a leaks r
from Q even if a deletes r after entering it. Commands
IREAD in Example 3 and READ in Example 4 are
typical of commands which enter a right and then
immediately delete it. In a real system we would expect
a procedure called " R E A D " to contain code between
the enter and delete operations which passes data from
the file read to some other file or process. Although
we do not model directly the presence of such code, the
temporary presence of the ".read" right in the access
matrix pinpoints this data transfer, thus identifying
the potential leak.

We should emphasize that "leaks" are not neces-
sarily "bad." Any interesting system will have com-
mands which can enter some rights (i.e. be able to
leak those rights). The term assumes its usual negative
significance only when applied to some configuration,
most likely modified to eliminate "reliable" subjects as
discussed in the beginning of this section, and to some
right which we hope cannot be passed around.

Definition. Given a particular protection system and
generic right r, we say that the initial configuration Q0
is unsafe for r (or leaks r) if there is a configuration Q
and a command a such that

(1) Q0 ~*Q, and

(2) a leaks r from Q.

We say Q0 is safe for r if Q0 is not unsafe for r.
Example 5. Let us reconsider the simple example

of a command a(X, Y, Z) which immediately precedes

Example 2. Suppose a were the only command in the
system. If the initial configuration has exactly one
subject and no other objects, then it is safe for r2 but
not for r l .

There is a special case for which we can show it is
decidable whether a given right is potentially leaked in
any given initial configuration. Decidability in this
special case is not significant in itself, since it is much
too restricted to model interesting systems. However,
it is suggestive of stronger results that might be p roved - -
results which would enable the designer of a protection
system to be sure that an algorithm to decide safety,
in the sense we have used the term here, existed for
his system.

Definition. A protection system is mono-operational
if each command's interpretation is a single primitive
operation.

Example 4, based on UNIX, is not mono-operational
because the interpretation of CREATEFILE has
length two.

THEOREM 1. There is an algorithm which decides
whether or not a given mono-operational protection
system and initial configuration is unsafe for a given
generic right r.

PROOF. The proof hinges on two simple observa-
tions. First, commands can test for the presence of
rights, but not for the absence of rights or objects.
This allows delete and destroy commands 4 to be re-
moved from computations leading to a leak. Second,
a command can only identify objects by the rights in
their row and column of the access matrix. No mono-
operational command can both create an object and
enter rights, so multiple creates can be removed from
computations, leaving the creation of only one subject.
This allows the length of the shortest " leaky" computa-
tion to be bounded.

Suppose

(*) Oo ~cl 01 ~-c~... ~-ca O,,

is a minimal length computation reaching some con-
figuration Q,~ for which there is a command a leak-
ing r. Let Q~ = (S i , O~, P~). Now we claim that C~,
2 < i < m is an enter command, and C1 is either an
enter or create subject command. Suppose not, and let
Cn be the last non-enter command in the sequence (.) .
Then we could form a shorter computation

!

Q0 ~cx QI [- . . . Q , - I ~c'.+1 Q,+I ~ . . . ~c" Q,~'

as follows.

(a) if C, is a delete or destroy command, let Ci' = C~
and Q~' = Q~ plus the right, subject or object which
would have been deleted or destroyed by C , . By the
first observation above, C~ cannot distinguish Q~_~

' / t ' f rom Q~_I, so Q~-I ~-c, Q~ holds. Likewise, a leaks
r from Q,,' since it did so from Q, . .

4 Since the system is mono-operational, we can identify the
command by the type of primitive operation.

467 Communications August 1976
of Volume 19
the ACM Number 8

(b) Suppose C~ is a create subject command and 5
1S,_11 > I or C, is a create object command. Note that
a leaks r from Q,~ by assumption, so ~ is an enter
command. Further, we must have [Sm [>__ 1 and

IS~l = I s~ -11 = . . . = [s . I >_ 1

(C , C,+1 are enter commands by assump-
tion). Thus I S,_~] >__ 1 even if Ca is a create
object command. Let s E S~_1. Let o be the name of
the object created by Ca. Now we can let C~' = C~
with s replacing all occurrences of o, and Q~' = Q~
with s and o merged. For example, if o E O, -- S~ we
would have

Si t = S i ,
0 : = 0 ~ - {o},

, :P~[x ,y] if y ~ s
P~[x,y] = [edx , s]U P~[x,o] if y = s.

Clearly,

ei[x, o] c_ P~'[x, s],

so for any condition in C~ satisfied by o, the correspond-
ing condition in C~' is satisfied by s. Likewise for the
conditions of a.

(c) Otherwise, we have IS~-~I = 0, C~ is a create
subject command, and n > 2. The construction in this
case is slightly different--the create subject command
cannot be deleted (subsequent "enters" would have
no place to enter into). However, the commands pre-
ceding C~ can be skipped (provided that the names of
objects created by them are replaced), giving

Oo [-c, Q~' ~-c:+l Q'~+I ~- . . . ~-c'Q,~'

where, if S~ = {s}, we have C : is C~ with s replacing
the names of all objects in O~_~, and Q~P is Q~ with s
merged with all o C O~_~.

In each of these cases we have created a shorter
"leaky" computation, contradicting the supposed
minimality of (.). Now we note that no C~ enters a
right r into a cell of the access matrix already containing
r, else we could get a shorter sequence by deleting C~.
Thus we have an upper bound on m:

m < g(ISo[+ 1)(lOo I q- 1) q- 1

where g is the number of generic rights.
An obvious decision procedure now presents itself--

try all sequences of enter commands, optionally start-
ing with a create subject command, of length up to the
bound given above. This algorithm is exponential in
the matrix size. However, by using the technique of
"dynamic programming" (see [1], e.g.), an algorithm
polynomial in the size of the initial matrix can easily
be devised for any given protection system.

It is worth noting that if we wish a decision pro-
cedure for all mono-operational systems, where the
commands are a parameter of the problem, then the
decision problem is "NP-complete." To say that a

6 [A [stands for the number of members in set A.

problem is NP-complete intuitively means that if the
problem could be shown to be solvable in polynomial
time, this would be a major result in that a large number
of other problems could be solved efficiently. The best
known such problem is probably the "traveling sales-
person problem." Thus the above problem is almost
certainly of exponential time complexity in the size of
the matrix. Cf. [1] for a more thorough discussion of
these matters.

For those familiar with the technical definitions
needed, the argument will be sketched. (All these defini-
tions may be found in [1].) We can prove the result by
reducing the k-clique problem to the problem: given
a mono-operational system, a right r and an initial
access matrix, determine if that matrix is safe for r.
Given a graph and an integer k, produce a protection
system whose initial access matrix is the adjacency
matrix for the graph and having one command. This
command's conditions test its k parameters to see if
they form a k-clique, and its body enters some right r
somewhere. The matrix will be unsafe for r in this
system if and only if the graph has a k-clique. The
above is a polynomial reduction of the known NP-
complete clique problem to our problem, so our problem
is at best NP-complete. It is easy to find a nondeter-
ministic polynomial time algorithm to test safety, so
our problem is in fact NP-complete and no worse.

One obvious corollary of the above is that any
family of protection systems which includes the mono-
operational systems must have a general decision
problem which is at least as difficult as the NP-com-
plete problems, although individual members of the
family could have easier decision problems.

Another unproven but probably true characteristic of
NP-eomplete problems has interesting implications
concerning proofs of safety. We can give a "short ,"
i.e. polynomial length, proof that a given matrix for a
mono-operational system is not safe [just list the com-
putation (,)], although such a proof may be difficult
to find. However, it is probable that there is no proof
system in which we can guarantee the existence of, let
alone find, short proofs that an initial matrix for an
arbitrary mono-operational system is safe.

5. Undecidability of the Safety Problem

We are now going to prove that the general safety
problem is not decidable. We assume the reader is
familiar with the notion of a Turing machine (see
[7], e.g.). Each Turing machine T oonsists of a finite
set of states K and a distinct finite set of tape symbols
P. One of the tape symbols is the blank B, which initially
appears on each cell of a tape which is infinite to the
right only (that is, the tape cells are numbered
1, 2 , . . . , i, . . .) . There is a tape head which is always
scanning (located at) some cell of the tape.

468 Communications August 1976
of Volume 19
the ACM Number 8

Fig. 3. Represent ing a tape.

Sl s 2

{w} (o.,)

s 5

s4

s 3 s4

(e.,)
(y) (o..>

The moves of T are specified by a function 6 from
K X F to K X F X {L, R}. If~(q, X) = (p, Y, R) for
states p and q and tape symbols X and Y, then should
the Turing machine T find itself in state q, with its
tape head scanning a cell holding symbol X, then T
enters state p, erases X and prints Y on the tape cell
scanned and moves its tape head one cell to the right.
If g(q, X) = (p, Y, L), the same thing happens, but the
tape head moves one cell left (but never off the left
end of the tape at cell 1).

Initially, T is in state qo, the initial state, with its
head at cell 1. Each tape cell holds the blank. There is
a particular state qf , known as the final state, and it is
a fact that it is undecidable whether started as above,
an arbitrary Turing machine T will eventually enter
state qs •

THEOREM 2. I t is undecidable whether a given con-
figuration of a given protection system is safe for a given
generic right.

PROOF. We shall show that safety is undecidable
by showing that a protection system, as we have defined
the term, can simulate the behavior of an arbitrary
Turing machine, with leakage of a right corresponding
to the Turing machine entering a final state, a condition
we know to be undecidable. The set of generic rights
of our protection system will include the states and
tape symbols of the Turing machine. At any time, the
Turing machine will have some finite initial prefix
of its tape cells, say 1, 2 , . . . k, which it has ever scanned.
This situation will be represented by a sequence of k
subjects, sx, s 2 , . . . , sk, such that s~ "owns" s~+x for
1 < i < k. Thus we use the ownership relation to order
subjects into a linear list representing the tape of the
Turing machine. Subject s~ represents cell i, and the
fact that cell i now holds tape symbol X is represented
by giving s~ generic right X to itself. The fact that q
is the current state and that the tape head is scanning
the j th cell is represented by giving s~. generic right q
to itself. Note that we have assumed the states distinct
from the tape symbols, so no confusion can result.

There is a special generic right e n d , which marks
the last subject, sk. That is, sk has generic right end

to itself, indicating that we have not yet created the
subject sk+l which s~ is to own. The generic right o w n

completes the set of generic rights. An example showing
how a tape whose first four cells hold W X Y Z , with

the tape head at the second cell and the machine in
state q, is shown in Figure 3.

The moves of the Turing machine are reflected in
commands as follows. First, if

6(q, X) = (p, Y, L),

then there is

command Cqx(s, s')
if

own in (s, s') and
q in (s', s') and
X in (s', s')

then
delete q from (s', s')
delete X from (s', s')
enter p into (s, s)
enter Y into (s', s')

end

That is, s and s' must represent two consecutive cells
of the tape, with the machine in state q, scanning lhe
cell represented by s', and with the symbol X written
in s'. The body of the command changes X to Y and
moves the head left, changing the state from q to p.
For example, Figure 3 becomes Figure 4 when com-
mand C~x is applied.

If

6(q, X) = (p, Y, R),

that is, the tape head moves right, then we have two
commands, depending whether or not the head passes
the current end of the tape, that is, the end right.
There is

command C~x(s, s')
if

own in (s, s') and
q in (s, s) and
X in (s, s)

then
delete q from (s, s)
delete X from (s, s)
enter p into (s', s')
enter Y into (s, s)

end

To handle the case where the Turing machine moves
into new territory, there is also

command Dqx(s, s')
i f

end in (s, s) and
q in (s, s) and
X in (s, s)

then
delete q from (s, s)
delete X from (s, s)
create subject s'
enter B into (s', s')
enter p into (s', s')
enter Y into (s, s)
delete end from (s, s)
enter end into (s', s')
enter own into (s, s')

end

If we begin with the initial matrix having one sub-

469 Communications August 1976
of Volume 19
the ACM Number 8

ject s l , with rights qo, B (blank) and end to itself, then
the access matrix will always have exactly one generic
right that is a state. This follows because each com-
mand deletes a state known by the conditions of that
command to exist. Each command also enters one
state into the matrix. Also, no entry in the access
matrix can have more than one generic right that is a
tape symbol by a similar argument. Likewise, end
appears in only one entry of the matrix, the diagonal
entry for the last created subject.

Thus, in each configuration of the protection system
reachable from the initial configuration, there is at
most one command applicable. This follows from the
fact that the Turing machine has at most one applicable
move in any situation, and the fact that Cqx and D~x
can never be simultaneously applicable. The protection
system must therefore exactly simulate the Turing
machine using the representation we have described.
If the Turing machine enters state q:, then the protec-
tion system can leak generic right q:, otherwise, it is
safe for q:. Since it is undecidable whether the Tur ing.
machine enters q/, it must be undecidable whether the
protection system is safe for q/.

We can prove a result similar to Theorem 2 which is
in a sense a strengthening of it. Theorem 2 says that
there is no single algorithm which can decide safety
for all protection systems. One might hope that for
each protection system, one could find a particular
algorithm to decide safety. We can easily show that
this is not possible. By simulating a universal Turing
machine [7] on an arbitrary input, we can exhibit a
particular protection system for which it is undecidable
whether a given initial configuration is sate for a given
right. Thus, although we can give different algorithms
to decide safety for different classes of systems, we can
never hope even to cover all systems with a finite, or
even infinite, collection of algorithms.

Two other facts are easily seen. First, since we know
that there are arbitrarily complex computable functions,
there must be special cases of protection systems where

Fig. 4. After one move.

Sl

S2

S 3

S4

sl S2

.. { o , , }

{Y}

S3 S 4

OWn)
OWn}

(z , , , a }

safety is decidable but arbitrarily difficult. Second,
although any real system must place a bound on the
number of objects which can be created, this bound
will not make the decision of the safety question 'easy.
While the finiteness of real resources does make safety
decidable, we can show the following.

THEOREM 3. The question of safety for protection
systems without create commands is complete in poly-
nomial space:

PROOF. A construction similar to that of Theorem 2
proves that any polynomial space bounded Turing
machine can be reduced in polynomial time to an
initial access matrix whose size is polynomial in the
length of the Turing machine input.

6. Conclusions and Open Questions

A very simple model for protection systems has
been presented in which most protection issues can
be represented. In this model, it has been shown that
no algorithm can decide the safety of an arbitrary
configuration of an arbitrary protection system. To
avoid misunderstanding of this result, we shall list
some implications of the result explicitly.

First, there is no hope of finding an algorithm which
can certify the safety of an arbitrary configuration of an
arbitrary protection system, or of all configurations
for a given system. This result should not dampen the
spirits of those working on operating systems verifi-
cation. It only means they must consider restricted
cases (or individual cases), and undoubtedly they have
realized this already.

In a similar vein, the positive result of Section 4
should not be a cause for celebration. In particular, the
result is of no use unless it can be strengthened along
the lines of the models in [8].

Our model offers a natural classification of certain
features of protection systems and provides an in-
teresting framework for investigating the following
questions: Which features cause a system to slip over
the line and have an undecidable safety problem?
Are there natural restrictions to place on a protection
system which make it have a solvable safety question?

Acknowledgment. The authors thank one of the
referees for simplifying the proof of Theorem 2.

Received November 1974; revised December 1975

This probably implies that that decision problem requires ex-
ponential time: cf. [1].

470 Communications August 1976
of Volume 19
the ACM Number 8

References
1. Aho, A.V., Hopcroft, J.E., and Ullman, J.D. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading,
Mass., 1974.
2. Andrews, G.R. COPS--A protection mechanism for computer
Systems. Ph.D. Th. and Tech. Rep. 74-07-12, Computer Sci.
Program, U. of Washington, Seattle, Wash., July, 1974.
3. Bell, D.E., and LaPadula, L.J. Secure Computer Systems,
Vol. I: Mathematical Foundations and Vol. II: A Mathematical
Model. MITRE Corp. Tech. Rep. MTR-2547, 1973.
4. Dennis, J.B., and Van Horn, E.C. Programming semantics for
multiprogrammed computations. Comm. ACM 9, 3 (March 1966),
143-155.
5. Graham, R.M. Protection in an information processing
utility. Comm. ACM 11, 5 (May 1968), 365-369.
6. Graham, G.S., and Denning, P.J. Protection--principles and
practice. AFIPS Conf. Proc., 1972 SJCC, Vol. 40, AFIPS Press,
Montvale, N.J., 1972, pp. 417-429.
7. Hopcroft, J.E., and Ullman, J.D. Formal Languages and
Their Relation to Automata. Addison-Wesley, Reading, Mass.
1969.
8. Jones, A.K. Protection in programmed systems. Ph.D. Th.,
Dep. of Computer Sci., Carnegie-Mellon U., Pittsburgh, Pa.,
June 1973.
9. Jones, A.K., and Wulf, W. Towards the design of secure
systems. In Protection in Operating Systems, Colloques IRIA,
Rocquencourt, France, 1974, pp. 121-136.
10. Lampson, B.W. Protection, Proc. Fifth Princeton Syrup. on
Information Sciences and Systems, Princeton University, March
1971, pp. 437-443. Reprinted in Operating Systems Rev. 8, 1
(Jan. 1974), 18-24.
11. Lampson, B.W. A note on the confinement problem. Comm.
ACM 16, 10 (Oct. 1973), 613-615.
12. Needham, R.M. Protection systems and protection imple-
mentations. AFIPS Conf. Proc., 1972 FJCC, Vol. 41, AFIPS
Press, Montvale, N.J., 1972, pp. 571-578.
13. Popek, G.J. Correctness in access control. Proc. ACM Nat.
Computer Conf., 1974, pp. 236-241.
14. Ritchie, D.M., and Thompson, K. The UNIX time sharing
system. Comm. ACM 17, 7 (July 1974), 365-375.
15. Saltzer, J.H. Protection and the control of information sharing
in MULT1CS. Comm. ACM 17, 7 (July 1974), 388-402.

471

P r o g r a m m i n g
Techniques

C. Manacher , S. L. G r a h a m
Editors

An Insertion
Technique for
One-Sided
Height-Balanced Trees
D. S. Hirschberg
Princeton University

A restriction on height-balanced binary trees is
presented. It is seen that this restriction reduces the
extra memory requirements by half (from two extra
bits per node to one) and maintains fast search capa-
bilities at a cost of increased time requirements for in-
serting new nodes.

Key Words and Phrases: balanced, binary, search,
trees

CR Categories: 3.73, 3.74, 4.34, 5.25, 5.31

Binary search trees are a data structure in c o m m o n
use. To keep search time relatively small, the method of
balancing binary trees was in t roduced by Adel ' son-
Vel'skii and Landis [1]. These height-balanced binary
trees (also called A V L trees) require two extra bits per
node and require only O(log N) operat ions to search
a n d / o r insert an item, where N is the number of nodes
in the tree. Each node in the tree has a height which is
defined to be the length o f the longest pa th f rom that
node down the tree. The heights of the two sons o f a
node may differ by at mos t one.

K n u t h [2] suggests considering the case where the
tree is further restricted so that the right son never has
smaller height than the left son. We call such a tree a
one-sided height-balanced (OSHB) tree. In this case,
only one extra bit is required per node. The saving of
one bit per node is significant if that bit would have re-

Copyright O 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted, provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Research supported by an IBM fellowship. Author's present
address: Department of Electrical Engineering, Rice University,
Houston, TX. 77001.

Communications August 1976
of Volume 19
the ACM Number 8

