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ON DESIGN PRINCIPLES FOR 
A MOLECULAR COMPUTER 

If the unique information-processing capabilities of protein enzymes could 
be adapted for computers, then evolvable, more efficient systems for such 
applications as pattern recognition and process control are in principle 
possible. 

MICHAEL CONRAD 

It is only recently that a serious interest in the possibil- 
ity of using carbon-based materials for computing has 
developed in the scientific community. Formerly, indi- 
viduals expressing an interest in exploring this possibil- 
ity would have been advised to implement their com- 
puting concepts in existing electronic technologies. In- 
deed, to the best of my knowledge, no molecular com- 
puting device has so far been constructed or shown to 
be imminent. However, a convergence of developments 
in a number of fields, including polymer chemistry, 
various biotechnologies, the physics of computation, 
and computer science, has changed the situation. Theo- 
retical arguments suggest that more efficient and adapt- 
able modes of computing are possible, while emerging 
biotechnologies point to possibilities for implementa- 
tion. Their common ground is molecular computing. 

One immed:iate objective is to produce a von 
Neumann-type computer in carbon, rather than silicon 
[3]. The assumption is that carbon chemistry may facil- 
itate the construction of smaller and faster devices. At- 
tention has therefore been focused on the possibilities 
for organic sw:itching devices and conducting polymers 
[21,41], and secondarily on the problems of contact 
and reliability. Certainly, work in this area is poten- 
tially important. Even so, it is likely that molecular 
computing will prove to be much more valuable out- 
side the context of conventional von Neumann com- 
puters. Critically important computing needs such as 
adaptive pattern recognition and process control may 
be refractory to simple decreases in size and increases 
in speed. Instead of suppressing the unique properties 
of carbon polymers, we should consider how to harness 
them to fill these needs. 

The information-processing capabilities of biological 
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systems, which are ultimately based on the conforma- 
tional properties of protein enzymes, suggest this ap- 
proach (see Figures l-3). Although elaborate conforma- 
tion is probably incompatible with good conductivity, it 
allows for the lock-and-key type interactions that en- 
able enzymes to recognize specific molecular objects by 
exploring their shapes.’ Shape-based specificity is a 
form of tactile pattern recognition. Admittedly, en- 
zymes make for much slower switches than transistors 
(typically 0.1 millisecond, as compared to.a nanosec- 
ond). To simulate the sensory and control functions 
they perform, however, would require an enormous 
number of switching processes in a digital computer. 
Designs that use functions of this sort as primitives- 
predefined elements that are irreducible as far as the 
computing power of the machine is concerned-can 
reasonably be expected to yield significant increases in 
computational power for such tasks as pattern recogni- 
tion and process control. In addition, enzymes have the 
virtue of being adaptable switches, which makes them 
amenable to tailoring for particular functions through 
trial-and-error evolution. The evolution process pro- 
ceeds by variation of the sequence of amino acids in 
the enzyme, followed by selection and propagation of 
the best-performing sequences (see Figure 4). 

However, these advantages can only be exploited at 
the expense of programmability, which is the major 
feature of today’s computers. This idea can be stated in 
the form of a trade-off principle: A system cannot at the 
same time be effectively programmable, amenable to evolu- 
tion by variation and selection, and computationally effi- 
cient. The von Neumann computer opts for programma- 
bility. The trade-off theorem suggests that an alterna- 

’ The argument is that the conformational flexibility of biopolymers is con- 
comitant to the lack of conjugation required for electronic conductivity [43]. 
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tive domain of computing is in principle possible, 
where programmability is exchanged for efficiency and 
adaptability. Biological systems, as the products of evo- 
lution, must operate in this alternative domain. 

ESSENTIAL FEATURES OF VON NEUMANN 
COMPUTERS 
Let us first list some of the fundamental features of von 
Neumann computers. These features have become so 
familiar that it is possible to forget how remarkable 
they really are [6]: 

1. Programming languages exist. It is a fact of experi- 
ence that if we can conceive of an algorithm we can 
always express it directly in any of a large number of 
computer languages (e.g., ALGOL, LISP, Pascal). A basic 
feature of all such languages is that they are defined by 
a finite, discrete base set of symbolic primitives. Were 
these symbols not finite in number, a user’s manual 
could not be finite either. Were the symbols not dis- 
crete, it would be necessary to perform calculations to 
ascertain what algorithm a program actually expresses. 
The psychological sense of directness conveyed by to- 
day’s computer languages is derived from these proper- 
ties. 

2. Effective programmability. Once a program is writ- 
ten, it is always possible to effectively communicate it 
to an actual machine. From a user’s point of view, this 
communication process may be mediated by an inter- 
preter, which can read and follow any particular pro- 
gram, or by a compiler, which sets the state of the 
machine so as to execute the desired program. 

3. Structural programmability. Digital computers all 
employ a small repertoire of simple switches (e.g., logic 
gates and on-off devices). Each switch constitutes a 
switching primitive. It is always possible to write a pro- 
gram in a language that directly maps the structure of 
the machine and the state of each component [8, 141. 
This property, structural programmability, is the basis for 
all other forms of programmability in today’s com- 
puters. The network in Figure 5 illustrates the concept 
of structural programmability. It shows how algorithms 
expressed in terms of the symbolic primitives of a 
highly simplified programming language can be ex- 
pressed directly in terms of the switching primitives of 
the network. Of course, the diagram of the network is 
also a language, and the “switching” primitives in it are 
also symbolic primitives. However, they are symbolic 
primitives that can easily be realized as switches. 

4. Universality. Were there no limitations on time 
and space, the von Neumann computer could run any 
conceivable program. It is also universal in that, so far 
as is known, it can simulate any physically realizable 
process in nature (more on this in the next section). 

5. Sequentiality. It is possible for the von Neumann 
computer to execute a single elementary operation at a 
time. True parallelism, as where two or more programs 

have access to the same computational resources at the 
same time, is also possible, but, in general, only at the 
expense of effective programmability (for a discussion 
of parallelism and speedup, see [26]). 

The von Neumann computer also has fundamental 
shortcomings: 

6. Inefficiency. Von Neumann computers make ineffi- 
cient use of available space, time, and energy resources. 
The vast majority of processors are dormant at any 
given time. 

7. Sensitivity. The sensitivity of programs to change 
is a matter of common and usually unpleasant experi- 
ence. 

The strengths of the von Neumann design (properties 
l-5) are all control properties. Intensive efforts are un- 
der way in computer science to retain these control 
properties while removing the constraints on efficiency 
and adaptability [properties 6 and 7). The trade-off prin- 
ciple suggests that the strengths of the von Neumann 
computer are inextricably linked to its limitations. 

THE TURING-CHURCH THESIS 
The capabilities computer scientists generally associate 
with the von Neumann computer are summed up in 
the famous thesis of Turing and Church (a recent gen- 
eral discussion can be found in [zJ]). One statement of 
this thesis is any effectively computable function is com- 
putable by a formal process involving simple operations on 
strings of symbols. A program is a rule that generates 
such a process. The classic Turing formalization of a 
computing process is illustrated in Figure 6. The Turing 
machine program can be rewritten in any general- 
purpose algorithmic language. These various formaliza- 
tions all define the same class of functions-the partial 
recursive functions. To prove this, it is only necessary 
to show that they are all equivalent up to the point of 
simulation, that is, up to the coding of strings of sym- 
bols into other strings of symbols. This equivalence 
supports the Turing-Church thesis, although it does not 
actually prove it. Indeed, proof is impossible, since the 
claim is that an informal concept of computation is 
equivalent to any of a large number of formal models of 
computation. Disproof, however, is possible if a con- 
vincing counterexample can be found. Computer scien- 
tists generally accept Turing-Church because no such 
counterexample has ever been discovered. 

The Turing-Church thesis is sometimes interpreted 
narrowly as encompassing only the processes of logic 
and mathematics. The strongest interpretation is that 
any physically realizable system or process must be effec- 
tively computable. If a physically realizable system or 
process were not effectively computable, it could be 
used as a new primitive of computation, thereby en- 
larging the class of functions computable by systems in 
nature. For the purpose of this article, I accept this 
strong form of the Turing-Church thesis, first because 
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T-t, energy-dependent folding 

Y 

The sequence of nucleotide bases in DNA, which stores 
the information accumulated during the course of eV0k.b 
tion, is translated to the sequence of amino acids in pro- 
teins. The amlino-acid sequence is pictured schematically 
as a string of beads, each different type of bead stand- 
ing for one tyjpa of amino acid. Weak interactions among 
the amino acilds cause this linear representation of in- 
formation to spontaneously fold up, forming a thrae- 
dimensional spatial structure. Strong or covalent bonds 

are pictured with dark springs, and weak bonds, which 
determine the folded structure, by light springs. Only 
some features of the enzyme’s folded shape are critical 
for its function. Here, the relative position of the triangles 
conveys the critical shape feature. Natural proteins are 
built from 20 types of amino acids. A typical protein might 
comprise a folded string of 300 amino acids. The func- 
tions performed by the protein are determined by its 
three-dimensional structure and dynamics. 

FIGURE 1. The Representation of Information in Proteins 

B:‘~l substrate enzyme 

A protein serves as an enzyme, or biological catalyst, if it the two molecules become significant. Shapedependent 
speeds the formation or severing of a particular covalent recognition is sometimes described as a “lock-key” mech- 
bond in a parhcular target molecule, called the substrate. anism; in reality, though, the dynamical properties of the 
In so doing, the protein switches the substrate from one enzyme also play a role. The enzyme may assume differ- 
state to another. Before switching can occur, the enzyme ent shapes, or states with different functional properties, 
must recognize the substrate-that is, distinguish it from as a result of interactions with control molecules, Fea- 
other, possibly quite similar molecules. Recognition is a tures of shape may serve a6 binding sites that allow the 
tactile phenomenon involving the complementary fit of en- enzyme to recognize and stick to specific molecular 
zyme and substrate shapes. The enzyme and substrate structures. Some proteins with purely structural functions 
explore one another by means of diffusional motion. use this type of lock-key interaction to self-assemble into 
When a close ‘fit occurs, short-range interactions between larger molecular structures. 

FIGURE 2. Proteins as Pattern-Recognizing Switches 
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New proteins arise through variation mechanisms, such 
as mutation, which alter the amino-acid sequence. A sin- 
gle mutation of a crucial amino acid may disrupt the abil- 
ity of the protein to recognize and switch substrates. 
Other mutations produce only slight changes in shape 
and function. Diagram (a) shows how folding can serve to 
distribute the effects of mutation over the whole struc- 
ture. The mutated amino acid is represented by the large 
striped circle. The relative orientation of the triangles, 
which represent a feature of shape critical for function, is 
altered as compared to the unmutated protein illustrated 
in Figure 1. By distributing the effects of mutation, folding 
allows the critical shape feature (i.e., the orientation of the 
triangles) to change only slightly in a significant number of 
cases. The effects of mutation on this feature may be 
further buffered by redundancies: Redundancy in the 
number of types of amino acids allows for mutation to 
closer structural analogs, as represented by the some- 
what smaller striped circle in (b). Redundancy in the num- 
ber of amino acids increases the capacity of the protein 
to absorb the effects of mutation in features of shape that 
are not critical for function. This is illustrated by the par- 
tially restored alignment of the triangles in (c). Redundan- 
ties that buffer the effects of mutation lead to an enor- 
mous speedup of the evolution process. 

FIGURE 3. The Evolutionary Adaptability of Proteins 
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FIGURE 4. The Evolutionary Learning Algorithm 

what is of interest is the computational uses to which 
physically realizable systems can be put, and second 
because the thesis would be rather trivial if physically 
realizable systems existed that could violate it. 

THE EQUIVALENCE OF DYNAMICS 
AND COMPUTATION 
Taken in this strong form, the Turing-Church thesis 
provides a link between formal models of computation 
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The “programmer” specifies the task and the criteria for 
success. EVolution proceeds by variation of the amino- 
acid sequences of the pioteins. Selection is based on 
how well each protein performs a desired task. In general 
this evalliation is based on the performance of the system 
in which the protein is acting, just as in nature it is based 
on how well the organism performs. Better-performing 
Systems are said to be more “fit.” Propagation of fit pro- 
teins is achieved by producing copies of them rather than 
of less fit proteins. Improvement is achieved by coupling 
the copy process to the variation process. In nature this 
is achieved by differential reproduction of organisms, 
where reproduction is coupled to variation of genes. The 
artificial selection process pictured here differs in two ma- 
jor ways from evolutionary processes in nature. First, 
there is the fad that in nature many genes control the 
traits of organisms. Higher mechanisms of variation such 
as crossing over, recombination, and variations affecting 
the regulation of gene expression are important. As with 
simple mut&tions, however, these higher mechanisms re- 
quire the organizations on which they act to be capable 
of improvement through sequences of single variation 
events in order for them to make an effective contribution 
to the evolutionary process. The second major difference 
is that the task-definition and selection processes are 
artificial, that is, determined by a programmer, rather than 
consequences of ongoing interactions among organisms 
or between organisms and their environment. The evolu- 
tionary programmer specifies goals in terms of criteria of 
selection, whereas a digital-computer programmer speci- 
fies structures to achieve the desired goals. 

and dynamical processes far removed from those con- 
jured up by the mechanisms present in a von Neumann 
computer. The von Neumann computer is a physical 
realization of a formal system executing simple opera- 
tions on strings of symbols. We say that such a com- 
puter simulates a dynamical system if states of the com- 
puter can be made to correspond to states of the dy- 
namical system at each point in time to an arbitrarily 
high degree of approximation. (We do not, however, 
require that every state of the machine correspond to a 
state of the dynamical system [IS].) According to 
Turing-Church, all physically realizable dynamics are 
equivalent to computation in that they can be simulated 
by a von Neumann computer under the idealization 
that space and time bounds can be ignored. If we could 
demonstrate that the dynamics of a particular physical 
system could not be so simulated, then we could use 
this system to solve problems effectively (i.e., by a defi- 
nite procedure) that would be unsolvable by a digital 
process. For example, we could solve the problem of 
generating the behavior of this particular dynamical 
system. Either the Turing-Church thesis implies that 
all physically realizable processes can be duplicated by 
digital computers, or it fails to put any limits on what 
real systems are effectively capable of doing. 

Of course, the simulation of a phenomenon-of a nu- 
clear explosion, for instance-is not the same thing as 
the phenomenon itself. All simulations are abstract in 
that they fail to capture some aspect of the simulated 
system. This is the case whether the simulation is of 
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For simplicity we consider a machine (technically a semi- 
automaton) with three inputs, xl, x2, and x3, and three 
states, ql, q2, and q3. The program is a sequence of 
triples of the form qixiqk. The primitives of the construc- 
tion are McCultoch-Pitts formal neurons (a). These fire if 
the sum of their inputs (inputs can be 0 or 1) equals or 
exceeds a threshold, which in thiscase is always 2. In the 
canonical network (b), state q, is coded by the firing of a 
formal neuron in column i, and input x1 by the firing of 

FIGURE 5. The Concept of Structural Programmability 

one string process by another or of a continuous dy- 
namical process by a string process, as in the example 
of the nuclear explosion. The execution sequence of 
the computer has the same ontological relationship to 
the real explosion as do the hydrodynamic equations 
that describe the explosion. The equations are a map 
from states to states that is meaningfully defined only 
in terms of some method of computation. The explosion 
and the machine that simulates it can be thought of as 
alternative means of computing this map. The real con- 
tent of the Turing-Church thesis, if it is correct, is that 
any physically realizable map can also be realized by 
the execution sequence of a physical system performing 
formal operations on strings of symbols. Many maps can 

be imagined that are not computable by simple opera- 
tions on strings of symbols-a map of all computer pro- 
grams into the two categories, correct and incorrect, for 
instance. Computing this map is equivalent to solving 
the halting problem, which we know to be unsolvable 
by a Turing machine or any process equivalent to a 
Turing machine [16]. If an actual system could realize 
this map, it would constitute a new primitive that could 
not be duplicated with any set of primitives formerly 
believed to define the class of computable functions. 

The proposed equivalence of dynamics and computa- 
tion makes it clear that tying the concept of computing 
to any single model of computation is arbitrary. Any 
physically realizable process whatsoever can be admit- 
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The three components are a finite-state machine (A). a 
read-write head, and a tape that can be read, marked, or 
moved a square to the right or left. The inputs to A are 
tape symbols, and the outputs either tape symbols or 
moves. The program of the luring machine oan Be ex- 
pressed as a set of quadruples of the form q,x,y&, 
where 4, is tihe initial state, xj the symbol read on tple 
tape, yh the output symbol or move, and 9 the finat state. 
Turing thought of A as an abstraction of a person per- 
forming some symbolic process (e.g., an arithmetic pro- 
cess) on a notepad (i.e., the tape). The program.ex- 
presses the rule according to which the “states elf mind” 
of A change. The finite-state device can always be real- 
ized by a selt of McCuIIoch-Pitts formal neurcjns of the 
type shown in Figure 5. 

FIGURE 6. A Turing Machine 

ted as a computational primitive. Our current prefer- 
ence for simple switching processes can be attributed to 
our desire to exert prescriptive control over computa- 
tion. Even if a dynamical process is effectively comput- 
able, the machine that incorporates this process as a 
primitive need not be effectively programmable. The 
discrete, finite aspect of the primitives would be lost, 
and with it the ability to communicate algorithms di- 
rectly to the machine. [Analog computers are of course 
an exception alf sorts. It is possible to use a precisely 
defined system analogy to guide design. Admitting arbi- 
trary physical processes as primitives of computation 
is generally incompatible with prescriptive design, 
however.) 

We have observed that all simulations are abstract in 
that they only represent what they simulate. This raises 
the question, could this “abstractness” be a significant 
limitation? The philosopher Ludwig Wittgenstein ar- 
gued that the interpretation of a rule could never be an 
intrinsic property of the rule itself [48]. For example, 
the interpretat:ion of the symbol ‘I+” is not inherent in 
that symbol. If we accept the idea that all essential 
aspects of human intelligence can be duplicated by fol- 
lowing formal rules expressed as computer programs 
(i.e., by following algorithms), then we must maintain 
either that rules can carry their own interpretation or 
that an interpretation can be an emergent property of a 
set of rules. If symbol interpretation cannot be achieved 

in these ways, it could be argued that machines like the 
von Neumann computer, which are constrained to real. 
ize formal sets of rules, are limited in their ability to 
duplicate a crucial aspect of human intelligence. Such e 
limitation would not necessarily apply to systems like 
the molecular computer design here described, which 
are not so constrained. For ascertaining whether it is 
useful to enlarge the pantheon of computational primi- 
tives, however, it is sufficient to accept the Turing- 
Church thesis as formulated. The class of Turing com- 
putable functions is so much larger than the class of 
functions that could be computed by any finite system 
that it is the comparative performance within this class, 
indeed within a rather minute subdivision of it, that is 
the issue of immediate concern. It is sufficient to show 
that a molecular computer could perform some useful 
tasks that could only be performed by a present-day 
computer at an excessive cost in terms of computa- 
tional resources. 

PROGRAMMABILITY VERSUS EVOLVABILITY 
The first part of the trade-off theorem states that pro- 
grammability is a cost in terms of evolutionary adapta- 
bility. Recall (from Figure 5) that a system is structur- 
ally programmable if it is possible to communicate algo- 
rithms to it by setting the states and connections of its 
physical primitives using a finite programmer’s manual. 
Consider two structurally programmable computers P 
and P’, which differ by a single structural feature (cor- 
responding to a single alteration according to the con- 
struction manual]. Given the same input, how different 
will the processes executed by these two systems be? 
This problem, which I call the unsolvable transformabil- 
ity problem, is unsolvable in just the sense and for just 
the reason that the halting problem for Turing ma- 
chines is unsolvable [g]. 

Suppose, as the reductio hypothesis, that it is possible 
to write a program U to solve the gradual transformabil- 
ity problem. This program could use any nontrivial 
metric to measure the similarity of the two processes. 
By a nontrivial metric, I mean any metric that does not 
result in P and P’ being classified as similar indepen- 
dent of what states they are in. Thus it is only neces- 
sary to divide the state set of P and P’ into at least two 
disjoint, nonempty subsets of states. Suppose that the 
criterion of similarity is that, given the same input, P’ 
gives a defined computation whenever P does. The 
computation is defined if the machine running the pro- 
gram reaches a halt state. We are free to take as P any 
program that halts. For the reductio hypothesis to hold, 
it is at least necessary that U go to a halt state and emit 
as output “not similar” whenever P’ does not go to a 
halt state. Suppose that U is itself P’. Then U halts if it 
does not halt, that is, answers “not similar” when it 
does not answer “not similar.” Since this is clearly a- 
contradiction, the assumption that U is a possible ma- 
chine must be incorrect. 

The unsolvability of the gradual transformability 
problem corresponds to the common experience that a 
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single change in a computer program (other than a pa- 
rameter change) usually leads to major changes in the 
execution sequence. Rarely does such a randomly al- 
tered system serve any useful function. Redundancies 
can be introduced to confer fault tolerance, but in this 
case changes in function are actually prevented. Fragile 
systems of this type are unsuited to evolution; variation 
and selection is efficient as a method of self-organiza- 
tion only if a useful P’ can always be produced from P 
by a single structural alteration. The probability of an 
improvement or of a step that can bring the system 
closer to an improved form is then proportional to p, 
the probability of a single change. If II simultaneous 
changes are necessary, the probability of an improve- 
ment is proportional to p”, a very small number for any 
reasonable choice of p even when n is 2 [5, 121. Large 
values of p are never reasonable, since these always 
lead to the introduction of many undesirable changes, 
except in trivially small programs. 

This argument is the basis for the first part of the 
trade-off principle: that evolution is not compatible 
with structural programmability. This is not to say that 
evolutionary processes cannot be simulated on struc- 
turally programmable computers. After all, according to 
Turing-Church, it must be possible to simulate evolu- 
tion, otherwise a physically realizable process would 
exist in nature that is not effectively computable. Com- 
puter programs have in fact been written that success- 
fully use the evolutionary principle (e.g., Samuel’s 
checkers program [JO], Bremermann’s optimization al- 
gorithm [2], and evolutionary learning algorithms used 
in simulations of structurally nonprogrammable sys- 
tems [25]). The key to all such programs is restricting 
evolutionary changes to parameters and parameterizing 
problems as much as possible. The logical extension of 
this strategy is to increase the degree of parameteriza- 
tion by simulating the types of dynamical features and 
redundancies that facilitate the evolutionary process in 
biological systems. Continuous dynamical features are 
evolution facilitating since they make it possible to de- 
fine a small perturbation in a way that would be impos- 
sible in a formal system. For instance, a structurally 
stable developmental process can undergo a wide vari- 
ety of useful transformations in response to genetic 
change, while retaining coherent organization [38, 441. 
Redundancies are evolution facilitating since they can 
buffer the effects of genetic change on features critical 
for function [ll]. To the extent that we are willing to 
pay to simulate such evolution-facilitating features, we 
can build virtual machines having an effective evolu- 
tionary capability on top of von Neumann machines. 
The underlying program would remain fragile, how- 
ever, and the cost of simulation would have to be 
weighed against the potential benefits. 

The simplest and most important illustration of a sys- 
tem structured for effective evolution is the protein en- 
zyme [13]. The enzyme assumes its shape and function 
through an energy-dependent folding process, which in 
a significant number of cases is only slightly altered by 

a point mutation-that is, by a single change in amino- 
acid sequence [45] (See Figure 3). Portions of the en- 
zyme that are critical for function, like the active and 
control sites, can be buffered from the effects of point 
mutation by functionally less significant portions of the 
molecule. “Programming” occurs at the level of the 
amino-acid sequence, but structural programmability is 
lost since shape and function emerge from this se- 
quence through a continuous dynamical folding pro- 
cess. The intervention of this continuous dynamical 
process increases the likelihood that single mutations 
will lead to functionally acceptable forms of the en- 
zyme, and is thus critically important for maintaining a 
nonnegligible rate of evolution. As we have seen, this is 
because the evolutionary rate decreases sharply when 
it depends on the simultaneous occurrence of two or 
more structural variations. Assuming that it someday 
becomes possible to compute the shape and function of 
proteins from primary structure, we might entertain 
the idea of building a virtual machine with open-ended 
evolutionary capabilities using the von Neumann com- 
puter as the base machine. The computational costs of 
simulating folding processes would, however, be pro- 
hibitively high-much higher than the cost of simulat- 
ing features that would confer a moderate evolutionary 
capability. 

PROGRAMMABILITY VERSUS EFFICIENCY 
We have seen that simulating evolution on structurally 
programmable computers is computationally expensive. 
In this section we show that structural programmability 
can be exchanged for computational power. To see why 
this is so, let us consider the operation of a structurally 
programmable computer at three levels. 

The network level. The efficiency with which the com- 
putational resources of a computer are utilized in- 
creases as a greater fraction of processors in the system 
is active at any given time. For effective programmabil- 
ity, the system must be constrained to operate sequen- 
tially to ensure that unanticipated conflicts do not oc- 
cur (for a discussion of problems in this area, see [18]). 
This means that most of the processors remain dormant 
at any given time. Of course, if a program is naturally 
decomposable into a number of independent parts, each 
having approximately the same running time, the dor- 
mancy can be greatly reduced. The running time can 
only be predicted in special cases, however, since pre- 
dicting running times would be tantamount to deter- 
mining whether programs are defined and thus to solv- 
ing the halting problem. 

The component level. For structural programmability, 
the number of types of switching primitives used must 
be finite, and each must have predefined switching ca- 
pabilities. Consequently, these primitives cannot in 
general be adapted to the task at hand. As the number 
of types of components (primitives) increases, the num- 
ber of components required to implement any given 
program typically decreases, since the functions per- 
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formed by the added primitives would not need to be 
simulated by combinations of already existing primi- 
tives. When our objective is to perform a highly selec- 
tive information-processing task with the smallest num- 
ber of components, an arbitrarily large repertoire of 
component types is obviously desirable. This is essen- 
tially the situation when the components are protein 
enzymes. Thlere are at least 20~” different amino-acid 
sequences that could be fabricated by biological sys- 
tems or by recombinant DNA techniques. Since the 
functional properties of each of these sequences arise 
through an energy-dependent folding process, however, 
they cannot be prescribed by a manageably small pro- 
grammer’s manual. 

This inefficiency at the component level contributes 
to inefficiency at the network level. If components 
could always evolve to specifically suit the task at 
hand, networks could learn to use their resources in 
parallel. If we are willing to do without effective pro- 
grammability in order to use components in parallel, 
the only reason for working with a restricted set of 
component types is the practical one that fabricating 
new primitives out of silicon is expensive. This limit of 
current technology is hardly relevant to biological sys- 
tems, however, which can always use their genetic ap- 
paratus to generate and mass-produce new carbon poly- 
mers.* 

The physical level. Structural programmability also 
cuts into the computing potential allowed by the princi- 
ples of physic:; [Z]. Recall that, according to Turing- 
Church, a structurally programmable physical realiza- 
tion of a formal computation process should be capable 
of simulating any physical process when space and 
time are unlimited. Space and time resources are never 
unlimited in the real world, however, and are in fact 
generally limited in different ways for the simulating 
system (the machine) and the simulated system (the 
physical process). A simulating system consisting of a 
set of particles constrained to execute formal computa- 
tions could never keep pace with a simulated system 
consisting of tlhe same number of particles; if the simu- 
lating system j.s structurally programmable, it is even 
further constrained.3 

According to known force laws, n2 interactions could 
conceivably contribute to the behavior of a system con- 
sisting of n particles. The potential parallelism here 
is at least n-fold greater than that obtainable by one 
n-processor machine of conventional design. For the 
system to exhibit formal computational behavior, con- 
straints must be introduced to suppress a large fraction 
of the interactions (the importance of constraints, in 
particular nonholonomic constraints, is emphasized in 
[ST]). These constraints must ensure that the time de- 

‘The limitation on the number of primitives is not contradicted by micropro- 
grammable systems. These are properly thought of as general-purpose ma- 
chines comprising general-purpose components. not components specifically 
trimmed for a particular task. 
‘This physical view of computing has the paradoxical implication that the 
ultimate physical capabilities of nature must forever escape a constructive 
mathematical treatment. 

velopment of the system is not described by an analytic 
function (since the execution sequence of a formal 
computation must in general be independent of any 
subsequence). They must also ensure that the system’s 
time development corresponds to a classically pictura- 
ble execution sequence, that is, quantum mechanics 
must be irrelevant to the system as a whole. In fact, all 
dynamical processes involving the system as a whole 
must be suppressed, in contrast to most systems in na- 
ture. Since the components must be in one of a number 
of distinct states (corresponding, say, to 0 and l), the 
number of distinct quantum states available is a poten- 
tial limitation. Distinct quantum states contribute to the 
reliability of storage and switching, requirements that 
do not apply to all physical systems. To achieve struc- 
tural programmability, engineers must impose addi- 
tional enforcement constraints to ensure that only in- 
teractions that allow each component to realize its pre- 
defined function can occur and that prevent the occur- 
rence of all other interactions. The limit of n-fold paral- 
lelism in today’s machines is a consequence of these 
enforcement constraints. 

These constraints are a contributing factor to physi- 
cal limitations on present-day computers. Communica- 
tion among components is limited by signal velocity 
and ultimately by the velocity of light. Signal velocity is 
already becoming a limiting factor in some supercom- 
puters. Structural programmability generally requires 
special functions that could otherwise be performed by 
a single specifically adapted component to be dupli- 
cated by a combination of components, thus increasing 
the distance over which signals must be sent. Brownian 
motion is also a physical limitation (on reliability), but 
only to the extent that we desire computation to fulfill 
preexisting specifications and if randomness is not one 
of these specifications. If randomness is desired, Brown- 
ian motion can actually be viewed as extremely heavy 
computation. For example, an enzyme exploring a sub- 
strate utilizes Brownian motion for tactile pattern rec- 
ognition. Exploration of this kind would be incompati- 
ble with the enforcement constraints required for struc- 
tural programmability. 

The most important physical limitation on today’s 
computers is heat export. Like living systems, com- 
puters feed on high-grade energy and give off heat. 
Transistors in present-day computers dissipate about 
10" kT per step. Enzymatic reactions in biological sys- 
tems typically dissipate lo-100 kT per step. This is an 
impressive difference, especially when we consider that 
enzymes perform a tactile pattern-recognition task that 
would involve many steps for a digital computer. Care- 
ful examination reveals an even more remarkable fact 
about enzymatic computing: An enzyme actually per- 
forms its pattern-recognition task reversibly. At equilib- 
rium each enzyme continues to recognize substrates 
and to make or break covalent bonds. Energy dissipa- 
tion drives the reaction being catalyzed, rather than the 
pattern-recognition activity of the enzyme. Driving the 
reaction forward is essential for coupling the pattern- 
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recognition activity of the enzyme to the control of 
macroscopic processes, but not for the pattern- 
recognition activity itself. 

In recent years Bennett, Fredkin, and Landauer 
[I, SO] have produced a surprising result that connects 
in an interesting way to this fact about enzymes. This 
result is that physical realizations of formal computa- 
tion processes can in principle proceed with arbitrarily 
low dissipation when speed, reliability, and required 
memory space are not considerations. The construction 
they used to demonstrate this is based on a thermo- 
dynamically reversible logic gate. It is also possible to 
view this result in the light of the Turing-Church the- 
sis: A logically reversible Turing process that is compu- 
tation universal is in principle possible. It is only neces- 
sary to record all the intermediate states on the mem- 
ory tape, record the answer, and then use the memory 
tape to recover all the initial information. If a thermo- 
dynamically reversible realization of this logically re- 
versible Turing machine were demonstrably impossible 
even in the limit of idealization, it would be impossible 
to use a digital process to simulate reversible processes 
in nature without losing reversibility. If it were impos- 
sible to duplicate a reversible process digitally without 
embedding it in an irreversible process, then a weaken- 
ing of the strong interpretation of the Turing-Church 
thesis would be necessary [7]. 

The Bennett-Fredkin-Landauer result shows that+ 
there is no machine-independent thermodynamic limit 
to computing. Thermodynamic costs can be traded for 
other costs that can be reckoned in terms of compo- 
nents, reliability, and speed. If a machine is structurally 
programmable, these other costs are high, and hence 
the cost of adding more components or accepting less 
speed and reliability in order to reduce the dissipation 
would soon outweigh the advantage to be gained. If the 
system foregoes structural programmability, the bal- 
ance changes, since the amount that must be invested 
to obtain a given decrease in dissipation is less. This is 
a probable explanation for the relatively low energy 
dissipation found in biological computing. 

EFFICIENCY VERSUS COMPLEXITY 
To properly appreciate the significance of this extra 
efficiency, it is useful to distinguish between 
polynomial-time and exponential-time problems [19]. A 
task falls into the polynomial-time class if the number 
of resources required to solve it increases as a low- 
order polynomial function of problem size (say as n*, 
where n is any reasonable measure of problem size). A 
problem is in the exponential-time class if the re- 
sources required to solve it increase at least exponen- 
tially with problem size, say as 2”. Problems involving 
this type of increase entail a combinatorial explosion. 

In the explosive 2” case, a 10”-fold increase in re- 
sources allows an additive increase in problem size of 
at most 33, a very modest return for a major invest- 
ment. In the polynomial-time n* case, the same lOlo- 

fold increase in resources allows the problem size to 

increase by as much as a factor of 105-a dramatically 
significant improvement. It is clear, therefore, that 
boosting computational resources will not make an in- 
dent on the combinatorial explosion, but that it can be 
very helpful for problems admitting an efficient solu- 
tion. There is an important qualifier, however. In gen- 
eral, the increase in problem size is much less than 105. 
The extent to which this limit can be approached de- 
pends on the efficiency with which computing re- 
sources can be coupled to a problem’s solution. In 
structurally programmable computers, the efficiency of 
coupling is low, and an increase in computing power 
along conventional lines is not necessarily as valuable 
as we might at first assume. If most machine resources 
are dormant at any given time, an enormous increase 
in parallelism will not be worth the cost. Systems that 
opt for efficiency and evolutionary adaptability would 
be better suited to coupling increases in computational 
resources to increases in problem size. 

Could analog processes or other dynamical processes 
counteract the combinatorial explosion? It is not possi- 
ble to answer this question a priori, but it is possible to 
focus the issue more precisely. Suppose a particular 
dynamical process could be used for solving a large 
exponential-time problem. Furthermore, suppose that 
this process could be simulated on a digital computer 
over a short interval of time. A constant factor speedup 
of the digital computer would then allow what is by 
hypothesis an exponential-time problem to be solved in 
polynomial time [15]. Thus if we assume that particular 
dynamical processes can be harnessed for solving 
exponential-time problems, we must also assume that 
these processes are refractory to digital simulation for 
even the smallest time slices. 

The existence of dynamically exotic processes capa- 
ble of solving exponential-time problems is of course a 
logical possibility. The phenomenon of turbulence 
would conceivably fall into this category. The Turing- 
Church thesis would not be contradicted by such pro- 
cesses since it does not matter, in terms of the thesis, 
whether the number of resources used for the digital 
simulation grows exponentially. The potential value of 
structurally nonprogrammable computers does not de- 
pend on this logical possibility, however. The value is 
actually greatest for problems admitting efficient solu- 
tions, for here the size of problems that are manageable 
grows the most. Indeed it may be that the dramatically 
different capabilities of biological organisms and von 
Neumann machines are largely due to the fact that the 
former are capable of solving much larger problems in 
the polynomial-time class. From the standpoint of con- 
structing artificial computers out of new materials, 
the implication is clear: What is needed is not von 
Neumann computers fabricated from alternative mate- 
rials, but new computer designs to address computing 
needs not efficiently met by von Neumann machines4 

‘Of course. there may be other reasons for building van Neumann machines 
out of alternative materials. such as the desirability of machines resistant to 
pulses of electromagnetic radiation. 
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THE PRINCIIPLE OF DOUBLE DYNAMICS 
How could a structurally nonprogrammable system be 
organized to perform useful functions? Undoubtedly 
many guiding principles could be used for design in 
this area. However, I will focus on one, the principle of 
double dynamics, which seems to be particularly promis- 
ing and which appears to play a role in biological infor- 
mation processing. 

Double dynamics would exploit the trade-off princi- 
ple and would be chemically implementable. As in con- 
ventional computing, we would need building-block 
modules to transform patterns of input signals into pat- 
terns of output signals. Since conventional computers 
operate on the programmability side of the trade-off 
principle, their building blocks perform this transfor- 
mation in a manner completely describable in terms 
of a finite user’s manual. In order to shift to the 
efficiency-adaptability side of the trade-off relation, 
transformation. should combine elements of continuity 
and gradual modifiability with decision making. 

Chemistry offers the tactile pattern-matching capabil- 
ity inherent in the conformation of proteins and other 
carbon polymers. Such polymers can be gradually mod- 
ified and, with enzymes at least, supply the element of 
decision making. However, enzymes respond to surface 
properties such as the shapes of particular substrate 
molecules in their immediate environment. This tactile 
form of pattern recognition is unsuitable for the electri- 
cal, optical, and mechanical signals that are most con- 
veniently presented to a module. 

Chemistry also offers various kinds of dynamics in- 
volving reaction and diffusion that could transduce 
nontactile signals into a form that enzymes can recog- 
nize. These dynamics supply the continuity required 
for generalization, as well as an element of gradual 
transformability if the dynamics are structurally stable. 
The studies of IPrigogine and his school [36] have 
shown that, in the presence of suitable nonlinearities, 
complex spatial and temporal patterns (known as dissi- 
pative structures) can be created in a chemical medium 
through the production of entropy, thereby providing a 
dynamic structure-formation principle that comple- 
ments the energy-based self-assembly principle utilized 
by polymers possessing conformation. The advantage of 
dissipative dynamics is that it can process patterns of 
signals into surface structures in the form of chemical 
gradients. 

The device pictured in Figure 7 combines these two 
powerful forms of pattern processing-enzymatic action 
and dissipative structures-to implement the principle 
of double dynamics. The enzymes are immobilized on a 
surface covered. by, say, a photochemically sensitive 
medium. The nonlinear, dissipative dynamics of this 
medium serves to transduce spatial and temporal pat- 
terns of input signals (e.g., photons) into a chemical 
concentration gradient. This is the first level of dynam- 
ics. The chemical concentrations are interpreted by the 
enzymes, each of which can be thought of as a biosen- 
sor coupled to an output device. For concreteness we 

input 
pattern 

chemical gradient 

output 

l = immobilized biosensor 

The input pattern is a nontactile pattern such as of optical 
or electrical signals. This pattern is transduced into a 
chemical-concentration pattern that can be read out by 
immobilized biosensors, that is, by enzymes linked to an 
output device. The output either controls a process or is 
passed to a von Neumann computer. The chemical me- 
dium provides the upper level of dynamics. The readout 
enzymes provide the lower level. The time required for 
the device to transduce an input pattern into an output 
pattern could be much reduced if diffusion in a chemical 
medium were replaced by a mechanical propagation of 
signals in a network of structural proteins. 

FIGURE 7. A Double-Dynamics Device 

suppose that the action of the enzymes on their sub- 
strates in the reaction-diffusion layer is picked up spec- 
troscopically. The action of the enzyme is thus a dis- 
tinct, second level of dynamics that controls the output 
of the device. If it is sufficiently rich, the top level of 
reaction-diffusion dynamics converts different input- 
signal patterns into different chemical patterns. The de- 
vice is “programmed” through variation at the enzy- 
matic level of dynamics and selection on the basis of 
the pattern-processing performance of the whole sys- 
tem. The variations may involve the spatial arrange- 
ment of the enzymes or modifications in their response 
to a given chemical milieu. As long as the top level of 
dynamics is not initial-condition sensitive, similar 
input-signal patterns should often give rise to similar 
chemical patterns, thus conferring some power of gen- 
eralization on the system. 

The first potential use of such a device is as a pre- 
processor-a kind of eye-for a conventional von 
Neumann machine. The purpose would not be simply 
to transduce environmental stimuli, but to use the rich 
dynamics of the diffusion layer and the intelligence of 
the enzyme to code environmental patterns into a form 
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simple enough to be managed by a structurally pro- 
grammable machine. 

As a second step, we could directly couple the output 
to an effector organ-for instance, a robot arm. Deci- 
sions about the type of motion the arm makes are con- 
trolled through the von Neumann machine, but fine 
motion, in response to the particularities of the envi- 
ronmental situation, is controlled by the way the en- 
zymes interpret this situation as it is represented in the 
dissipative dynamics of the reaction-diffusion layer. 
Figure 8 illustrates an expanded version of such an 
adaptive pattern-recognition and process-control sys- 
tem. The figure shows a bank of double-dynamics mod- 
ules, each individually controlling a different part (or 
degree of freedom) of a robot arm. Each module re- 
ceives the same environmental input and represents 
this input in the same dissipative pattern. The enzymes 
in each module are selected differently, though, so the 
timing and intensity of the outputs are different. Each 
module can be thought of as an analog of the motor 
element it controls. This shifts the problem of coordi- 
nating the whole arm (in the context of a particular 
type of action) to the problem of evolving suitable ana- 
log modules. 

To ascertain the class of functions that a network of 
such enzymatically driven modules is in principle ca- 
pable of computing, we can suppose, for simplification, 
that a threshold property is introduced to reduce the 
possible outputs to one or zero. This can be done in a 
variety of ways, but for present purposes it is sufficient 
to divide the module up into small regions and to ig- 
nore the enzymatic signal in any region if it is either 
above or below a prescribed strength. The resulting 
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module is much less powerful than it might be, but is 
still more powerful than classical formal neurons of the 
McCulloch-Pitts type. These fire whenever the average 
of their inputs exceeds a threshold, whereas our dy- 
namic modules would fire in response to particular in- 
put patterns (assuming that the reaction-diffusion dy- 
namics are sufficiently rich and the enzymes suffi- 
ciently sensitive). However, we know that any finite 
automaton can be simulated by networks of McCulloch- 
Pitts neurons, even neurons as simple as the threshold- 
two elements in Figure 5. It follows that networks of 
more powerful enzymatic modules must be capable of 
simulating any finite automaton. The simulation is po- 
tentially more efficient since it does not have to work 
around predefined modules. Since each module is po- 
tentially unique, however, there can be no predefined 
construction manual. 

This leads us to conclude that it is possible to build a 
computer that is computation universal but not struc- 
turally programmable (for the formal construction, see 
[g]). Since networks of enzymatically driven modules 
can simulate any finite automaton, it must be possible 
to use them to simulate an interpreter. Thus it would 
be possible to build a structurally nonprogrammable 
computer that is nevertheless effectively programmable 
at an interpretive level. There is a model for such a 
machine: People can read and follow rules despite the 
fact that the human brain, as a product of evolution, 
must be structurally nonprogrammable. 

Turing machines compute a much larger class of 
functions than finite automatons. However, Turing ma- 
chines with finite memory tapes-the realistic assump- 
tion-can always be simulated by finite automatons. 

input (digitized picture) 

component 1 component 2 component 3 component 4 

Each module receives the same input, but interprets it which it is an analog. The modules are versions of the 
differently to control that component of the robot arm for double-dynamics device shown in Figure 7. 

FIGURE 8. An Array of Double-Dynamics Devices 
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Practically speaking, some sort of manipulable memory 
store is a great advantage. Modern digital computers 
use an addressable memory, that is, a memory in which 
each switch is located on a grid in a manner that allows 
it to be accessed individually. Alternative structures 
are possible in which patterns of activity of highly in- 
terconnected memory units play a role; this is probably 
what happens in the nervous system. Memory storage 
would be greatly increased by such multiple utilization 
of components, although powerful pattern-processing 
capabilities would be needed to manipulate such a dis- 
tributed memory structure [lo]. This is just the kind of 
capability that could be provided by enzyme-driven 
networks. 

DOUBLE DYNAMICS IN NATURE 
We have not been specific about the chemistry of man- 
made double-dynamics devices since none has as yet 
been produced. Our group at Wayne State University 
has conducted extensive simulation studies of devices 
that utilize the double-dynamics principle, however, 
and has developed evolutionary learning algorithms for 
communicating desired performance to them [25-271. 

The reactions used in these simulations occur in real 
neurons and can therefore be specified with some de- 
gree of confidence. 

The reactions involve molecules called second mes- 
sengers, which serve as intracellular signal carriers. 
Second messengers such as CAMP, calcium, and possi- 
bly cGMP are now known to control nerve-impulse ac- 
tivity in some neurons. Some of the key reactions of the 
CAMP control system are illustrated in Figure 9 [20]. 
Presynaptic inputs activate receptors on the cell mem- 
brane that produce CAMP, which in turn acts on pro- 
tein kinases. These kinases may activate gating pro- 
teins, which control the electrical activity of the mem- 
brane, or may act on other target proteins inside the 
neuron. If the neuron fires, calcium enters to activate 
the enzyme phosphodiesterase, which in turn resets the 
neuron to its initial state by converting CAMP to the 
inactive mononucleotide. There are a number of other 
proteins in this system that also play a controlling role, 
such as binding proteins that control messenger diffu- 
sion rates and an enzyme (phosphoprotein phosphatase) 
that reverses the activation of protein kinase. It is possi- 
ble to experiment on this system by microinjecting 
CAMP into neurons and studying the effects on nerve- 
impulse activity. Liberman et al. [31, 32, 341 have re- 
ported an extensive series of such experiments, which 
indicate that CAMP injected into large neurons of a 
snail’s central nervous system has a depolarizing effect, 
that is, increases the rate of neural firing. Other investi- 
gators have also reported effects, in some cases involv- 
ing increased :neural activity [28] and in others de- 
creased activity (for a recent review, see [IT]). The 
kinds of control that second messengers exert on nerve- 
impulse activity have not been definitively resolved, 
but the evidence that these molecules provide a two- 
way link between the nerve impulses and molecular 
processes inside neurons is consistently strong. 

This two-way link also operates in the much simpler 

double-dynamics device illustrated in Figure 7. In both 
cases it serves to transduce macroscopic signals [e.g., 
nerve impulses or light rays) to a microscopic form at 
the molecular level of organization and then back to a 
macroscopic form. A major contribution to the comput- 
ing occurs at the molecular level of organization in the 
device, where enzymes read the concentration gra- 
dients. The great advantage from the standpoint of effi- 
ciency is that this enormously reduces the heat produc- 
tion that accompanies the computation. If the same 
amount of computation were performed at the macro- 
scopic level of nerve impulses, dissipation would be- 
come a significant limiting factor. This thermodynamic 
consideration suggests that a major contribution to bio- 
logical computing occurs at the molecular level in the 
neuron, just as it does in the hypothetical device. 

The obvious analogy is that the reaction-diffusion dy- 
namics at the level of cyclic nucleotides is read out by 
kinases attached to gating proteins, just as the immobi- 
lized enzymes in Figure 7 read out the concentration 
gradients in the device. The rich internal structure of 
the neuron also suggests other more powerful possibili- 
ties. Recent microinjection experiments indicate that 
the effect of CAMP may in some instances be mediated 
by the cytoskeleton, a network of microtubules and mi- 
crofilaments that support the membrane and run 
through the cell [23, 331. It is conceivable that the po- 
tential for highly parallel signal processing and vibra- 
tory behavior on the part of microtubules and other 
cytoskeletal elements could play a significant role. In 
this case second messengers would most plausibly serve 
to initialize or modulate these cytoskeletal dynamics in 
a manner that reflects the pattern of input to the neu- 
ron. The interpretive function could be provided by a 
repertoire of readout molecules tuned to recognize sig- 
nificant patterns of cytoskeletal activity and capable of 
initiating processes (such as the production of CAMP or 
cGMP) to modulate the firing of the neuron. Although 
this is only speculation, it does serve to show that an 
enormous amount of computation could be allocated to 
the most microscopic molecular levels of organization 
in the double-dynamics framework. 

The molecular mechanisms of gene action and hered- 
ity constitute a well-understood biological information- 
processing system whose organization is in some ways 
parallel to that of a double-dynamics device. The DNA 
sequence of genes is a structural code controlling an 
organism’s phenotypic features under the interpretation 
of molecular decoding machinery (e.g., m-RNA, t-RNA). 
That the phenotypic features are often suited to the 
environment is due to the Darwinian mechanism of 
evolution. By comparison, the upper level dynamics of 
a double-dynamics device [or of a neuron) can be 
thought of as a dynamic code controlling the actions of 
the device (or organism) under the interpretation of 
molecular readout machinery (e.g., enzymes and mo- 
lecular resonators). These actions are often suited to the 
environment as a consequence of evolution through 
variation and selection, though it is largely the readout 
enzymes that undergo evolutionary changes rather 
than the dynamic code. Readin mechanisms allow reg- 
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FIGURE 9. Key Reactions of the CAMP System of lntraneuronal Control 

ulatory substances to alter the expression of DNA in 
response to the environment, just as second messengers 
may effect changes in cytoskeletal dynamics. 

THE IMPETUS FROM BIOTECHNOLOGY 
Enzyme-driven computing in biological systems de- 
pends on intricate processes of self-organization and 
self-maintenance. The complex sequence of reactions 
in the cyclic nucleotide system, not to mention the 

membrane and cytoskeletal architecture in which it is 
embedded, requires for support all the metabolic and 
self-regulatory processes of an entire organism. Creat- 
ing such a self-enclosed support system artificially is 
clearly infeasible. How then could we ever exploit the 
efficiency-adaptability side of the trade-off relation? 

There are at least four conceivable approaches. The 
first is working with virtual machines built on top of 
the von Neumann computer while consciously accept- 

May 1985 Volume 28 Number 5 Communications of the ACM 477 



Articles 

ing the limitations imposed by the computational costs 
of simulating Idynamics. The second is constructing 
electronic devices to embody the desired dynamical 
principles to the greatest extent possible. Devices of this 
kind could be useful, but they would not enjoy the 
shape-based pattern-recognition capability that proteins 
possess, nor is it likely that the same fineness of micro- 
scopic processing could be achieved. A third possibility 
is culturing existing organisms to perform a useful 
information-p:rocessing function [22]. While it may be 
useful to pursue this possibility, it is generally true that 
a system with a full evolutionary potential will pursue 
its own goals, rather than the goals that we would at- 
tempt to impose on it. The fourth approach is concen- 
trating on sim:ple enzyme-driven devices and, at least 
initially, on tasks for which the lifetime of the device is 
not a major consideration. Prior to the development of 
recombinant DNA technology, enzyme-driven devices 
could only have been interesting as gedanken instru- 
ments for the ‘development of brain models. With the 
advance of this technology, though, it should be feasi- 
ble to produce the required proteins in commercial 
quantities. 

Table I presents a series of design stages relevant to 
molecular-computer development. The table is patently 
futuristic, but it does serve to enumerate technologies 

TABL,E I. A Progressively Futuristic Design 
Process for a Molecular-Computing Device 

1 Develop a bask5 module like the one illu&feU 
in Figure 2 (asimpte trfwducerorpr&&- : *_ 
cassing sen3e orgatl for a cOnv~r@rjatdigi- 
tal4x3mputer), . 

2 Replace simple ctkemical,gractierite ljy Ml@S )_ 1. 8. . 
dynamics {e.g., symma&y-breakirrg @&pa- .. I’ 
tive dynamic stwture$). . _’ . :/ _ 

3 Perfect and mas+produtie suitab~~bie&G~& ... 

on whose further development molecular-computer de- 
sign is predicated. Aside from gene technology, these 
include biosensor technology [46], static and dynamic 
chemical dissipative structures, immobilized enzyme 
engineering [47], immunoglobulin tessellation tech- 
niques [42] or other structure-formation techniques 
based on the principle of self-assembly, and synthesis of 
artificial membranes with controllable electrical prop- 
erties [39]. The simplest devices would be predicated 
only on gene and enzymatic biosensor technologies, 
and on reaction-diffusion dynamics. Although all of 
these technologies are in an early stage of development, 
the amount of effort now being expended on them for a 
wide range of applications is enormous. Whether mo- 
lecular computers can ever become practical depends 
on whether a simple device can be developed to fill a 
computing need critical enough to stimulate further de- 
velopment. Novel designs like double dynamics should 
have an advantage over conventional designs in this 
respect, since they would not have to face competition 
from already mature technologies. 

Even if the technology comes into place, the evolu- 
tion of the dynamics and of the proteins suitable for a 
given task will require time. Conceivably a point will 
be reached at which a proliferation of devices suitable 
for a variety of special-purpose tasks will occur. We 
should point out that these devices will never compete 
with humans at those tasks for which humans have 
been adapted by evolution. Technical problems aside, 
the time frame for such evolution would be beyond all 
practical limits. 

CONCLUDING REMARKS 
The adaptability-efficiency-programmability trade-off 
ties together a variety of information-processing phe- 
nomena exhibited by both technical and biological sys- 
tems. The technical problems that must be addressed in 
order to exploit this trade-off with molecular and 
chemical mechanisms have an admittedly forbidding 
aspect. However, it is noteworthy that the required bio- 
logical technologies, especially the ability to produce 
specific proteins on a massive scale, are likely to de- 
velop and in time to significantly influence the chemi- 
cal industry, agriculture, and medicine. While it is hard 
to imagine that the development of a commercially via- 
ble molecular computer is imminent, it is equally diffi- 
cult tp imagine a future world in which computing 
remains aloof from the prevailing technical infrastruc- 
ture. 

There are two respects in which the trade-off princi- 
ple is of immediate interest [4]. First, gene technology 
is expanding the possibilities for biological design. If 
this technology is used as a means for prescriptive plan- 
ning of biological systems similar to the prescriptive 
control exerted over a von Neumann computer, the 
trade-off principle predicts that we will inevitably lose 
evolutionary adaptability. 

The second area of immediate concern is the use of 
the von Neumann computer or of any other structur- 
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AN EMERGING CONSENSUS ON MOLECULAR COMPUTING? 
Michael Conrad proposes that the information-processing ca- 
pabilities of organic molecules could be used in computers in 
place of digital switching primitives. So far, though, there is 
no dear consensus as to the viability of this concept or the 
best strategy for molecular computing. There have now been 
two international workshops on fabricating both inorganic 
and biologically derived molecular circuitlike devices, as well 
as a conference on chemically based computer design; 
Conrad’s paper is in fact based on his keynote address from 
that conference. 

According to Kevin Ulmer. vice-president for advanced 
technology at Genex Corporation. a major genetic engineer- 
ing firm, however, “no one could legitimately claim to be 
working on a bk3ogically derived molecular electronic device 
right now. In fact, there is hardly any experimental work of 
consequence being conducted even for nonbiological ap 
proaches. ” 

The development of molecularcomputing devices is cur- 
rently limited both by materials science and analytical meth- 
ods. As to the specific problem of adapting proteins, “it will 
be necessary to develop a protein engineering technology for 
altering the structure and function of proteins in a precise 
and predictable fashion before anything else can be done,” 
says Ulmer. 

Ulmer believes that a likely first step would be to design 
hybrid devices-solid-state biological sensors built from both 
conventional semiconductors and proteins. This would be 
much easier than working on the molecular processing level. 
‘It’s the bulk electronic properties of biological materials that 
we should ba looking at. Building individual switches based 
on molecules is simply beyond our present capabilities.” 

Mark Stefik, a principal scientist in the Intelligent Systems 
Laboratory at Xerox PARC, doubts that proteins could make 
computers more adaptable: “Adaptability is an emergent 
property at much higher levels than enzymes in living sys- 
tems. The interesting information processes that underlie ev- 
olution do not arise out of the properties of isolated mote- 
cules, but rather out of the structure and organization of 
living cells.” Furthermore, the “architecture” of biological sys- 
tems remains only partially understood. “There may be very 
special possibilities for miniaturization in mdecular technol- 
ogy. But we’re a long way from understanding any viable 
principles of operation at this point.” 

ally programmable computing system. According to the 
trade-off principle, these systems are inherently less 
adaptable than biological systems and inherently less 
efficient for the performance of a wide variety of criti- 
cal computing tasks. It cannot be doubted that the con- 
trollable information-processing power of current com- 
puters is an enormously valuable new resource and 
that the current expansion of this form of computing 
can have an enhancing effect on various aspects of hu- 
man activity. If the trade-off principle is correct, how- 
ever, there are aspects of human intelligence that digi- 
tal computers will never be powerful enough to dupli- 
cate. The trade-off principle does not contradict the 
claim of Turing and Church, but it clearly contradicts 
the expectations of many advocates of artificial intelli- 
gence. To productively incorporate computing into the 
infrastructure of society, it is necessary to understand 

Danny Hillis, a fgunding scientist at Thinking Machines 
Corporation in Cambridge, Massachusetts, feels that a tech- 
nological bridge between computing and biology must be 
built before molecular devices can even ba attempted: ‘If 
specific proteins-receptors or antibodies-could be built 
from scratch, then a whole range of applications could be 
opened up. In the meantime, though, there is no technologi- 
cal foundation for bringing organic materials directly into 
computers.” 

In lieu of this, however, there are a number of approaches 
that might successfully combine computing and biology. Ac- 
cording to Ulmer, “If general solid-state bidogical sensors 
could be developed that were sufficiently small, sensitive, 
stable, and specific, they could be useful in a number of 
ways. We could use such biosensors as the ‘noses’ and 
‘taste buds’ of computers. This woufd complement the work 
currently being done in robotics to give computers a crude 
form of vision, a sense of touch, and an ability to manipulate 
objects.” Ulmer also suggests that the interesting electronic 
and optical properties of some protein crystals could be uti- 
lized for electro-optical devices. 

David Waltz, a senior scientist at Thinking Machines Cor- 
poration, lists four possible advantages that molecular- 
computing devices might have if they can ever be developed: 

Current computer technologies are essentially planar, and 
are thus limited in overall density and use of three- 
dimensional space. 
There are limits to miniaturization with current technolo 
gies-wires cannot be made much smaller without becom- 
ing subject to destruction by stray wsmic radiation or 
semiconductor impurities. Molecular-computing devices, 
besides being much smaller than anything we can make 
with current technology, may even offer possibilities for 
self-repair or self-regeneration. 
Certain computations may, in fact, as Conrad suggests, be 
better suited to molecular devices. 
Molecular devices may force us to explore the relation- 
ships among programmability, adaptability, and efficiency, 
and so lead to new theoretical insights on computation 
and intelligence, and in the process to new computing 
engines that will be superior in certain ways to existing 
computers. 

the relationships among adaptability, efficiency, and 
programmability. Here the study of molecular- 
computer designs has immediate practical significance 
for computer science independent of whether or not 
such designs can be concretized either in the near or 
distant future. 
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