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A method of blvariate interpolation and smooth surface fitting is developed for z values given 
at points irregularly distributed in the x-y plane. The interpolating function is a fifth-degree 
polynomial in x and y defined in each triangular cell whmh has projections of three data points 
in the x-y plane as its vertexes. Each polynomial is determined by the given values of z and 
estimated values of partial derivatives at the vertexes of the triangle. Procedures for dividing 
the x-y plane into a number of triangles, for estimating partial derivatives at each data point, 
and for determining the polynomial in each triangle are described A simple example of the 
application of the proposed method is shown. 
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1. INTRODUCTION 

In  a previous s tudy [2, 3] the author developed a method of bivariate interpolation 
and smooth surface fitting. The method was designed in such a way that  the re- 
sulting surface would pass through all the given data points. Adopting local pro- 
cedures, it successfully suppressed undulations in the resulting surface which are 
very likely to appear in surfaces fitted by other methods. Like many  other methods, 
however, this method also has a serious drawback. Applicability is restricted to 
cases where the values of the function are given at rectangular grid points in a 
plane; i.e. if a two-dimensional Cartesian coordinate system with x and y axes is 
assumed in the plane, the values of z = z(x ,  y )  must be given as z,~ = z(x , ,  y~) 
in the x-y plane, where i -- 1, 2 , . . . ,  n~ and j = 1, 2 , . . . ,  n~. This restriction 
prevents application to cases where collection of data at  rectangular grid points is 
impossible or otherwise impractical. The subject of the present s tudy is bivariate 
interpolation and smooth surface fitting in the general case where the values of 
the function are given at irregularly distributed points in a plane; i.e. the case 
where the z values are given as z, = z(x~, y J ,  where i = 1, 2 , . . . ,  n. 

Two types of approaches are possible: one using a single global function, and 
the other based on a collection of local functions. In  the former approach, the 
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procedure often becomes too complicated to manage as the number of  given data 
points increases. Moreover, the surface resulting from the former sometimes 
exhibits excessive undulations. For these reasons, only the latter approach is con- 
sidered in the present study. 

Shepard [9] suggested a method based on weighted averages of the given z values. 
The basic weighting function is the square of the reciprocal of the distance between 
the projection of each data point and that of the point at which interpolation is 
to be performed. The actual weighting function is an improvement of this basic 
weighting function in that the actual function corresponding to a distant data 
point vanishes. Through this improvement the originally global procedures in 
this method became local. This method has several desirable properties. It  takes 
into account the "shadowing" of the influence of a data point by a nearer one in 
the same direction. It  yields reasonable slopes at the given data points. However, 
it fails to produce a plane when all the given data points lie in a slanted plane; this 
property is considered to be a serious drawback. 

Bengtsson and Nordbeck [6], Heap [7], and Lawson [8l suggested methods 
based on partitioning the x-y plane into a number of triangles (each triangle having 
projections of three data points in the x-y plane as its vertexes) and on fitting a 
plane to the surface in each triangle. These methods are useful for some applica- 
tions. Obviously, however, the resulting surface is not smooth on the sides of the 
triangles although it is continuous. 

Whitten and Koelling [10] attempted to fit a curved surface to each triangle in 
such a way that the surface in the triangle would smoothly connect to other sur- 
faces fitted to neighboring triangles. Their function for each triangle has 15 co- 
efficients to be determined by 15 conditions that assure smooth connection with 
the neighboring triangles. As shown in their example, however, these 15 conditions 
sometimes cannot be satisfied. Moreover, even when the 15 conditions are satisfied 
and the 15 coefficients are satisfactorily determined, the function is not smooth 
along the bisector of the triangle due to the use of a "discontinuous function." 

In conjunction with variational problems containing second-order derivatives 
Zlamal [12] discussed an approximation procedure using fifth-degree polynomials 
in x and y over triangular regions in the x-y plane. To determine the coefficients 
of the polynomial for each triangle, he uses, in addition to the z values and the 
first and second partial derivatives (i.e. z,, z~, z~,, z,~, and z~u) at the three vertexes 
of the triangle, three normal derivatives at the midpoints of the sides of the tri- 
angle. (A normal derivative is a derivative differentiated in the direction normal 
to the side.) The theory was generalized to (4m + 1)th-degree polynomials for 
functions m-times continuously differentiable on a closed triangular domain by 
Zenisek [11]. Although a comprehensive interpolation method is not suggested in 
their papers, their papers were instrumental in stimulating portions of the ideas 
developed in the present study. 

Recently the author [4] proposed a method of bivariate interpolation and smooth 
surface fitting that is applicable to z values given at irregularly distributed points 
in the x-y plane. The interpolating function is a smooth function; i.e. the interpolat- 
ing function and its first-order partial derivatives are continuous. The proposed 
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method is based on local procedures. The surface resulting from the proposed 
method will pass through all the given data points. 

The method proposed in the aforementioned report [4] has been improved further: 
a better criterion for triangulation (partitioning into a number of triangles) of the 
plane suggested by Lawson [8] has been adopted; and the algorithm that imple- 
ments the method has been improved substantially, both in the required storage 
area and in the computation time. In this paper, the proposed method is outlined 
in Section 2, some programming problems are discussed in Section 3, a simple 
example that illustrates the application of the proposed method is shown in Section 
4, and some pertinent remarks are set forth in Section 5. An improved Fortran 
subprogram package that  implements the proposed method is presented in an al- 
gorithm developed by the author, ACM Algorithm 526 [5]. 

2. OUTLINE OF THE PROPOSED METHOD 

In the proposed method the x-y plane is triangulated or divided into a number of 
triangular cells, each having projections of three data points in the plane as its 
vertexes, and a bivariate fifth-degree polynomial in x and y is applied to each 
triangular cell. Estimated values of partial derivatives at each data point are used 
in determining the polynomial. 

For triangulation of the x-y plane, we adopt the max-rain angle criterion suggested 
by Lawson [8]. This criterion dictates that, when a set of four points are vertexes 
of a quadrilateral with each internal angle smaller than r, one chooses, out of two 
possible ways of partitioning the quadrilateral into a pair of triangles, the parti- 
tioning that maximizes the minimum interior angle of the two triangles produce~l 
In triangulating the x-y plane, we first connect the closest pair of points. Vve next 
add a point at a time in ascending order of the distance from the midpoint of the 
closest pair of points. This ordering in adding new points assures that a new point 
to be added always lies outside the polygon constructed with the old points; the 
new point lies outside the circle that is centered at the midpoint of the closest 
pair of points and passes through the most lately added old point while the polygon 
lies inside the circle. Each time a new point is added we construct triangles by con- 
necting the new point with the old points that are visible from the new point and, 
whenever necessary, "exchange" triangles. 

Interpolation of z values in a triangle is based on the following three assumptions: 
(i) The value of the function at point (x, y) in a triangle is interpolated by a 

bivariate fifth-degree polynomial in x and y; i.e. 

z (x ,  y )  = 
3~0 k--O 

Note that there are 21 coefficients to be determined. 
(ii) The values of the function and its first-order and second-order partial 

derivatives (i.e. z, z=, z~, z==, z=v, and z~) are given at each vertex of the triangle. 
This assumption yields 18 independent conditions. 

(iii) The partial derivative of the function differentiated in the direction 
perpendicular (or normal) to each side of the triangle is a polynomial of degree 
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three, at most, in the variable measured in the direction of the side of the triangle. 
Since a triangle has three sides, this assumption yields three additional conditions. 

The purpose of the third assumption is twofold. This assumption adds three 
independent conditions to the 18 conditions dictated by the second assumption 
and thus enables one to determine the 21 coefficients of the polynomial. (A detailed 
description of step-by-step procedures for determining the coefficients is found 
elsewhere [4].) I t  also assures smoothness of interpolated values as described in 
the following paragraph. 

Smoothness of the interpolated values and therefore smoothness of the resulting 
surface along the side of the triangle can be proved as follows. I t  is convenient 
to introduce another Cartesian coordinate system, which we call the s-t system, 
in such a way that the s axis is parallel to a side of the triangle. Since the coordinate 
transformation between the x-y  system and the s-t system is linear, the values of 
z=. z.. z==, z==, and zuu at each vertex uniquely determine the values of z~, z ,  z, ,  z,~, 
and z ,  at the same vertex, each of the latter as a linear combination of the former. 
Then the z, z,, and z ,  values at two vertexes uniquely determine a fifth-degree 
polynomial in s for z on the side between these vetexes. Since two fifth-degree 
polynomials in x and y representing z values in two triangles that share the common 
side are reduced to fifth-degree polynomials in s on the side, these two polynomials 
in x and y coincide with each other on the common side. This proves continuity of 
the interpolated z values along a side of a triangle. Similarly, the values of z~ and 
z,t = (zt), at two vertexes uniquely determine a third-degree polynomial in s for 
z~ on the side. Since the polynomial representing zt is assumed to be third degree at 
most with respect to s, two polynomials representing zt in two triangles that share 
the common side also coincide with each other on the side. This proves continuity 
ot zt and thus smoothness of z along the side of the triangle. 

Although the proposed method is intended for interpolation in the polygon in 
the x-y  plane formed by the projections of given data points, capability of extrapola- 
tion outside the polygon is desirable. A high degree of accuracy in extrapolation is 
not expected, but it is desirable if the extrapolated values are smooth, connect 
smoothly to the interpolated values inside the polygon, and do not diverge at least 
in the immediate neighborhood of the polygon. In a semi-infinite rectangular area 
on the border line segment, extrapolation of the desirable nature can be done with 
a bivariate polynomial that is of the fifth degree in the variable measured in the 
direction of the line segment and of the second degree in the distance from the line 
segment. In a semi-infinite triangular area between the two semi-infinite rectangles, 
extrapolation can be done with a bivariate second-degree polynomial in x and y 
that smoothly connects to the two polynomials in the two neighboring rectangles. 

Procedures for estimating the five partial derivatives locally at each data point 
are not unique. The derivatives could be determined as partial derivatives of a 
second-degree polynomial in x and y that coincides with the given z values at six 
data points consisting of five data points, the projections of which are closest to 
the projection of the data point in question and the data point itself. This pro- 
cedure is a bivariate extension of the one used in the univariate osculatory interpola- 
tion [1]. Adoption of this procedure has an advantage that, when z is a second- 
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degree polynomial in x and y, the method yields exact results. As will be shown in 
Section 4, however, this procedure sometimes yields very unreasonable results. 

We take a different approach and estimate the partial derivatives in two steps, 
i.e. the first-order derivatives in the first step and the second-order derivatives in 
the second step. To estimate the first-order partial derivatives at data point P0 
we use several additional data points P~(i = 1, 2 , . . . ,  n~) the projections of 
which are closest to the projections of P0 selected from all data points other than 
P0. We take two data points P, and Ps out of the n¢ points and construct the vector 

product of PoP, and PoPs, i.e. a vector that  is perpendicular to both PoP~' and 

PoPs with the right-hand rule and has a magnitude equal to the area of the parallelo- 

gram formed by ~DoP~ and PoPs. We take P, and P~ in such a way that  the resulting 
vector product always point~ upward (i.e. the z component of the vector product 
is always positive). We construct vector products for all possible combinations of 

PoP, and PoPs(z~J) and take a vector sum of all the vector products thus con- 
structed. Then we assume that the first-order partial derivatives z= and z~ at P0 
are estimated as those of a plane that is normal to the resultant vector sum thus 
composed. Note that, when n~ = 2, the estimated z~ and z~ are equal to the partial 
derivatives of a plane that passes through P0, PI, and/)2. Also note that,  when 
nc = 3 and the projection of P0 in the x-y plane lies inside the triangle formed by 
the projections of P1, P2, and P3, the estimated values of z~ and zu are equal to the 
partial derivatives of a plane that  passes through PI,/)2, and P3. 

In the second step we apply the procedure of partial differentiation described 
in the preceding paragraph to the estimated z~ values at P~(i = O, 1, 2 , . . . ,  nc) 
and obtain estimates of z~ = (z~)= and z~ = (z=)~ at P0. We repeat the same 
procedure with the estimated z~ values and obtain estimates of z~ = (z~)~ and 
z~ -- (z~)~. We adopt a simple arithmetic mean of two z=~ values thus estimated 
as our estimate for z=~ at P0. 

The selection of n~ is again not unique. Obviously, n~ cannot be less than 2. 
Also, it must be less than the total number of data points. Other than those re- 
quirements, there seems to exist no theory that  dictates a definite value for n~. 
The best we can say is that, based on the example shown in Section 4 and on some 
others, we recommend a number between 3 and 5 (inclusive) for n~. 

When the projections of data point P0 and all selected n~ data points P,( i  = 1, 
2 , . . . ,  n~) are collinear in the x-y plane, the procedure of estimating the partial 
derivatives described above does not work. Should this happen, we will replace a 
selected data point that is the farthest from Po among the n~ selected data points 
by a data point that is the next closest to P0 and is not colinear with P0 and other 
selected data points in the x-y plane. 

3. PROGRAMMING CONSIDERATIONS 

In this section we describe some programming problems that we have considered 
in implementing the proposed method presented in Algorithm 526 [5] that accom- 
panies this paper. 

Regarding configurations of the points at which bivariate interpolation is to 
be performed, there are two typical cases. A user may wish to perform bivariate 
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interpolation at a set of points of his choice. Or, he may wish to fit a smooth sur- 
face by interpolating the values at rectangular grid points. I t  is considered desir- 
able to program for each case a separate subroutine that interfaces with the user 
as a master subroutine. 

The proposed method consists of the following five procedures: (1) triangulation 
(i.e. partitioning into a number of triangles) of the x-y plane; (2) determination 
or selection of several data points that are closest to each data point and are used 
for estimating the partial derivatives; (3) location of the output point at which 
bivariate interpolation is to be performed (i.e. determination of the triangle in 
which the point lies), or organization of the output grid points for smooth surface 
fitting by sorting them with respect to triangle numbers; (4) estimation of partial 
derivatives at each data point; and (5) punctual interpolation (i.e. interpolation 
at a point) at each output point. Since these procedures are computationally in- 
dependent of each other, it is considered desirable to program a separate sub- 
routine for each procedure. 

In some applications, repeated computations with the same x and y coordinate 
values of the data points are required. In such applications the first two procedures 
described in the preceding paragraph do not have to be repeated if the intermediate 
results are properly saved. In other applications, repeated computations with the 
same x and y values of both the data points and the output points are required; 
thus the first three procedures do not have to be repeated. I t  is considered desirable 
to devise the algorithm in such a way that the user can save computation time in 
these applications by avoiding unnecessary repetitions. 

This algorithm requires a work area that is used during computation to store 
intermediate results. This work area can be reserved either in the subprograms 
included in the algorithm or in the calling program by the user. For flexibility of 
the algorithm, we prefer the latter. 

Triangulation is a time-consuming procedure. The triangulation algorithm in 
the previous report [4] required a long computation time that was proportional 
to the cube of the number of data points. I t  also required a work area that was 
proportional to the square of the number of data points. Because of these require- 
ments, its applicability was practically limited to 100 data points at most on most 
computers. By implementing the procedures described in Section 2, we have im- 
proved the triangulation algorithm substantially. The triangulation algorithm pre- 
sented in Algorithm 526 [5] requires a computation time that is approximately 
proportional to the square of the number of data points (e.g. 0.005, 0.48, and 32.0 
seconds for 10, 100, and 1000 data points, respectively, on the CDC-6600 com- 
puter). It  requires a work area that is proportional to (and about 20 times) the 
number of data points. 

Selection of several data points that are closest to a specified data point is another 
time-consuming procedure. The selection algorithm presented in the previous re- 
port [4] was inefficient, and an improvement has been made. The improved se- 
lection algorithm in Algorithm 526 [5] requires a computation time that is approxi- 
mately proportional to the square of the number of data points and is less than 
half of that required for triangulation for the same number of data points. 

Locating a point in the triangular grid (i.e. determining the triangle in which 
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the point lies) is also a time-consuming procedure. We have also improved the 
algorithm for this procedure by dividing the x-y plane into nine rectangular areas 
and by listing triangles associated with each rectangle. The location algorithm 
presented in Algorithm 526 [5] requires a computation time that is approximately 
proportional to the square root of the number of data points; it is several times 
faster than the one in the previous report [4]. 

For smooth surface fitting, all rectangular grid points are located and interpola- 
tion is performed at all grid points. In this case, both location of rectangular grid 
points and interpolation of values are faster on triangle by triangle basis than on 
grid-point by grid-point basis. We have programmed a new subroutine that or- 
ganizes the grid points for surface fitting by sorting them with respect to triangle 
numbers; for each triangle, this subroutine sweeps the rectangular grid points, 
searching grid points that lie inside the triangle, and lists them in a table. In the 
surface fitting subroutine, interpolation is performed at grid points in a triangle 
consecutively so that  unnecessary recalculations of the polynomial coefficients are 
avoided. 

The choice of computing at the beginning and saving the estimates of partial 
derivatives at all data points or computing the estimates at a point each time is 
another programming problem. We have chosen the former because the first step 
of the proposed method for estimating partial derivatives at a data point involves 
estimation at several data points in addition to the data point in question and it 
is simpler to do the first step for all data points first. Obviously, this choice is 
inefficient in the case of many data points and few output points. By reducing data 
points beforehand in such a case, however, the user can save computation times 
not only for the derivative estimation but also for other procedures including 
triangulation. 

4. APPLICATIONS 

Using a simple example taken from the previous study [2, 3], we illustrate the ap- 
plication of the proposed method. We take a quarter of the surface shown in the 
example in the previous study and sample 50 data points from the surface ran- 
domly. The coordinate values of the sampled data points are shown in Table I. 
Knowing from the physical nature of the phenomenon that z(x, y) is a single- 
valued smooth function of x and y, we try to interpolate the z values and to fit a 
smooth surface to the given data points. 

Figure 1 depicts contour maps of the surface resulting from the 30 data points 
with asterisks in Table I, while Figure 2, from all the 50 data points in the table. 
In these contour maps, projections of the data points are marked with encircled 
points. In each figure, the original surface from which the data points were sampled 
is shown in (a). The surface fitted with piecewise planes (i.e. the surface consistmg 
of a number of pieces of planes, each applicable to one triangle) is shown in (b). 
Of course, such a surface is continuous but not smooth. The surface fitted by the 
method that estimates the partial derivatives with a second-degree polynomial is 
shown in (c). The surfaces fitted by the proposed method using three, four, and 
five additional data points for estimation of partial derivatives at each data point 
ACM Transactions on Mathematmal  Software, Vol 4, No 2, June 1978 
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Table I. An Example Set of Data Points 

(Thirty points with asterisks are used in Figure 1, while all 50 points are used in Figure 2.) 

i x i Yi zi 

1 * 11.16 1.24 22.15 
2 * 24.20 16.23 2.83 
3 12.85 3 .06  22.11 
4 * 19.85 10.72 7.97 
5 * 10.35 4.11 22.33 

6 24.67 2.40 10.25 
7 * 19.72 1.39 16.83 
8 15.91 7.74 15.30 
9 * 0.00 20.00 34.60 

10 * 20.87 20.00 5.74 

Ii 6.71 6.26 30.97 
12 3.45 12.78 41.24 
13 • 19.99 4.62 14.72 
14 14.26 17.87 10.74 
15 * 10.28 15.16 21.59 

16 * 4.51 20.00 15.61 
17 17.43 3.46 18.60 
18 22.80 12.39 5.47 
19 * 0.00 4.48 61.77 
20 7.58 1.98 29.87 

21 * 16.70 19.65 6.31 
22 * 6.08 4.58 35.74 
23 1.99 5.60 51.81 
24 * 25.00 I1.87 4.40 
25 * 14.90 3.12 21.70 

i x i Yi zi 

26 3.22 16.78 39.93 
27 a 0.00 0.00 58.20 
28 • 9.66 20.00 4.73 
29 2.56 3.02 50.55 
30 * 5.22 14.66 40.36 

31 * 11.77 10.47 13.62 
32 17.25 19.57 6.43 
33 ¢ 15.10 17.19 12.57 
34 * 25.00 3.87 8 .74  
35 12.13 10.79 13.71 

36 * 25.00 0.00 12.00 
37 22.33 6.21 10.25 
38 11.52 8.53 15.74 
39 * 14.59 8.71 14.81 
40 • 15.20 0.00 21.60 

41 7.54 10.69 19.31 
42 • 5.23 10.72 26.50 
43 17.32 13.78 12.11 
44 * 2.14 15.03 53. I0 
45 ~-" 0.51 8.37 49.43 

46 22.69 19.63 3 .25 
47 ~-" 75.00 20.00 0 .60  
48 5.47 17. 13 28.63 
49 ~:-" 21.67 14.36 5 .52  
50 ~-" 3.31 0.13 44 .08  

are shown in (d), (e), and (f), respectively. In  drawing these contour maps, the 

z values were interpolated by their respective methods at the nodes of a grid con- 

sisting of 100 by  80 squares; in each square, the z values were interpolated linearly. 

Figures 1 and 2 indicate tha t  the proposed method yields reasonable results 

although these results might not necessarily be satisfactory for some applications. 

In  these figures very little difference is exhibited in the resulting surfaces due to the 

difference in the number of data points used for the estimation of partial derivatives 

in the proposed method. Figures 1(c) and 2(c) demonstrate a peculiar idiosyn- 

cracy of the method based on second-degree polynomials: more data  points yield 

a much worse result in this example. 
The decision whether or not the proposed method is applicable to a particular 

problem rests on each prospective user of the method. The examples given here are 
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Fig. 1. Contour maps for the surfaces fitted to 30 data  points given by asterisks in Table  I. 
(The number of points in the captions for (d), (e), and (f) are the number of additional data  

points used for est imating partial  derivat ives at  each data  point.) 

expected to aid one in making such a decision. Comparison of (d), (e), or (f) 
fitted by the proposed method with (a) the original surface or (b) the piecewise- 
plane surface in each figure should be helpful for such a decision. Also, comparison 
of Figures 1 and 2 gives one some idea of the dependence of the resulting surfaces 
upon the total number of data points and the complexity of original surfaces. 
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( f )  Proposed Method ( 5 points) 
Fig.  2. C o n t o u r  m a p s  for t he  sur faces  f i t ted  to  50 d a t a  po in t s  g iven in  Tab le  I. (See the  n o t e  

in  t he  c a p t m n  for F igure  1.) 

5. CONCLUDING REMARKS 

We have described a method of bivariate interpolation and smooth surface fitting 
tha t  is applicable when z values are given at points irregularly distributed in an 
x-y plane. For proper application of the method, the following remarks seem perti- 
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nent: 
(i) The method does not smooth the data. In other words, the resulting surface 

passes through all the given points if the method is applied to smooth surface 
fitting. Therefore, the method is applicable only when the precise z values ~re 
given or when the errors are negligible. 

(ii) As is true for any method of interpolation, the accuracy of interpolation 
cannot be guaranteed, unless the method in question has been checked in advance 
against precise values or a functional form. 

(iii) The result of the method is invariant under a rotation of the x-y coordinate 
system. 

(iv) The method is linear. In other words, if z(x,, y~) = az'(xi, y,) Jr bz"(x~, y~) 
for all i, the interpolated values satisfy z(x, y) = az'(x, y) + bz"(x, y), where 
a and b are arbitrary real constants. 

(v) The method gives exact results when z(x, y) represents a plane; i.e. 
z(x, y) = a~ + alox + ao~y, where a~, al0, and a01 are arbitrary real constants. 

(vi) The method requires only straightforward procedures. No problem con- 
cerning computational stability or convergence exists in the application of the 
method. 

A computer subprogram package that  implements the proposed method is 
presented in Algorithm 526 [5]. 
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