
ARTICLES

ON DESIGN PRINCIPLES FOR
A MOLECULAR COMPUTER

If the unique information-processing capabilities of protein enzymes could
be adapted for computers, then evolvable, more efficient systems for such
applications as pattern recognition and process control are in principle
possible.

MICHAEL CONRAD

It is only recently that a serious interest in the possibil-
ity of using carbon-based materials for computing has
developed in the scientific community. Formerly, indi-
viduals expressing an interest in exploring this possibil-
ity would have been advised to implement their com-
puting concepts in existing electronic technologies. In-
deed, to the best of my knowledge, no molecular com-
puting device has so far been constructed or shown to
be imminent. However, a convergence of developments
in a number of fields, including polymer chemistry,
various biotechnologies, the physics of computation,
and computer science, has changed the situation. Theo-
retical arguments suggest that more efficient and adapt-
able modes of computing are possible, while emerging
biotechnologies point to possibilities for implementa-
tion. Their common ground is molecular computing.

One immed:iate objective is to produce a von
Neumann-type computer in carbon, rather than silicon
[3]. The assumption is that carbon chemistry may facil-
itate the construction of smaller and faster devices. At-
tention has therefore been focused on the possibilities
for organic sw:itching devices and conducting polymers
[21,41], and secondarily on the problems of contact
and reliability. Certainly, work in this area is poten-
tially important. Even so, it is likely that molecular
computing will prove to be much more valuable out-
side the context of conventional von Neumann com-
puters. Critically important computing needs such as
adaptive pattern recognition and process control may
be refractory to simple decreases in size and increases
in speed. Instead of suppressing the unique properties
of carbon polymers, we should consider how to harness
them to fill these needs.

The information-processing capabilities of biological
0 1985 ACM OOOl-0782/135/0500-041% 750

systems, which are ultimately based on the conforma-
tional properties of protein enzymes, suggest this ap-
proach (see Figures l-3). Although elaborate conforma-
tion is probably incompatible with good conductivity, it
allows for the lock-and-key type interactions that en-
able enzymes to recognize specific molecular objects by
exploring their shapes.’ Shape-based specificity is a
form of tactile pattern recognition. Admittedly, en-
zymes make for much slower switches than transistors
(typically 0.1 millisecond, as compared to.a nanosec-
ond). To simulate the sensory and control functions
they perform, however, would require an enormous
number of switching processes in a digital computer.
Designs that use functions of this sort as primitives-
predefined elements that are irreducible as far as the
computing power of the machine is concerned-can
reasonably be expected to yield significant increases in
computational power for such tasks as pattern recogni-
tion and process control. In addition, enzymes have the
virtue of being adaptable switches, which makes them
amenable to tailoring for particular functions through
trial-and-error evolution. The evolution process pro-
ceeds by variation of the sequence of amino acids in
the enzyme, followed by selection and propagation of
the best-performing sequences (see Figure 4).

However, these advantages can only be exploited at
the expense of programmability, which is the major
feature of today’s computers. This idea can be stated in
the form of a trade-off principle: A system cannot at the
same time be effectively programmable, amenable to evolu-
tion by variation and selection, and computationally effi-
cient. The von Neumann computer opts for programma-
bility. The trade-off theorem suggests that an alterna-

’ The argument is that the conformational flexibility of biopolymers is con-
comitant to the lack of conjugation required for electronic conductivity [43].

464 Communications of the ACM May 1985 Volume 28 Number 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3532.3533&domain=pdf&date_stamp=1985-05-01

Articles

tive domain of computing is in principle possible,
where programmability is exchanged for efficiency and
adaptability. Biological systems, as the products of evo-
lution, must operate in this alternative domain.

ESSENTIAL FEATURES OF VON NEUMANN
COMPUTERS
Let us first list some of the fundamental features of von
Neumann computers. These features have become so
familiar that it is possible to forget how remarkable
they really are [6]:

1. Programming languages exist. It is a fact of experi-
ence that if we can conceive of an algorithm we can
always express it directly in any of a large number of
computer languages (e.g., ALGOL, LISP, Pascal). A basic
feature of all such languages is that they are defined by
a finite, discrete base set of symbolic primitives. Were
these symbols not finite in number, a user’s manual
could not be finite either. Were the symbols not dis-
crete, it would be necessary to perform calculations to
ascertain what algorithm a program actually expresses.
The psychological sense of directness conveyed by to-
day’s computer languages is derived from these proper-
ties.

2. Effective programmability. Once a program is writ-
ten, it is always possible to effectively communicate it
to an actual machine. From a user’s point of view, this
communication process may be mediated by an inter-
preter, which can read and follow any particular pro-
gram, or by a compiler, which sets the state of the
machine so as to execute the desired program.

3. Structural programmability. Digital computers all
employ a small repertoire of simple switches (e.g., logic
gates and on-off devices). Each switch constitutes a
switching primitive. It is always possible to write a pro-
gram in a language that directly maps the structure of
the machine and the state of each component [8, 141.
This property, structural programmability, is the basis for
all other forms of programmability in today’s com-
puters. The network in Figure 5 illustrates the concept
of structural programmability. It shows how algorithms
expressed in terms of the symbolic primitives of a
highly simplified programming language can be ex-
pressed directly in terms of the switching primitives of
the network. Of course, the diagram of the network is
also a language, and the “switching” primitives in it are
also symbolic primitives. However, they are symbolic
primitives that can easily be realized as switches.

4. Universality. Were there no limitations on time
and space, the von Neumann computer could run any
conceivable program. It is also universal in that, so far
as is known, it can simulate any physically realizable
process in nature (more on this in the next section).

5. Sequentiality. It is possible for the von Neumann
computer to execute a single elementary operation at a
time. True parallelism, as where two or more programs

have access to the same computational resources at the
same time, is also possible, but, in general, only at the
expense of effective programmability (for a discussion
of parallelism and speedup, see [26]).

The von Neumann computer also has fundamental
shortcomings:

6. Inefficiency. Von Neumann computers make ineffi-
cient use of available space, time, and energy resources.
The vast majority of processors are dormant at any
given time.

7. Sensitivity. The sensitivity of programs to change
is a matter of common and usually unpleasant experi-
ence.

The strengths of the von Neumann design (properties
l-5) are all control properties. Intensive efforts are un-
der way in computer science to retain these control
properties while removing the constraints on efficiency
and adaptability [properties 6 and 7). The trade-off prin-
ciple suggests that the strengths of the von Neumann
computer are inextricably linked to its limitations.

THE TURING-CHURCH THESIS
The capabilities computer scientists generally associate
with the von Neumann computer are summed up in
the famous thesis of Turing and Church (a recent gen-
eral discussion can be found in [zJ]). One statement of
this thesis is any effectively computable function is com-
putable by a formal process involving simple operations on
strings of symbols. A program is a rule that generates
such a process. The classic Turing formalization of a
computing process is illustrated in Figure 6. The Turing
machine program can be rewritten in any general-
purpose algorithmic language. These various formaliza-
tions all define the same class of functions-the partial
recursive functions. To prove this, it is only necessary
to show that they are all equivalent up to the point of
simulation, that is, up to the coding of strings of sym-
bols into other strings of symbols. This equivalence
supports the Turing-Church thesis, although it does not
actually prove it. Indeed, proof is impossible, since the
claim is that an informal concept of computation is
equivalent to any of a large number of formal models of
computation. Disproof, however, is possible if a con-
vincing counterexample can be found. Computer scien-
tists generally accept Turing-Church because no such
counterexample has ever been discovered.

The Turing-Church thesis is sometimes interpreted
narrowly as encompassing only the processes of logic
and mathematics. The strongest interpretation is that
any physically realizable system or process must be effec-
tively computable. If a physically realizable system or
process were not effectively computable, it could be
used as a new primitive of computation, thereby en-
larging the class of functions computable by systems in
nature. For the purpose of this article, I accept this
strong form of the Turing-Church thesis, first because

May 1985 Volume 28 Number 5 Communications of the ACM 465

Articles

T-t, energy-dependent folding

Y

The sequence of nucleotide bases in DNA, which stores
the information accumulated during the course of eV0k.b
tion, is translated to the sequence of amino acids in pro-
teins. The amlino-acid sequence is pictured schematically
as a string of beads, each different type of bead stand-
ing for one tyjpa of amino acid. Weak interactions among
the amino acilds cause this linear representation of in-
formation to spontaneously fold up, forming a thrae-
dimensional spatial structure. Strong or covalent bonds

are pictured with dark springs, and weak bonds, which
determine the folded structure, by light springs. Only
some features of the enzyme’s folded shape are critical
for its function. Here, the relative position of the triangles
conveys the critical shape feature. Natural proteins are
built from 20 types of amino acids. A typical protein might
comprise a folded string of 300 amino acids. The func-
tions performed by the protein are determined by its
three-dimensional structure and dynamics.

FIGURE 1. The Representation of Information in Proteins

B:‘~l substrate enzyme

A protein serves as an enzyme, or biological catalyst, if it the two molecules become significant. Shapedependent
speeds the formation or severing of a particular covalent recognition is sometimes described as a “lock-key” mech-
bond in a parhcular target molecule, called the substrate. anism; in reality, though, the dynamical properties of the
In so doing, the protein switches the substrate from one enzyme also play a role. The enzyme may assume differ-
state to another. Before switching can occur, the enzyme ent shapes, or states with different functional properties,
must recognize the substrate-that is, distinguish it from as a result of interactions with control molecules, Fea-
other, possibly quite similar molecules. Recognition is a tures of shape may serve a6 binding sites that allow the
tactile phenomenon involving the complementary fit of en- enzyme to recognize and stick to specific molecular
zyme and substrate shapes. The enzyme and substrate structures. Some proteins with purely structural functions
explore one another by means of diffusional motion. use this type of lock-key interaction to self-assemble into
When a close ‘fit occurs, short-range interactions between larger molecular structures.

FIGURE 2. Proteins as Pattern-Recognizing Switches

466 Communications of the ACM May 1985 Volume 28 Number 5

Articles

(a)

New proteins arise through variation mechanisms, such
as mutation, which alter the amino-acid sequence. A sin-
gle mutation of a crucial amino acid may disrupt the abil-
ity of the protein to recognize and switch substrates.
Other mutations produce only slight changes in shape
and function. Diagram (a) shows how folding can serve to
distribute the effects of mutation over the whole struc-
ture. The mutated amino acid is represented by the large
striped circle. The relative orientation of the triangles,
which represent a feature of shape critical for function, is
altered as compared to the unmutated protein illustrated
in Figure 1. By distributing the effects of mutation, folding
allows the critical shape feature (i.e., the orientation of the
triangles) to change only slightly in a significant number of
cases. The effects of mutation on this feature may be
further buffered by redundancies: Redundancy in the
number of types of amino acids allows for mutation to
closer structural analogs, as represented by the some-
what smaller striped circle in (b). Redundancy in the num-
ber of amino acids increases the capacity of the protein
to absorb the effects of mutation in features of shape that
are not critical for function. This is illustrated by the par-
tially restored alignment of the triangles in (c). Redundan-
ties that buffer the effects of mutation lead to an enor-
mous speedup of the evolution process.

FIGURE 3. The Evolutionary Adaptability of Proteins

May 1985 Volume 28 Number 5 Communications of the ACM 467

Articles

FIGURE 4. The Evolutionary Learning Algorithm

what is of interest is the computational uses to which
physically realizable systems can be put, and second
because the thesis would be rather trivial if physically
realizable systems existed that could violate it.

THE EQUIVALENCE OF DYNAMICS
AND COMPUTATION
Taken in this strong form, the Turing-Church thesis
provides a link between formal models of computation

466 Communications oj the ACM

The “programmer” specifies the task and the criteria for
success. EVolution proceeds by variation of the amino-
acid sequences of the pioteins. Selection is based on
how well each protein performs a desired task. In general
this evalliation is based on the performance of the system
in which the protein is acting, just as in nature it is based
on how well the organism performs. Better-performing
Systems are said to be more “fit.” Propagation of fit pro-
teins is achieved by producing copies of them rather than
of less fit proteins. Improvement is achieved by coupling
the copy process to the variation process. In nature this
is achieved by differential reproduction of organisms,
where reproduction is coupled to variation of genes. The
artificial selection process pictured here differs in two ma-
jor ways from evolutionary processes in nature. First,
there is the fad that in nature many genes control the
traits of organisms. Higher mechanisms of variation such
as crossing over, recombination, and variations affecting
the regulation of gene expression are important. As with
simple mut&tions, however, these higher mechanisms re-
quire the organizations on which they act to be capable
of improvement through sequences of single variation
events in order for them to make an effective contribution
to the evolutionary process. The second major difference
is that the task-definition and selection processes are
artificial, that is, determined by a programmer, rather than
consequences of ongoing interactions among organisms
or between organisms and their environment. The evolu-
tionary programmer specifies goals in terms of criteria of
selection, whereas a digital-computer programmer speci-
fies structures to achieve the desired goals.

and dynamical processes far removed from those con-
jured up by the mechanisms present in a von Neumann
computer. The von Neumann computer is a physical
realization of a formal system executing simple opera-
tions on strings of symbols. We say that such a com-
puter simulates a dynamical system if states of the com-
puter can be made to correspond to states of the dy-
namical system at each point in time to an arbitrarily
high degree of approximation. (We do not, however,
require that every state of the machine correspond to a
state of the dynamical system [IS].) According to
Turing-Church, all physically realizable dynamics are
equivalent to computation in that they can be simulated
by a von Neumann computer under the idealization
that space and time bounds can be ignored. If we could
demonstrate that the dynamics of a particular physical
system could not be so simulated, then we could use
this system to solve problems effectively (i.e., by a defi-
nite procedure) that would be unsolvable by a digital
process. For example, we could solve the problem of
generating the behavior of this particular dynamical
system. Either the Turing-Church thesis implies that
all physically realizable processes can be duplicated by
digital computers, or it fails to put any limits on what
real systems are effectively capable of doing.

Of course, the simulation of a phenomenon-of a nu-
clear explosion, for instance-is not the same thing as
the phenomenon itself. All simulations are abstract in
that they fail to capture some aspect of the simulated
system. This is the case whether the simulation is of

May 1985 Volume 28 Number 5

Articles

lb)

For simplicity we consider a machine (technically a semi-
automaton) with three inputs, xl, x2, and x3, and three
states, ql, q2, and q3. The program is a sequence of
triples of the form qixiqk. The primitives of the construc-
tion are McCultoch-Pitts formal neurons (a). These fire if
the sum of their inputs (inputs can be 0 or 1) equals or
exceeds a threshold, which in thiscase is always 2. In the
canonical network (b), state q, is coded by the firing of a
formal neuron in column i, and input x1 by the firing of

FIGURE 5. The Concept of Structural Programmability

one string process by another or of a continuous dy-
namical process by a string process, as in the example
of the nuclear explosion. The execution sequence of
the computer has the same ontological relationship to
the real explosion as do the hydrodynamic equations
that describe the explosion. The equations are a map
from states to states that is meaningfully defined only
in terms of some method of computation. The explosion
and the machine that simulates it can be thought of as
alternative means of computing this map. The real con-
tent of the Turing-Church thesis, if it is correct, is that
any physically realizable map can also be realized by
the execution sequence of a physical system performing
formal operations on strings of symbols. Many maps can

be imagined that are not computable by simple opera-
tions on strings of symbols-a map of all computer pro-
grams into the two categories, correct and incorrect, for
instance. Computing this map is equivalent to solving
the halting problem, which we know to be unsolvable
by a Turing machine or any process equivalent to a
Turing machine [16]. If an actual system could realize
this map, it would constitute a new primitive that could
not be duplicated with any set of primitives formerly
believed to define the class of computable functions.

The proposed equivalence of dynamics and computa-
tion makes it clear that tying the concept of computing
to any single model of computation is arbitrary. Any
physically realizable process whatsoever can be admit-

May 1985 Volume 28 Number 5 Communications of the ACM

Articles

The three components are a finite-state machine (A). a
read-write head, and a tape that can be read, marked, or
moved a square to the right or left. The inputs to A are
tape symbols, and the outputs either tape symbols or
moves. The program of the luring machine oan Be ex-
pressed as a set of quadruples of the form q,x,y&,
where 4, is tihe initial state, xj the symbol read on tple
tape, yh the output symbol or move, and 9 the finat state.
Turing thought of A as an abstraction of a person per-
forming some symbolic process (e.g., an arithmetic pro-
cess) on a notepad (i.e., the tape). The program.ex-
presses the rule according to which the “states elf mind”
of A change. The finite-state device can always be real-
ized by a selt of McCuIIoch-Pitts formal neurcjns of the
type shown in Figure 5.

FIGURE 6. A Turing Machine

ted as a computational primitive. Our current prefer-
ence for simple switching processes can be attributed to
our desire to exert prescriptive control over computa-
tion. Even if a dynamical process is effectively comput-
able, the machine that incorporates this process as a
primitive need not be effectively programmable. The
discrete, finite aspect of the primitives would be lost,
and with it the ability to communicate algorithms di-
rectly to the machine. [Analog computers are of course
an exception alf sorts. It is possible to use a precisely
defined system analogy to guide design. Admitting arbi-
trary physical processes as primitives of computation
is generally incompatible with prescriptive design,
however.)

We have observed that all simulations are abstract in
that they only represent what they simulate. This raises
the question, could this “abstractness” be a significant
limitation? The philosopher Ludwig Wittgenstein ar-
gued that the interpretation of a rule could never be an
intrinsic property of the rule itself [48]. For example,
the interpretat:ion of the symbol ‘I+” is not inherent in
that symbol. If we accept the idea that all essential
aspects of human intelligence can be duplicated by fol-
lowing formal rules expressed as computer programs
(i.e., by following algorithms), then we must maintain
either that rules can carry their own interpretation or
that an interpretation can be an emergent property of a
set of rules. If symbol interpretation cannot be achieved

in these ways, it could be argued that machines like the
von Neumann computer, which are constrained to real.
ize formal sets of rules, are limited in their ability to
duplicate a crucial aspect of human intelligence. Such e
limitation would not necessarily apply to systems like
the molecular computer design here described, which
are not so constrained. For ascertaining whether it is
useful to enlarge the pantheon of computational primi-
tives, however, it is sufficient to accept the Turing-
Church thesis as formulated. The class of Turing com-
putable functions is so much larger than the class of
functions that could be computed by any finite system
that it is the comparative performance within this class,
indeed within a rather minute subdivision of it, that is
the issue of immediate concern. It is sufficient to show
that a molecular computer could perform some useful
tasks that could only be performed by a present-day
computer at an excessive cost in terms of computa-
tional resources.

PROGRAMMABILITY VERSUS EVOLVABILITY
The first part of the trade-off theorem states that pro-
grammability is a cost in terms of evolutionary adapta-
bility. Recall (from Figure 5) that a system is structur-
ally programmable if it is possible to communicate algo-
rithms to it by setting the states and connections of its
physical primitives using a finite programmer’s manual.
Consider two structurally programmable computers P
and P’, which differ by a single structural feature (cor-
responding to a single alteration according to the con-
struction manual]. Given the same input, how different
will the processes executed by these two systems be?
This problem, which I call the unsolvable transformabil-
ity problem, is unsolvable in just the sense and for just
the reason that the halting problem for Turing ma-
chines is unsolvable [g].

Suppose, as the reductio hypothesis, that it is possible
to write a program U to solve the gradual transformabil-
ity problem. This program could use any nontrivial
metric to measure the similarity of the two processes.
By a nontrivial metric, I mean any metric that does not
result in P and P’ being classified as similar indepen-
dent of what states they are in. Thus it is only neces-
sary to divide the state set of P and P’ into at least two
disjoint, nonempty subsets of states. Suppose that the
criterion of similarity is that, given the same input, P’
gives a defined computation whenever P does. The
computation is defined if the machine running the pro-
gram reaches a halt state. We are free to take as P any
program that halts. For the reductio hypothesis to hold,
it is at least necessary that U go to a halt state and emit
as output “not similar” whenever P’ does not go to a
halt state. Suppose that U is itself P’. Then U halts if it
does not halt, that is, answers “not similar” when it
does not answer “not similar.” Since this is clearly a-
contradiction, the assumption that U is a possible ma-
chine must be incorrect.

The unsolvability of the gradual transformability
problem corresponds to the common experience that a

470 Communications of the ACM May 1985 Volume 28 Number 5

Articles

single change in a computer program (other than a pa-
rameter change) usually leads to major changes in the
execution sequence. Rarely does such a randomly al-
tered system serve any useful function. Redundancies
can be introduced to confer fault tolerance, but in this
case changes in function are actually prevented. Fragile
systems of this type are unsuited to evolution; variation
and selection is efficient as a method of self-organiza-
tion only if a useful P’ can always be produced from P
by a single structural alteration. The probability of an
improvement or of a step that can bring the system
closer to an improved form is then proportional to p,
the probability of a single change. If II simultaneous
changes are necessary, the probability of an improve-
ment is proportional to p”, a very small number for any
reasonable choice of p even when n is 2 [5, 121. Large
values of p are never reasonable, since these always
lead to the introduction of many undesirable changes,
except in trivially small programs.

This argument is the basis for the first part of the
trade-off principle: that evolution is not compatible
with structural programmability. This is not to say that
evolutionary processes cannot be simulated on struc-
turally programmable computers. After all, according to
Turing-Church, it must be possible to simulate evolu-
tion, otherwise a physically realizable process would
exist in nature that is not effectively computable. Com-
puter programs have in fact been written that success-
fully use the evolutionary principle (e.g., Samuel’s
checkers program [JO], Bremermann’s optimization al-
gorithm [2], and evolutionary learning algorithms used
in simulations of structurally nonprogrammable sys-
tems [25]). The key to all such programs is restricting
evolutionary changes to parameters and parameterizing
problems as much as possible. The logical extension of
this strategy is to increase the degree of parameteriza-
tion by simulating the types of dynamical features and
redundancies that facilitate the evolutionary process in
biological systems. Continuous dynamical features are
evolution facilitating since they make it possible to de-
fine a small perturbation in a way that would be impos-
sible in a formal system. For instance, a structurally
stable developmental process can undergo a wide vari-
ety of useful transformations in response to genetic
change, while retaining coherent organization [38, 441.
Redundancies are evolution facilitating since they can
buffer the effects of genetic change on features critical
for function [ll]. To the extent that we are willing to
pay to simulate such evolution-facilitating features, we
can build virtual machines having an effective evolu-
tionary capability on top of von Neumann machines.
The underlying program would remain fragile, how-
ever, and the cost of simulation would have to be
weighed against the potential benefits.

The simplest and most important illustration of a sys-
tem structured for effective evolution is the protein en-
zyme [13]. The enzyme assumes its shape and function
through an energy-dependent folding process, which in
a significant number of cases is only slightly altered by

a point mutation-that is, by a single change in amino-
acid sequence [45] (See Figure 3). Portions of the en-
zyme that are critical for function, like the active and
control sites, can be buffered from the effects of point
mutation by functionally less significant portions of the
molecule. “Programming” occurs at the level of the
amino-acid sequence, but structural programmability is
lost since shape and function emerge from this se-
quence through a continuous dynamical folding pro-
cess. The intervention of this continuous dynamical
process increases the likelihood that single mutations
will lead to functionally acceptable forms of the en-
zyme, and is thus critically important for maintaining a
nonnegligible rate of evolution. As we have seen, this is
because the evolutionary rate decreases sharply when
it depends on the simultaneous occurrence of two or
more structural variations. Assuming that it someday
becomes possible to compute the shape and function of
proteins from primary structure, we might entertain
the idea of building a virtual machine with open-ended
evolutionary capabilities using the von Neumann com-
puter as the base machine. The computational costs of
simulating folding processes would, however, be pro-
hibitively high-much higher than the cost of simulat-
ing features that would confer a moderate evolutionary
capability.

PROGRAMMABILITY VERSUS EFFICIENCY
We have seen that simulating evolution on structurally
programmable computers is computationally expensive.
In this section we show that structural programmability
can be exchanged for computational power. To see why
this is so, let us consider the operation of a structurally
programmable computer at three levels.

The network level. The efficiency with which the com-
putational resources of a computer are utilized in-
creases as a greater fraction of processors in the system
is active at any given time. For effective programmabil-
ity, the system must be constrained to operate sequen-
tially to ensure that unanticipated conflicts do not oc-
cur (for a discussion of problems in this area, see [18]).
This means that most of the processors remain dormant
at any given time. Of course, if a program is naturally
decomposable into a number of independent parts, each
having approximately the same running time, the dor-
mancy can be greatly reduced. The running time can
only be predicted in special cases, however, since pre-
dicting running times would be tantamount to deter-
mining whether programs are defined and thus to solv-
ing the halting problem.

The component level. For structural programmability,
the number of types of switching primitives used must
be finite, and each must have predefined switching ca-
pabilities. Consequently, these primitives cannot in
general be adapted to the task at hand. As the number
of types of components (primitives) increases, the num-
ber of components required to implement any given
program typically decreases, since the functions per-

May 1985 Volume 28 Number 5 Communications of the ACM 471

Articles

formed by the added primitives would not need to be
simulated by combinations of already existing primi-
tives. When our objective is to perform a highly selec-
tive information-processing task with the smallest num-
ber of components, an arbitrarily large repertoire of
component types is obviously desirable. This is essen-
tially the situation when the components are protein
enzymes. Thlere are at least 20~” different amino-acid
sequences that could be fabricated by biological sys-
tems or by recombinant DNA techniques. Since the
functional properties of each of these sequences arise
through an energy-dependent folding process, however,
they cannot be prescribed by a manageably small pro-
grammer’s manual.

This inefficiency at the component level contributes
to inefficiency at the network level. If components
could always evolve to specifically suit the task at
hand, networks could learn to use their resources in
parallel. If we are willing to do without effective pro-
grammability in order to use components in parallel,
the only reason for working with a restricted set of
component types is the practical one that fabricating
new primitives out of silicon is expensive. This limit of
current technology is hardly relevant to biological sys-
tems, however, which can always use their genetic ap-
paratus to generate and mass-produce new carbon poly-
mers.*

The physical level. Structural programmability also
cuts into the computing potential allowed by the princi-
ples of physic:; [Z]. Recall that, according to Turing-
Church, a structurally programmable physical realiza-
tion of a formal computation process should be capable
of simulating any physical process when space and
time are unlimited. Space and time resources are never
unlimited in the real world, however, and are in fact
generally limited in different ways for the simulating
system (the machine) and the simulated system (the
physical process). A simulating system consisting of a
set of particles constrained to execute formal computa-
tions could never keep pace with a simulated system
consisting of tlhe same number of particles; if the simu-
lating system j.s structurally programmable, it is even
further constrained.3

According to known force laws, n2 interactions could
conceivably contribute to the behavior of a system con-
sisting of n particles. The potential parallelism here
is at least n-fold greater than that obtainable by one
n-processor machine of conventional design. For the
system to exhibit formal computational behavior, con-
straints must be introduced to suppress a large fraction
of the interactions (the importance of constraints, in
particular nonholonomic constraints, is emphasized in
[ST]). These constraints must ensure that the time de-

‘The limitation on the number of primitives is not contradicted by micropro-
grammable systems. These are properly thought of as general-purpose ma-
chines comprising general-purpose components. not components specifically
trimmed for a particular task.
‘This physical view of computing has the paradoxical implication that the
ultimate physical capabilities of nature must forever escape a constructive
mathematical treatment.

velopment of the system is not described by an analytic
function (since the execution sequence of a formal
computation must in general be independent of any
subsequence). They must also ensure that the system’s
time development corresponds to a classically pictura-
ble execution sequence, that is, quantum mechanics
must be irrelevant to the system as a whole. In fact, all
dynamical processes involving the system as a whole
must be suppressed, in contrast to most systems in na-
ture. Since the components must be in one of a number
of distinct states (corresponding, say, to 0 and l), the
number of distinct quantum states available is a poten-
tial limitation. Distinct quantum states contribute to the
reliability of storage and switching, requirements that
do not apply to all physical systems. To achieve struc-
tural programmability, engineers must impose addi-
tional enforcement constraints to ensure that only in-
teractions that allow each component to realize its pre-
defined function can occur and that prevent the occur-
rence of all other interactions. The limit of n-fold paral-
lelism in today’s machines is a consequence of these
enforcement constraints.

These constraints are a contributing factor to physi-
cal limitations on present-day computers. Communica-
tion among components is limited by signal velocity
and ultimately by the velocity of light. Signal velocity is
already becoming a limiting factor in some supercom-
puters. Structural programmability generally requires
special functions that could otherwise be performed by
a single specifically adapted component to be dupli-
cated by a combination of components, thus increasing
the distance over which signals must be sent. Brownian
motion is also a physical limitation (on reliability), but
only to the extent that we desire computation to fulfill
preexisting specifications and if randomness is not one
of these specifications. If randomness is desired, Brown-
ian motion can actually be viewed as extremely heavy
computation. For example, an enzyme exploring a sub-
strate utilizes Brownian motion for tactile pattern rec-
ognition. Exploration of this kind would be incompati-
ble with the enforcement constraints required for struc-
tural programmability.

The most important physical limitation on today’s
computers is heat export. Like living systems, com-
puters feed on high-grade energy and give off heat.
Transistors in present-day computers dissipate about
10" kT per step. Enzymatic reactions in biological sys-
tems typically dissipate lo-100 kT per step. This is an
impressive difference, especially when we consider that
enzymes perform a tactile pattern-recognition task that
would involve many steps for a digital computer. Care-
ful examination reveals an even more remarkable fact
about enzymatic computing: An enzyme actually per-
forms its pattern-recognition task reversibly. At equilib-
rium each enzyme continues to recognize substrates
and to make or break covalent bonds. Energy dissipa-
tion drives the reaction being catalyzed, rather than the
pattern-recognition activity of the enzyme. Driving the
reaction forward is essential for coupling the pattern-

472 Communications of the ACM May 1985 Volume 28 Number 5

Articles

recognition activity of the enzyme to the control of
macroscopic processes, but not for the pattern-
recognition activity itself.

In recent years Bennett, Fredkin, and Landauer
[I, SO] have produced a surprising result that connects
in an interesting way to this fact about enzymes. This
result is that physical realizations of formal computa-
tion processes can in principle proceed with arbitrarily
low dissipation when speed, reliability, and required
memory space are not considerations. The construction
they used to demonstrate this is based on a thermo-
dynamically reversible logic gate. It is also possible to
view this result in the light of the Turing-Church the-
sis: A logically reversible Turing process that is compu-
tation universal is in principle possible. It is only neces-
sary to record all the intermediate states on the mem-
ory tape, record the answer, and then use the memory
tape to recover all the initial information. If a thermo-
dynamically reversible realization of this logically re-
versible Turing machine were demonstrably impossible
even in the limit of idealization, it would be impossible
to use a digital process to simulate reversible processes
in nature without losing reversibility. If it were impos-
sible to duplicate a reversible process digitally without
embedding it in an irreversible process, then a weaken-
ing of the strong interpretation of the Turing-Church
thesis would be necessary [7].

The Bennett-Fredkin-Landauer result shows that+
there is no machine-independent thermodynamic limit
to computing. Thermodynamic costs can be traded for
other costs that can be reckoned in terms of compo-
nents, reliability, and speed. If a machine is structurally
programmable, these other costs are high, and hence
the cost of adding more components or accepting less
speed and reliability in order to reduce the dissipation
would soon outweigh the advantage to be gained. If the
system foregoes structural programmability, the bal-
ance changes, since the amount that must be invested
to obtain a given decrease in dissipation is less. This is
a probable explanation for the relatively low energy
dissipation found in biological computing.

EFFICIENCY VERSUS COMPLEXITY
To properly appreciate the significance of this extra
efficiency, it is useful to distinguish between
polynomial-time and exponential-time problems [19]. A
task falls into the polynomial-time class if the number
of resources required to solve it increases as a low-
order polynomial function of problem size (say as n*,
where n is any reasonable measure of problem size). A
problem is in the exponential-time class if the re-
sources required to solve it increase at least exponen-
tially with problem size, say as 2”. Problems involving
this type of increase entail a combinatorial explosion.

In the explosive 2” case, a 10”-fold increase in re-
sources allows an additive increase in problem size of
at most 33, a very modest return for a major invest-
ment. In the polynomial-time n* case, the same lOlo-

fold increase in resources allows the problem size to

increase by as much as a factor of 105-a dramatically
significant improvement. It is clear, therefore, that
boosting computational resources will not make an in-
dent on the combinatorial explosion, but that it can be
very helpful for problems admitting an efficient solu-
tion. There is an important qualifier, however. In gen-
eral, the increase in problem size is much less than 105.
The extent to which this limit can be approached de-
pends on the efficiency with which computing re-
sources can be coupled to a problem’s solution. In
structurally programmable computers, the efficiency of
coupling is low, and an increase in computing power
along conventional lines is not necessarily as valuable
as we might at first assume. If most machine resources
are dormant at any given time, an enormous increase
in parallelism will not be worth the cost. Systems that
opt for efficiency and evolutionary adaptability would
be better suited to coupling increases in computational
resources to increases in problem size.

Could analog processes or other dynamical processes
counteract the combinatorial explosion? It is not possi-
ble to answer this question a priori, but it is possible to
focus the issue more precisely. Suppose a particular
dynamical process could be used for solving a large
exponential-time problem. Furthermore, suppose that
this process could be simulated on a digital computer
over a short interval of time. A constant factor speedup
of the digital computer would then allow what is by
hypothesis an exponential-time problem to be solved in
polynomial time [15]. Thus if we assume that particular
dynamical processes can be harnessed for solving
exponential-time problems, we must also assume that
these processes are refractory to digital simulation for
even the smallest time slices.

The existence of dynamically exotic processes capa-
ble of solving exponential-time problems is of course a
logical possibility. The phenomenon of turbulence
would conceivably fall into this category. The Turing-
Church thesis would not be contradicted by such pro-
cesses since it does not matter, in terms of the thesis,
whether the number of resources used for the digital
simulation grows exponentially. The potential value of
structurally nonprogrammable computers does not de-
pend on this logical possibility, however. The value is
actually greatest for problems admitting efficient solu-
tions, for here the size of problems that are manageable
grows the most. Indeed it may be that the dramatically
different capabilities of biological organisms and von
Neumann machines are largely due to the fact that the
former are capable of solving much larger problems in
the polynomial-time class. From the standpoint of con-
structing artificial computers out of new materials,
the implication is clear: What is needed is not von
Neumann computers fabricated from alternative mate-
rials, but new computer designs to address computing
needs not efficiently met by von Neumann machines4

‘Of course. there may be other reasons for building van Neumann machines
out of alternative materials. such as the desirability of machines resistant to
pulses of electromagnetic radiation.

May 1985 Volume 28 Number 5 Communications of the ACM 473

Articles

THE PRINCIIPLE OF DOUBLE DYNAMICS
How could a structurally nonprogrammable system be
organized to perform useful functions? Undoubtedly
many guiding principles could be used for design in
this area. However, I will focus on one, the principle of
double dynamics, which seems to be particularly promis-
ing and which appears to play a role in biological infor-
mation processing.

Double dynamics would exploit the trade-off princi-
ple and would be chemically implementable. As in con-
ventional computing, we would need building-block
modules to transform patterns of input signals into pat-
terns of output signals. Since conventional computers
operate on the programmability side of the trade-off
principle, their building blocks perform this transfor-
mation in a manner completely describable in terms
of a finite user’s manual. In order to shift to the
efficiency-adaptability side of the trade-off relation,
transformation. should combine elements of continuity
and gradual modifiability with decision making.

Chemistry offers the tactile pattern-matching capabil-
ity inherent in the conformation of proteins and other
carbon polymers. Such polymers can be gradually mod-
ified and, with enzymes at least, supply the element of
decision making. However, enzymes respond to surface
properties such as the shapes of particular substrate
molecules in their immediate environment. This tactile
form of pattern recognition is unsuitable for the electri-
cal, optical, and mechanical signals that are most con-
veniently presented to a module.

Chemistry also offers various kinds of dynamics in-
volving reaction and diffusion that could transduce
nontactile signals into a form that enzymes can recog-
nize. These dynamics supply the continuity required
for generalization, as well as an element of gradual
transformability if the dynamics are structurally stable.
The studies of IPrigogine and his school [36] have
shown that, in the presence of suitable nonlinearities,
complex spatial and temporal patterns (known as dissi-
pative structures) can be created in a chemical medium
through the production of entropy, thereby providing a
dynamic structure-formation principle that comple-
ments the energy-based self-assembly principle utilized
by polymers possessing conformation. The advantage of
dissipative dynamics is that it can process patterns of
signals into surface structures in the form of chemical
gradients.

The device pictured in Figure 7 combines these two
powerful forms of pattern processing-enzymatic action
and dissipative structures-to implement the principle
of double dynamics. The enzymes are immobilized on a
surface covered. by, say, a photochemically sensitive
medium. The nonlinear, dissipative dynamics of this
medium serves to transduce spatial and temporal pat-
terns of input signals (e.g., photons) into a chemical
concentration gradient. This is the first level of dynam-
ics. The chemical concentrations are interpreted by the
enzymes, each of which can be thought of as a biosen-
sor coupled to an output device. For concreteness we

input
pattern

chemical gradient

output

l = immobilized biosensor

The input pattern is a nontactile pattern such as of optical
or electrical signals. This pattern is transduced into a
chemical-concentration pattern that can be read out by
immobilized biosensors, that is, by enzymes linked to an
output device. The output either controls a process or is
passed to a von Neumann computer. The chemical me-
dium provides the upper level of dynamics. The readout
enzymes provide the lower level. The time required for
the device to transduce an input pattern into an output
pattern could be much reduced if diffusion in a chemical
medium were replaced by a mechanical propagation of
signals in a network of structural proteins.

FIGURE 7. A Double-Dynamics Device

suppose that the action of the enzymes on their sub-
strates in the reaction-diffusion layer is picked up spec-
troscopically. The action of the enzyme is thus a dis-
tinct, second level of dynamics that controls the output
of the device. If it is sufficiently rich, the top level of
reaction-diffusion dynamics converts different input-
signal patterns into different chemical patterns. The de-
vice is “programmed” through variation at the enzy-
matic level of dynamics and selection on the basis of
the pattern-processing performance of the whole sys-
tem. The variations may involve the spatial arrange-
ment of the enzymes or modifications in their response
to a given chemical milieu. As long as the top level of
dynamics is not initial-condition sensitive, similar
input-signal patterns should often give rise to similar
chemical patterns, thus conferring some power of gen-
eralization on the system.

The first potential use of such a device is as a pre-
processor-a kind of eye-for a conventional von
Neumann machine. The purpose would not be simply
to transduce environmental stimuli, but to use the rich
dynamics of the diffusion layer and the intelligence of
the enzyme to code environmental patterns into a form

474 Comtnunications of the ACM May 1985 Volume 28 Number 5

simple enough to be managed by a structurally pro-
grammable machine.

As a second step, we could directly couple the output
to an effector organ-for instance, a robot arm. Deci-
sions about the type of motion the arm makes are con-
trolled through the von Neumann machine, but fine
motion, in response to the particularities of the envi-
ronmental situation, is controlled by the way the en-
zymes interpret this situation as it is represented in the
dissipative dynamics of the reaction-diffusion layer.
Figure 8 illustrates an expanded version of such an
adaptive pattern-recognition and process-control sys-
tem. The figure shows a bank of double-dynamics mod-
ules, each individually controlling a different part (or
degree of freedom) of a robot arm. Each module re-
ceives the same environmental input and represents
this input in the same dissipative pattern. The enzymes
in each module are selected differently, though, so the
timing and intensity of the outputs are different. Each
module can be thought of as an analog of the motor
element it controls. This shifts the problem of coordi-
nating the whole arm (in the context of a particular
type of action) to the problem of evolving suitable ana-
log modules.

To ascertain the class of functions that a network of
such enzymatically driven modules is in principle ca-
pable of computing, we can suppose, for simplification,
that a threshold property is introduced to reduce the
possible outputs to one or zero. This can be done in a
variety of ways, but for present purposes it is sufficient
to divide the module up into small regions and to ig-
nore the enzymatic signal in any region if it is either
above or below a prescribed strength. The resulting

Articles

module is much less powerful than it might be, but is
still more powerful than classical formal neurons of the
McCulloch-Pitts type. These fire whenever the average
of their inputs exceeds a threshold, whereas our dy-
namic modules would fire in response to particular in-
put patterns (assuming that the reaction-diffusion dy-
namics are sufficiently rich and the enzymes suffi-
ciently sensitive). However, we know that any finite
automaton can be simulated by networks of McCulloch-
Pitts neurons, even neurons as simple as the threshold-
two elements in Figure 5. It follows that networks of
more powerful enzymatic modules must be capable of
simulating any finite automaton. The simulation is po-
tentially more efficient since it does not have to work
around predefined modules. Since each module is po-
tentially unique, however, there can be no predefined
construction manual.

This leads us to conclude that it is possible to build a
computer that is computation universal but not struc-
turally programmable (for the formal construction, see
[g]). Since networks of enzymatically driven modules
can simulate any finite automaton, it must be possible
to use them to simulate an interpreter. Thus it would
be possible to build a structurally nonprogrammable
computer that is nevertheless effectively programmable
at an interpretive level. There is a model for such a
machine: People can read and follow rules despite the
fact that the human brain, as a product of evolution,
must be structurally nonprogrammable.

Turing machines compute a much larger class of
functions than finite automatons. However, Turing ma-
chines with finite memory tapes-the realistic assump-
tion-can always be simulated by finite automatons.

input (digitized picture)

component 1 component 2 component 3 component 4

Each module receives the same input, but interprets it which it is an analog. The modules are versions of the
differently to control that component of the robot arm for double-dynamics device shown in Figure 7.

FIGURE 8. An Array of Double-Dynamics Devices

May 1985 Volume 28 Number 5 Communications of the ACM 475

Articles

Practically speaking, some sort of manipulable memory
store is a great advantage. Modern digital computers
use an addressable memory, that is, a memory in which
each switch is located on a grid in a manner that allows
it to be accessed individually. Alternative structures
are possible in which patterns of activity of highly in-
terconnected memory units play a role; this is probably
what happens in the nervous system. Memory storage
would be greatly increased by such multiple utilization
of components, although powerful pattern-processing
capabilities would be needed to manipulate such a dis-
tributed memory structure [lo]. This is just the kind of
capability that could be provided by enzyme-driven
networks.

DOUBLE DYNAMICS IN NATURE
We have not been specific about the chemistry of man-
made double-dynamics devices since none has as yet
been produced. Our group at Wayne State University
has conducted extensive simulation studies of devices
that utilize the double-dynamics principle, however,
and has developed evolutionary learning algorithms for
communicating desired performance to them [25-271.

The reactions used in these simulations occur in real
neurons and can therefore be specified with some de-
gree of confidence.

The reactions involve molecules called second mes-
sengers, which serve as intracellular signal carriers.
Second messengers such as CAMP, calcium, and possi-
bly cGMP are now known to control nerve-impulse ac-
tivity in some neurons. Some of the key reactions of the
CAMP control system are illustrated in Figure 9 [20].
Presynaptic inputs activate receptors on the cell mem-
brane that produce CAMP, which in turn acts on pro-
tein kinases. These kinases may activate gating pro-
teins, which control the electrical activity of the mem-
brane, or may act on other target proteins inside the
neuron. If the neuron fires, calcium enters to activate
the enzyme phosphodiesterase, which in turn resets the
neuron to its initial state by converting CAMP to the
inactive mononucleotide. There are a number of other
proteins in this system that also play a controlling role,
such as binding proteins that control messenger diffu-
sion rates and an enzyme (phosphoprotein phosphatase)
that reverses the activation of protein kinase. It is possi-
ble to experiment on this system by microinjecting
CAMP into neurons and studying the effects on nerve-
impulse activity. Liberman et al. [31, 32, 341 have re-
ported an extensive series of such experiments, which
indicate that CAMP injected into large neurons of a
snail’s central nervous system has a depolarizing effect,
that is, increases the rate of neural firing. Other investi-
gators have also reported effects, in some cases involv-
ing increased :neural activity [28] and in others de-
creased activity (for a recent review, see [IT]). The
kinds of control that second messengers exert on nerve-
impulse activity have not been definitively resolved,
but the evidence that these molecules provide a two-
way link between the nerve impulses and molecular
processes inside neurons is consistently strong.

This two-way link also operates in the much simpler

double-dynamics device illustrated in Figure 7. In both
cases it serves to transduce macroscopic signals [e.g.,
nerve impulses or light rays) to a microscopic form at
the molecular level of organization and then back to a
macroscopic form. A major contribution to the comput-
ing occurs at the molecular level of organization in the
device, where enzymes read the concentration gra-
dients. The great advantage from the standpoint of effi-
ciency is that this enormously reduces the heat produc-
tion that accompanies the computation. If the same
amount of computation were performed at the macro-
scopic level of nerve impulses, dissipation would be-
come a significant limiting factor. This thermodynamic
consideration suggests that a major contribution to bio-
logical computing occurs at the molecular level in the
neuron, just as it does in the hypothetical device.

The obvious analogy is that the reaction-diffusion dy-
namics at the level of cyclic nucleotides is read out by
kinases attached to gating proteins, just as the immobi-
lized enzymes in Figure 7 read out the concentration
gradients in the device. The rich internal structure of
the neuron also suggests other more powerful possibili-
ties. Recent microinjection experiments indicate that
the effect of CAMP may in some instances be mediated
by the cytoskeleton, a network of microtubules and mi-
crofilaments that support the membrane and run
through the cell [23, 331. It is conceivable that the po-
tential for highly parallel signal processing and vibra-
tory behavior on the part of microtubules and other
cytoskeletal elements could play a significant role. In
this case second messengers would most plausibly serve
to initialize or modulate these cytoskeletal dynamics in
a manner that reflects the pattern of input to the neu-
ron. The interpretive function could be provided by a
repertoire of readout molecules tuned to recognize sig-
nificant patterns of cytoskeletal activity and capable of
initiating processes (such as the production of CAMP or
cGMP) to modulate the firing of the neuron. Although
this is only speculation, it does serve to show that an
enormous amount of computation could be allocated to
the most microscopic molecular levels of organization
in the double-dynamics framework.

The molecular mechanisms of gene action and hered-
ity constitute a well-understood biological information-
processing system whose organization is in some ways
parallel to that of a double-dynamics device. The DNA
sequence of genes is a structural code controlling an
organism’s phenotypic features under the interpretation
of molecular decoding machinery (e.g., m-RNA, t-RNA).
That the phenotypic features are often suited to the
environment is due to the Darwinian mechanism of
evolution. By comparison, the upper level dynamics of
a double-dynamics device [or of a neuron) can be
thought of as a dynamic code controlling the actions of
the device (or organism) under the interpretation of
molecular readout machinery (e.g., enzymes and mo-
lecular resonators). These actions are often suited to the
environment as a consequence of evolution through
variation and selection, though it is largely the readout
enzymes that undergo evolutionary changes rather
than the dynamic code. Readin mechanisms allow reg-

476 Communications of the ACM May 1985 Volume 28 Number 5

Articles

---- ---- -------
/ \

/ \
nerve /
impulse /

I/
receptor 1 \

%
transmitter

L

MICROSCOPIC

\
\
\
\
I
I
I
I
I
I
I
I
/

/
/

\ memDrane
\

1 gatizprotein QJ J /

N-e---- --_--

,

,/ ~~lrb;~~fftingof apresynaptic neuron releases a transmitter
~$W&r&nes with a receptor on the postsynaptic mem-
bran!% The recaptor activates the enzyme adenylate cy-

:’ -1 (aa&; which catalyzes the production of CAMP from ATP.
~%$&P‘~iffusqs to another kxation on the membrane,

j,, ‘: :.I&@ it ?otjvates a protein kinase, which in turn activates
‘., ~‘Y&ins,,oalleU gating proteins, that control the flow of
IV* ior& a&o@.the membrane. If these ion channel proteins

,_I ~~&$sWfi&3~tij, activ$xi, the neuron fires, causing cat-
I. &q&a?*) t&be released, and activates the’ enzyme

$Ihpsphodiesterase. Aotivated phosphodiesterase causes
&I@@ t&be broken down to the inactive mononucfeoticie,

~~Hfeot$u~ly resetting the neuron to its initial state. The
”

MACROSCOPIC

nerve
impulse

neuron continues to fire, however, until the kinase is
deactivate$f by the-enzyme phosphoprotein phosphatase
(not shown). Many types ?f effector proteins, such as
prot6inq a$sOciatad v&h VM cytosketetoh, can be linked
?o*kinaSqs and activated &CAMP, ‘I‘he time required for
the neuron to-tran@uce the spatiotemporai pattern of
pul$& impinging on it toa frequency&x&d output would
ti J%I$$ reduced if CAMP aNed by init@ing mechanical
signal!! in tf& q%oskeleten,, The important feature to note
in thi!!$ &hem4 is the flow ‘Qf information from macro-
ScoprC to incresjsingly rnicroshopic Ieve& (sensory input
-+ nerve impulses -* crzenticat rea0tiiMs -+ mdacular
everWand then back to macrosi$piq levels.

FIGURE 9. Key Reactions of the CAMP System of lntraneuronal Control

ulatory substances to alter the expression of DNA in
response to the environment, just as second messengers
may effect changes in cytoskeletal dynamics.

THE IMPETUS FROM BIOTECHNOLOGY
Enzyme-driven computing in biological systems de-
pends on intricate processes of self-organization and
self-maintenance. The complex sequence of reactions
in the cyclic nucleotide system, not to mention the

membrane and cytoskeletal architecture in which it is
embedded, requires for support all the metabolic and
self-regulatory processes of an entire organism. Creat-
ing such a self-enclosed support system artificially is
clearly infeasible. How then could we ever exploit the
efficiency-adaptability side of the trade-off relation?

There are at least four conceivable approaches. The
first is working with virtual machines built on top of
the von Neumann computer while consciously accept-

May 1985 Volume 28 Number 5 Communications of the ACM 477

Articles

ing the limitations imposed by the computational costs
of simulating Idynamics. The second is constructing
electronic devices to embody the desired dynamical
principles to the greatest extent possible. Devices of this
kind could be useful, but they would not enjoy the
shape-based pattern-recognition capability that proteins
possess, nor is it likely that the same fineness of micro-
scopic processing could be achieved. A third possibility
is culturing existing organisms to perform a useful
information-p:rocessing function [22]. While it may be
useful to pursue this possibility, it is generally true that
a system with a full evolutionary potential will pursue
its own goals, rather than the goals that we would at-
tempt to impose on it. The fourth approach is concen-
trating on sim:ple enzyme-driven devices and, at least
initially, on tasks for which the lifetime of the device is
not a major consideration. Prior to the development of
recombinant DNA technology, enzyme-driven devices
could only have been interesting as gedanken instru-
ments for the ‘development of brain models. With the
advance of this technology, though, it should be feasi-
ble to produce the required proteins in commercial
quantities.

Table I presents a series of design stages relevant to
molecular-computer development. The table is patently
futuristic, but it does serve to enumerate technologies

TABL,E I. A Progressively Futuristic Design
Process for a Molecular-Computing Device

1 Develop a bask5 module like the one illu&feU
in Figure 2 (asimpte trfwducerorpr&&- : *_
cassing sen3e orgatl for a cOnv~r@rjatdigi-
tal4x3mputer), .

2 Replace simple ctkemical,gractierite ljy Ml@S)_ 1. 8. .
dynamics {e.g., symma&y-breakirrg @&pa- .. I’
tive dynamic stwture$). . _’ . :/ _

3 Perfect and mas+produtie suitab~~bie&G~& ...

on whose further development molecular-computer de-
sign is predicated. Aside from gene technology, these
include biosensor technology [46], static and dynamic
chemical dissipative structures, immobilized enzyme
engineering [47], immunoglobulin tessellation tech-
niques [42] or other structure-formation techniques
based on the principle of self-assembly, and synthesis of
artificial membranes with controllable electrical prop-
erties [39]. The simplest devices would be predicated
only on gene and enzymatic biosensor technologies,
and on reaction-diffusion dynamics. Although all of
these technologies are in an early stage of development,
the amount of effort now being expended on them for a
wide range of applications is enormous. Whether mo-
lecular computers can ever become practical depends
on whether a simple device can be developed to fill a
computing need critical enough to stimulate further de-
velopment. Novel designs like double dynamics should
have an advantage over conventional designs in this
respect, since they would not have to face competition
from already mature technologies.

Even if the technology comes into place, the evolu-
tion of the dynamics and of the proteins suitable for a
given task will require time. Conceivably a point will
be reached at which a proliferation of devices suitable
for a variety of special-purpose tasks will occur. We
should point out that these devices will never compete
with humans at those tasks for which humans have
been adapted by evolution. Technical problems aside,
the time frame for such evolution would be beyond all
practical limits.

CONCLUDING REMARKS
The adaptability-efficiency-programmability trade-off
ties together a variety of information-processing phe-
nomena exhibited by both technical and biological sys-
tems. The technical problems that must be addressed in
order to exploit this trade-off with molecular and
chemical mechanisms have an admittedly forbidding
aspect. However, it is noteworthy that the required bio-
logical technologies, especially the ability to produce
specific proteins on a massive scale, are likely to de-
velop and in time to significantly influence the chemi-
cal industry, agriculture, and medicine. While it is hard
to imagine that the development of a commercially via-
ble molecular computer is imminent, it is equally diffi-
cult tp imagine a future world in which computing
remains aloof from the prevailing technical infrastruc-
ture.

There are two respects in which the trade-off princi-
ple is of immediate interest [4]. First, gene technology
is expanding the possibilities for biological design. If
this technology is used as a means for prescriptive plan-
ning of biological systems similar to the prescriptive
control exerted over a von Neumann computer, the
trade-off principle predicts that we will inevitably lose
evolutionary adaptability.

The second area of immediate concern is the use of
the von Neumann computer or of any other structur-

478 Communications (of the ACM May 1985 Volume 28 Number 5

Arficles

AN EMERGING CONSENSUS ON MOLECULAR COMPUTING?
Michael Conrad proposes that the information-processing ca-
pabilities of organic molecules could be used in computers in
place of digital switching primitives. So far, though, there is
no dear consensus as to the viability of this concept or the
best strategy for molecular computing. There have now been
two international workshops on fabricating both inorganic
and biologically derived molecular circuitlike devices, as well
as a conference on chemically based computer design;
Conrad’s paper is in fact based on his keynote address from
that conference.

According to Kevin Ulmer. vice-president for advanced
technology at Genex Corporation. a major genetic engineer-
ing firm, however, “no one could legitimately claim to be
working on a bk3ogically derived molecular electronic device
right now. In fact, there is hardly any experimental work of
consequence being conducted even for nonbiological ap
proaches. ”

The development of molecularcomputing devices is cur-
rently limited both by materials science and analytical meth-
ods. As to the specific problem of adapting proteins, “it will
be necessary to develop a protein engineering technology for
altering the structure and function of proteins in a precise
and predictable fashion before anything else can be done,”
says Ulmer.

Ulmer believes that a likely first step would be to design
hybrid devices-solid-state biological sensors built from both
conventional semiconductors and proteins. This would be
much easier than working on the molecular processing level.
‘It’s the bulk electronic properties of biological materials that
we should ba looking at. Building individual switches based
on molecules is simply beyond our present capabilities.”

Mark Stefik, a principal scientist in the Intelligent Systems
Laboratory at Xerox PARC, doubts that proteins could make
computers more adaptable: “Adaptability is an emergent
property at much higher levels than enzymes in living sys-
tems. The interesting information processes that underlie ev-
olution do not arise out of the properties of isolated mote-
cules, but rather out of the structure and organization of
living cells.” Furthermore, the “architecture” of biological sys-
tems remains only partially understood. “There may be very
special possibilities for miniaturization in mdecular technol-
ogy. But we’re a long way from understanding any viable
principles of operation at this point.”

ally programmable computing system. According to the
trade-off principle, these systems are inherently less
adaptable than biological systems and inherently less
efficient for the performance of a wide variety of criti-
cal computing tasks. It cannot be doubted that the con-
trollable information-processing power of current com-
puters is an enormously valuable new resource and
that the current expansion of this form of computing
can have an enhancing effect on various aspects of hu-
man activity. If the trade-off principle is correct, how-
ever, there are aspects of human intelligence that digi-
tal computers will never be powerful enough to dupli-
cate. The trade-off principle does not contradict the
claim of Turing and Church, but it clearly contradicts
the expectations of many advocates of artificial intelli-
gence. To productively incorporate computing into the
infrastructure of society, it is necessary to understand

Danny Hillis, a fgunding scientist at Thinking Machines
Corporation in Cambridge, Massachusetts, feels that a tech-
nological bridge between computing and biology must be
built before molecular devices can even ba attempted: ‘If
specific proteins-receptors or antibodies-could be built
from scratch, then a whole range of applications could be
opened up. In the meantime, though, there is no technologi-
cal foundation for bringing organic materials directly into
computers.”

In lieu of this, however, there are a number of approaches
that might successfully combine computing and biology. Ac-
cording to Ulmer, “If general solid-state bidogical sensors
could be developed that were sufficiently small, sensitive,
stable, and specific, they could be useful in a number of
ways. We could use such biosensors as the ‘noses’ and
‘taste buds’ of computers. This woufd complement the work
currently being done in robotics to give computers a crude
form of vision, a sense of touch, and an ability to manipulate
objects.” Ulmer also suggests that the interesting electronic
and optical properties of some protein crystals could be uti-
lized for electro-optical devices.

David Waltz, a senior scientist at Thinking Machines Cor-
poration, lists four possible advantages that molecular-
computing devices might have if they can ever be developed:

Current computer technologies are essentially planar, and
are thus limited in overall density and use of three-
dimensional space.
There are limits to miniaturization with current technolo
gies-wires cannot be made much smaller without becom-
ing subject to destruction by stray wsmic radiation or
semiconductor impurities. Molecular-computing devices,
besides being much smaller than anything we can make
with current technology, may even offer possibilities for
self-repair or self-regeneration.
Certain computations may, in fact, as Conrad suggests, be
better suited to molecular devices.
Molecular devices may force us to explore the relation-
ships among programmability, adaptability, and efficiency,
and so lead to new theoretical insights on computation
and intelligence, and in the process to new computing
engines that will be superior in certain ways to existing
computers.

the relationships among adaptability, efficiency, and
programmability. Here the study of molecular-
computer designs has immediate practical significance
for computer science independent of whether or not
such designs can be concretized either in the near or
distant future.

Acknowledgments. This article is a written version of
the keynote address delivered at the Conference on
Chemically-Based Computer Design, sponsored by the
National Science Foundation and the UCLA Crump In-
stitute for Medical Engineering, and held in October
1983. I am indebted to F. E. Yates, the chief organizer,
and to other participants for valuable comments that
enabled me to improve the presentation. The confer-
ence proposal was based in part on the report “Bio-
chips: A Feasibility Study,” prepared by myself,

May 1985 Volume 28 Number 5 Communications of the ACM 479

Articles

C. Friedlander, and K. Akingbehin, and supported by
National Genas Sciences. Wayne State University fac-
ulty participating in the study group also included
R. Kampfner and R. Rada (from the Computer Science
Department) and R. Arking, H. Burr, V. Hari, D. Njus,
A. Seigel, and A. Sodja (from the Biological Sciences
Department). J. Taylor facilitated the study and contrib-
uted to it. I also acknowledge useful conversation with
H. M. Hasting, and support from the Computer Science
Section of the National Science Foundation (Grant
MCS-82-05423, Evolutionary Programming Techniques for
Adaptive Information Processing).

REFERENCES 33.
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

16.

Bennett, C.H. Logical reversibility of computation. JBM 1. Res. Dev.
17.6(Nov.1973) 525-532.
Bremermann. H.J. Optimization through evolution and recombina-
tion. In Se/J-Organizing Sys&ms, M.C. Yovits, G.T. Jacobi, and
G.D. Goldstein, Ilds. Spartan Books, Washington, DC, 1962.
pp. 93-106.
Carter, F.L.. Ed. Molecular Elecfronic Devices. Marcel Dekker. New
York, 1982.

34.

35.

Conrad, M. Adaptability. Plenum Publishing Corp., New York, 1983, 36.
pp. 234, 347-3'70.
Conrad, M. Evolution of the adaptive landscape. In Theoretical Ap-
proaches to Complex Systems, R. Heim and G. Palm, Eds. Springer-
Verlag. New Y&k, 1978.
Conrad, M. Information processing in molecular systems. BioSystems
5, 1 (Aug. 197i’), l-14.
Conrad, M. Microscopic-macroscopic interface in biological informa-
tion processing. BioSystems 16. 3-4 (1984). 345-363.
Conrad, M. Molecular automata. In Physics and Mathematics of the
Neroous System, M. Conrad, W. Giittinger. and M. Dal Cin. Eds.
Springer-Verlag. New York, 1974, pp. 419-430.
Conrad, M. Molecular information processing in the central nervous
system, part 1. In Physics and Mathemafics of fhe Nervous System.
M. Conrad, W. Giittinger, and M. Dal Cin. Eds. Springer-Verlag, New
York, 1974, pp. 82-107.
Conrad, M. Molecular information structures in the brain. I. NPU-
rosci. Res. 2, 3 (1976). 233-254.
Conrad, M. Mutation-absorption model of the enzyme. Bull. Math.
Biol. 41, 3 (1979). 367-405.
Conrad, M. Natural selection and the evolution of neutralism. Bio-
Systems 15, l(~l982). 63-65.
Conrad, M. The importance of molecular hierarchy in information
processing. In Towards a Theorefical Biology. vol. 4, C.H. Waddington.
Ed. Edinburgh University Press, United Kingdom, 1972. pp. 222-228.
Conrad, M. The limits of biological simulation. 1. Theor. Biol. 45, 2
(June 1974). 585-590.
Conrad, M.. and Rosenthal, A. Limits on the computing power of
biological systems. Bull. Math. Biol. 43, I (1980). 59-67.
Davis, M. Computabilify and Unsolvability. McGraw-Hill, New York,
1958.
Drummond, G.I. Cyclic nucleotides in the nervous system. In Ad-
vances in Cyclic Nucfeotide Research, vol. 15, P. Greengard and
G.A. Robison. Eds. Raven Press, New York, 1983. pp. 373-494.
Enslow. P.H. h4ultiprocessor organization-A survey. Comput. Sure.
9, 1 (Mar. 1977), 103-129.

19. Garey, M.R.. and Johnson, D.S. Computers and Intractabilily.
W.H. Freeman and Co., San Francisco, Calif.. 1979.

20. Greengard. P. Cyclic Nucleotides, Phosphorylated Proteins, and NPU-
ronal Function. Raven Press, New York, 1978.

21. Gutmann. F., and Lyons, L.E. Organic Semiconductors. Part A.
R.E. Krieger Publishing Co.. Melbourne, Fla., 1981.

22. Haddon. R.. and Lamola, A. The organic computer: Can microchips
be built by bacteria? The Sciences 23, 3 (May-June 1983), 40-45.

23. Hameroff, S.R , and Watt, R.C. Information processing in micro-
tubules. j. Theor. Biol. 98.4 (Oct. 1982). 549-561.

24. Hofstadter. D. Gbdel, Escher, Bach: An Eternal Golden Braid. Vintage
Books, New York. 1980.

25. Kampfner. R., and Conrad, M. Computational modeling of evolution-
ary learning processes in the brain. Bull. Math. Biol. 45, 6 (1983).
931-968.

26. Kampfner. R.. and Conrad, M. Sequential behavior and stability
properties of enzymatic neuron networks. Bull. Math. Biol. 45, 6
(19831, 969-980.

27.

26.

29.

30.

31.

32.

37.

36.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Kirby, KC., and Conrad, M. The enzymatic neuron as a reaction-
diffusion network of cvclic nucleotides. Bull. Mafh. Biol. 46. 5-6
(1984), 765-783. .
Kononenko, N.I., Kostyuk. P.G.. and Sherbatko. A.D. The effect of
intracellular CAMP injections on stationary membrane conductance
and voltage- and time-dependent ionic currents in identified snail
neurons. Brain Res. 268, 2 (June 1983). 321-338.
Kuck. D. The Structure of Computers and Computafions, vol. 1. John
Wiley & Sons, New York, 1976.
Landauer. R. Uncertainty principle and minimal energy dissipation
in the computer. Int. J. Theor. Phys. 21, 3-4 (Apr. 1982), 283-297.
Liberman. E.A.. Minina. S.V.. and Golubtsov, K.V. The study of the
metabolic synapse. 1. Effect of intracellular microinjection of 3’,5’-
AMP. Biophysics 20, 3 (1975). 457-463.
Liberman, E.A.. Minina. S.V.. and Shklovsky-Kordy. N.E. Neuron
membrane depolarization by 3’.5’-adenosine monophosphate and
its possible role in neuron molecular cell computer (mcc) action.
Biophysics 23, 2 (1978). 306-314.
Liberman, E.A., Minina. S.V., Shklovsky-Kordy, N.E., and Conrad,
M. Change of mechanical parameters as a possible means for infor-
mation processing by the neuron. Biophysics 27, 5 (1962), 906-915.
Liberman. E.A.. Minina. S.V.. Shklovsky-Kordy, N.E., and Conrad,
M. Microinjection of cyclic nucleotides provides evidence for a dif-
fusional mechanism of intraneuronal control. BioSystems 15, 2
(1982), 127-132.
Minsky, M. Computation: Finife and Jnfinife Machines. Prentice-Hall,
Englewood Cliffs, N.J., 1967.
Nicolis. G., and Prigogine, 1. Self-Organizafion in Nonequilibrium Sys-
tems. Wiley-Interscience. New York, 1977.
Pattee. H.H. Physical problems of decision-making constraints. In
The Physical Principles of Neuronaf and Organismic Behavior.
M. Conrad and M. Magar. Eds. Gordon and Breach, Science Publish-
ers, New York, 1973, pp. 217-225.
Poston, T.. and Stewart, I. Caksrrophe Theory and its Applications.
Pitman Publishing, Marshfield. Mass., 1978.
Przybylski. A.T.. Statten. W.P.. Syren, R.M., and Fox, S.W. Mem-
brane, action, and oscillatory potentials in simulated protocells. Na-
lunuissenschaffen 69. 12 (Dec. 1982), 561-563.
Samuel, A.L. Some studies of machine learning using the game of
checkers. IBM]. Res. Dev. 3, 3 (July 19591, 211-229.
Street, G.B.. and Clarke, T.C. Conducting polymers: A review of
recent work. IBM I. Res. Dev. 25, 1 (Jan. 1981). 51-57.
Uzgiris. E.E.. and Kornberg, R.D. Two-dimensional crystallization
technique for imaging macromolecules, with application to antigen-
antibody-complement complexes. Nature 301, 589613 (Jan. 1983).
125-129.
Volkenstein. M.V. Physics and Biology. Academic Press, New York,
1982.
Waddington, C.H. The Strategy of Genes. George Allen and Unwin.
London, 1957.
Wills, C. Production of yeast alcohol dehydrogenase isoenzymes by
selection. Natlrre 261. 5555 [May 1976). 26-29.
Wingard. L.B.. Jr. Immobilized enzyme electrodes for glucose deter-
mination for the artificial pancreas. Fed. Proc. 42, 2 (Feb. 1983).
271-272.
Wingard. L.B.. Jr.. Berezin, I.V.. and Klysov. A.A., Eds. Enzyme Engi-
neering. Plenum Publishing Corp., New York, 1980.
Wittgenstein, L. Philosophical Investigations. MacMillan & Co., Lon-
don, 1953.

CR Categories and Subject Descriptors: Cl.3 [Processor Architectures]:
Other Architecture Styles--adaptable architectures; F.l.l [Computation
by Abstract Devices]: Models of Computation; L2.m [Artificial Intelli-
gence]: Miscellaneous
General Terms: Design, Theory
Additional Key Words and Phrases: biological information processing,
evolutionary programming. learning, modes of computation, molec-
ular computers, pattern recognition, trade-offs among complexity
measures

Author’s Present Address: Michael Conrad, Dept. of Computer Science,
Wayne State University, Detroit, MI 48202.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish, requires a fee and/or specific permission.

480 Communications of the ACM May 1985 Volume 28 Number 5

