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ABSTRACT
Data—call records, internet packet headers, or other trans-
action records—are coming down a pipe at a ferocious rate,
and we need to monitor statistics of the data. There is no
reason to think that the data are normally distributed, so
quantiles of the data are important to watch. The probe
attached to the pipe has only limited memory, though, so it
is impossible to compute the quantiles by sorting the data.
The only possibility is to incrementally estimate the quan-
tiles as the data fly by. This paper provides such an in-
cremental quantile estimator. It resembles an exponentially
weighted moving average in form, processing and memory
requirements, but it is based on stochastic approximation so
we call it an exponentially weighted stochastic approximation
or EWSA. Simulations show that the EWSA outperforms
other kinds of incremental estimates that also require min-
imal main memory, especially when extreme quantiles are
tracked for patterns of behavior that change over time. Use
of the EWSA is illustrated in an application to tracking call
duration for a set of callers over a three month period.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Management—
database applications, data mining ; G.3 [Mathematics of
Computing]: Probability and Statistics

General Terms
Customer profiles, customer relationship management, dy-
namic database, EWMA, equi-depth histograms, massive
data, percentiles, sequential estimation, stochastic approxi-
mation, transaction data

1. BACKGROUND
Data—packet headers, network statistics, or transaction
records—flow down a pipe too fast for a probe attached to
a pipe to store in memory. Nonetheless, the statistics of the
data have to be monitored as the data fly by, using only the
limited data that can be kept in a buffer at any time. Linear

statistics, like means, can easily be monitored in this way,
but quantiles (or percentiles standardized to the 0-1 scale
instead of 0-100 scale) may be more important than means
to monitor when the data are skewed, and quantiles are not
linear statistics. Quantiles are also the quantities that have
to be monitored in a fixed-depth histogram in which the
relative frequencies associated with the histograms bins or
cells are fixed and the bin boundaries vary.

Two kinds of quantile monitoring problems can be distin-
guished: static and dynamic. In static monitoring, the goal
is to estimate the quantiles that would be computed if all the
data obtained so far could be held in memory and sorted.
Static quantiles are unknowable only because there is not
enough memory to hold all the data at once. They can be es-
timated incrementally, though, by processing the data that
does fit in a buffer and then combining the buffer estimates
incrementally.(See, for example, [10, 6, 9, 5].) In dynamic
monitoring, the goal is not to reproduce the number that
would be obtained for the entire database, but rather to es-
timate a quantile of the current behavior of the entity being
tracked, especially when there is reason to suspect that the
quantity being tracked is changing over time. For example,
suppose the .99 quantile of call duration is being tracked
and call durations have been increasing recently. Then the
goal may be to estimate the .99 quantile of duration for
current calls, which would be larger than the .99 quantile
computed from past calls. Dynamic monitoring is impor-
tant for provisioning, for example, where prediction rather
than summarization of the past is the goal.

In either static or dynamic monitoring, an incremental esti-
mate of a quantile must require little space and time to com-
pute. Ideally, it should rely on only its previous estimate and
the current set of measurements in the buffer and require
only a few arithmetic operations. Section 2 describes such
an estimate, which we call an exponentially weighted stochas-
tic approximation (EWSA) estimate. A simulation study in
Section 3 compares the performance of the EWSA to other
incremental quantile estimators when measurements are ei-
ther normal, t, or exponential and the parameters of the
distributions are either constant over time (static, or sta-
tionary) or changing linearly over time (dynamic, or nonsta-
tionary). The EWSA has the best simulated performance,
especially for dynamic monitoring when the quantile of in-
terest is extreme (greater than .95 or smaller than .05). Sec-
tion 4 applies the EWSA to tracking call duration for a set
of customers over a three month period. Final thoughts and
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suggestions for further research are presented in Section 5.

2. INCREMENTAL QUANTILE ESTIMATES
A buffer can hold M observations, and at iteration n the
observations are labelled Xn1, . . . , XnM . These M observa-
tions are considered as a random sample from a distribution
Fn, which has qth quantile Qn. That is, Fn(Qn) = q. The
qth quantile may be dynamic, in which case Fn and Qn

change over time, or the quantile may be static, in which
case Fn and Qn are constant. In either case, we want a re-
cursive or incremental estimate of Qn that can be computed
knowing only the current set of M observations, the quan-
tile estimate after the previous set of M observations (from
the previously filled buffer), and a few tuning parameters.
For the first set of observations, we can use the qnth sorted
largest observation to estimate Q1. More refined initial es-
timates can be computed, though, if similar data have been
monitored in the past. (See [2] for one possibility.)

2.1 The EWMA Estimate
First, suppose there is just one set of M measurements
X1, . . . , XM from a distribution F . If nothing is assumed
about F , then the best estimate of the qth quantile Q of F
is the qM th sorted observation if qM is an integer and a
linear interpolation of the bqMcth and (bqMc + 1)th sorted
observations otherwise, where bxc is the greatest integer in

x [7]. This sample quantile bQn is biased, but its bias is usu-
ally smaller than its standard error if M is large [3]. If M is

small, then bQn tends to be badly biased, but it can still be a
reasonable initial estimate of Q if the incremental estimate
can recover from bad starting values.

If a large number M of observations is available at each it-
eration, then the sample quantile of each set is a reasonable
quantile estimate. If the underlying distribution Fn is not
changing (i.e., it is stationary), then the sample quantiles
can be combined iteratively by computing the moving aver-
age (MA) of the sample quantiles:

An = (1 − n−1)An−1 + n−1 bQn

where bQn is the sample quantile of the nth set of measure-
ments. The moving average estimate An has smaller stan-

dard error than the sample quantile bQn for the observations

in batch n, but it does not have smaller bias than bQn when
Fn is not changing with n.

If Fn changes with n, then the exponentially weighted moving
average (EWMA)

A∗
n = (1 − w)A∗

n−1 + w bQn,

where 0 < w < 1, is more appropriate. Because w is fixed,
A∗

n “ages out” older observations and adapts to changing Fn.
The larger w, the faster the aging. Good choices of w are
often determined by experimentation, with typical values
ranging between .01 and .1. EWMA updating is simple
to understand and requires little memory beyond what is
needed to compute the sample quantiles. An EWMA is as
biased as a sample quantile for one set of M measurements,
however, and it is not useful when the quantile estimate
must be updated at each observation.

2.2 The SA Estimate
Tierney [9] proposed an incremental quantile estimate based
on stochastic approximation [8] that, unlike the moving av-
erage and EWMA estimates, becomes less biased as data
are collected and can be computed even if the quantile es-
timate has to be updated at every observation. In fact,
Tierney showed that if the distribution Fn of the data does
not change with n, then the stochastic approximation (SA)
estimate Sn behaves nearly as well as the sample quantile
that would be computed from all the data collected so far.
Asymptotically, the two estimates are indistinguishable. He
described the SA quantile estimate for the case M = 1, but
the algorithm can be generalized to any M and that is the
version presented here.

At the nth set of observations, the SA quantile estimate Sn

for the qth quantile is defined by

Sn = Sn−1 +
wn

en−1

�
q − #M

i=1 {Xni ≤ Sn−1}
M

�
,

where wn = 1/n, #A is the number of times that condition
A is satisfied, and en = max(fn, f0/

√
n), with f0 an initial

and fn a current estimate of the density of X at the qth

quantile. In words, Sn adjusts the last estimate Sn−1 by
a factor that is proportional to the difference between the
theoretical fraction q of observations less than the quantile
and the fraction of the M observations less than or equal
to the last estimate of the quantile. The smaller the esti-
mated density at the last estimate of the quantile, the larger
the adjustment. (The estimated density must be bounded
from below to prevent the correction factor from “explod-
ing”). The weight wn = 1/n converges to zero, so newer
observations have little influence on the the estimate.

The initial density estimate f0 is generally obtained from
a preliminary sample or historical data. The incremental
density estimate fn is defined as

fn = (1 − wn)fn−1 + wn
#M

i=1 {|Xni − Sn−1| ≤ cn}
2cnM

,

where cn = 1/
√

n.

2.3 The EWSA Estimate
The only drawback to the SA estimate is that it gives little
weight to new data so it cannot track changes over time.
But, as introduced in [4], exponential weighting can be used
with stochastic approximation so that more weight is given
to more recent observations.

Exponential weighting is needed in both the quantile esti-
mate and the density estimate in the stochastic approxima-
tion estimate. First, the last quantile estimate is adjusted
by w/fn−1 (with w fixed) instead of by (nfn−1)

−1. Second,
a nonvanishing neighborhood replaces the shrinking neigh-
borhood with width 2n−1/2 in the density estimate. Third,
the density estimate is updated with a fixed weight instead
of the shrinking weight wn.

The exponentially weighted stochastic approximation (EWSA)
estimator S∗

n is computed recursively. First, initial values of
f∗
0 and S∗

0 are either chosen using prior knowledge or ob-
tained from a set of M observations X01, . . . , X0M as fol-
lows.
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Initialization

1. Set the initial estimate S∗
0 equal to the qth sample

quantile bQn of X01, . . . , X0M .

2. Estimate the scale r∗0 of f∗
0 by the interquartile range of

X01, . . . , X0M ; i.e., by the difference of the .75 and .25
sample quantiles. Then take c∗0 = r∗0M−1 PM

i=1 i−1/2.

3. Take f∗
0 = (2c∗0M)−1 max{#{|X0i − S∗

0 | ≤ c∗0}, 1},
which is the density of observations in a neighborhood
of width 2c∗0 of S∗

0 , unless the fraction of observations
in the neighborhood is zero.

Next, suppose that M observations Xn1, . . . , XnM are avail-
able to update S∗

n−1 to S∗
n. Let c =

P2M
i=M+1 i−1/2/M ,

which is the average updating weight that the stochastic ap-
proximation estimator would assign to the next M observa-
tions. Then the quantile and density estimates are updated
as follows.

Updating

1. S∗
n = S∗

n−1 + w
f∗

n−1
(p − #{Xni≤S∗

n−1}
M

).

2. f∗
n = (1 − w)f∗

n−1 + w
2c∗n−1M

#{|Xni − S∗
n−1| ≤ c∗n−1}.

3. Take r∗n to be the difference of the current EWSA es-
timates for the .75 and .25 quantiles, and define the
neighborhood size for the next updating step to be
c∗n = r∗nc.

The neighborhood size c∗n does not decrease to zero, so f∗
n

converges to a positive number rather than to zero under
weak conditions. Thus, 1/f∗

n should never “explode”. For
small n, however, the estimate f∗

n may be poor, and the
EWSA estimate may behave no better than a sample quan-
tile. A poor estimate of f∗

n may even take the EWSA esti-
mate below the smallest possible observation or above the
largest possible observation. That problem is avoided by
forcing S∗

n to lie in the range of the data, if the range is
known.

2.4 The Modified NCO Estimate
A single-pass algorithm for estimating quantiles for a large,
static dataset is described in [5]. Their method uses a fixed
number b of buffers of size k to obtain approximate quan-
tiles for an entire database with pre-specified accuracy. The
algorithm has three operations, New, Collapse, and Output,
so we refer to it as the NCO procedure. Simply stated, New
populates a buffer with k observations. Collapse takes b ≥ 2
buffers, assigns each a weight proportional to the number of
sets of observations that it represents and returns one “col-
lapsed” buffer of k sorted values and a set of weights. The
New and Collapse steps are repeated until all the data in the
database has been considered. Finally, Output returns the
approximate quantile estimate using the information from
the final Collapse step.

The NCO algorithm is not designed to be used with stream
data, but it can be adapted for that purpose. It then requires
only two buffers: one for the new set of data and one for the

current quantile estimates. We call this the modified NCO
(MNCO) estimate. Because the estimate collapses sample
quantiles, it cannot be used with M = 1 and may be severely
biased for small M . (There would, of course, be no reason
to use such a small M with a static database, for which the
algorithm was designed.) At the nth update, the buffer of
current estimates has weight (n − 1)/n, and the buffer of
new data has weight 1/n. As a result, new observations
have little influence on the quantile estimate so the method
is not appropriate for nonstationary data.

3. COMPARING THE ESTIMATES
The behaviors of the EWMA, SA, EWSA, and MNCO incre-
mental quantile estimators on simulated data are compared
in this section. Simulated data from normal, t2 (a t with
two degrees of freedom), and exponential distributions with
both stationary and nonstationary parameters are consid-
ered, giving a total of six distributions. The t2 distribution
has heavy tails and is prone to outliers. The exponential
distribution is highly skewed. Three quantiles are estimated
under each distribution, the .5 (median), the .9 and the .99,
for batch or sample sizes of M = 1, 5, and 15, although only
the SA and EWSA estimates can be computed when M = 1
(see Section 2). The sample quantile of the first batch is
used to initialize each estimate for M > 1. For M = 1, the
sample quantile of the first 10 observations is used as the
initial estimate. The total number N of observations per
run, counting all observations in all batches, varies with the
batch size: N = 1000, 3000, and 4000 for M = 1, 5, and
15 respectively. There were 1000 runs for each of the 18
combinations of distribution and M .

The performance of each incremental estimate bQn at the
nth update under each scenario is measured by its empiri-
cal root mean square error (RMSE), or its average squared
distance from the quantile Qn of the distribution used to
generate the data. The RMSE at updating step n is defined
by

RMSE
� bQn

�
=

�
E
� bQn − Qn

�2
�1/2

=
h
Var

� bQn

�
+ Bias2

� bQn

�i1/2

,

where E(X) denotes the expected value of X and Var(X)
denotes the variance of X. The RMSE at n is estimated by

averaging the squared difference between Qn and bQn over
the 1000 simulation runs and then taking the square root.

3.1 Stationary Data
3.1.1 Normal(0, 1) Distribution
Figure 1 displays the simulated RMSE curves for the four
incremental estimates when observations are taken from a
standard normal distribution, which has a median of 0, a .9
quantile of 1.282, and a .99 quantile of 2.326. The EWMA
and EWSA estimates use w = .05.

When M = 1, the EWSA and SA estimates have similar
RMSE curves for the median, but the EWSA is clearly bet-
ter for estimating the .9 and .99 quantiles, as the three left-
most panels of Figure 1 show. A closer analysis (not given
here) shows that the problem is that the SA does not recover
as easily from poor initial estimates. This is not surprising
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Figure 1: Simulated RMSE curves for the EWSA,
SA, EWMA, and MNCO incremental quantile esti-
mates for stationary, standard normal data. Each
panel corresponds to a combination of sample size
M and quantile.

because it does not age out old estimates, and poor initial
estimates are more likely for larger quantiles. The EWSA
RMSE curves for M = 1 stabilize around .17 for all three
quantiles, but the SA RMSE curves stabilize at values that
increase with the quantile. Both the EWSA and SA are
nearly unbiased for the median (after about 200 updates,
their absolute bias is less than .01). The SA is negatively
biased for the larger quantiles, however, with the bias sta-
bilizing at −.06 at the .9 quantile and at −.51 at the .99
quantile. The EWSA has negligible bias that stabilizes at
less than .01 for the .9 and .99 quantiles. Note that the
performance at the .1 and .01 quantiles would be the same
as the performance at the .9 and .99 quantiles because the
normal distribution is symmetric about the median.

For M = 5, the SA estimate has the lowest simulated RMSE
curve for the median and .9 quantile, but the EWSA is con-
siderably better for the .99 quantile (see the middle panels
in Figure 1). The EWMA is as good as the EWSA for esti-
mating the median, but considerably worse than either the
EWSA or SA for the .9 and .99 quantiles. The MNCO has
the worst RMSE curve among the four estimates. All four
estimates are nearly unbiased at the median, but their bi-
ases increase with the quantile. The simulated bias for the .9
quantile stabilizes at −.005 for the SA, .007 for the EWSA,
−.115 for the EWMA, and −.101 for the MNCO. The stabi-
lized bias for the .99 quantile is −.26 for the SA, .02 for the
EWSA, −1.16 for the EWMA, and −1.15 for the MNCO.
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Figure 2: RMSE curves for the EWSA, SA, EWMA,
and MNCO incremental quantile estimates for sta-
tionary, standard normal data, with sample size M =
5, corresponding to updating weights w = .01, .05, .1,
and .2. Each panel corresponds to a different quan-
tile.

The large negative EWMA and MNCO biases reveal the ba-
sic problem with these estimates: they behave too much like
the sample quantile for the batch size M rather than like the
sample quantile for the total number of observations seen so
far. The bias for a .99 sample quantile for a sample of size 5
from a standard normal distribution is about −1.168, which
is about the same as the simulated bias for the EWMA and
MNCO estimates.

The comparisons for M = 15 are similar to those for M = 5.
(See the rightmost panels of Figure 1). The SA, EWSA,
and EWMA estimates have similar RMSEs for the .5 and
.9 quantiles, but the SA RMSE is slightly smaller. The
EWMA is as good as the SA and EWSA here because the
.5 and .9 sample quantiles for a sample of size 15 are nearly
unbiased. The SA has smaller RMSE than the EWSA at
the .99 quantile until about the 70th update (corresponding
to about 1000 observations), but then the SA performance
degrades. The stabilized biases for the .99 quantile estimates
are: −.26 (SA), .005 (EWSA), −.59 (EWMA), and −.54
(MNCO).

The choice of updating weight w affects the RMSE of the
EWSA estimate, as Figure 2 shows for M = 5. The RMSE
drops faster for larger w, but it also stabilizes at a larger
value. The pattern is more pronounced for larger quantiles.
The bias decreases faster for larger w because the quantile
estimates move away from their initial values more quickly,
but the variance is larger because the number of observa-
tions that affect the estimate is smaller with larger w. The
larger variance accounts for the larger stabilized RMSE. In
our applications, we have found that w = .05 gives the best
trade-off between initial drop in bias and asymptotic vari-
ability.

3.1.2 t2 and Exponential Distributions
A standard t2 distribution (mean zero, scale one and two
degrees of freedom) was used to simulate data that are prone
to outliers. The median, .9 and .99 quantiles of the t2 are
0, 1.89 and 6.96 respectively.

The t2 RMSE curves (not shown here) for the EWMA, SA,
EWSA and MNCO estimates are qualitatively similar to the

519



RMSE curves for normal data. The RMSEs under the t2 dis-
tribution are considerably larger for the .9 and .99 quantiles,
though. For M = 1, the stabilized SA and EWSA RMSEs
under the t2 distribution are .77 and .29 for the .9 quan-
tile and 4.74 and 2.28 for the .99 quantile. The stabilized
SA and EWSA RMSEs under the normal distribution are
.23 and .17 for the .9 quantile and .64 and .18 for the .99
quantile. The EWSA is again the best estimate for the .99
quantile and SA is the best estimate for the median. The
EWSA is a better estimate of the .9 quantile under the t2
distribution for M = 1, but the SA is better for larger M .
The MNCO is the worst estimate in all cases in which it
can be used, and the EWMA performs reasonably well only
when the corresponding sample quantile is not badly biased.
Again, analyses not given here show that w = .05 gives the
best trade-off between drop in bias and longrun variability.

An exponential distribution with a mean of one was used to
simulate skewed data. Its median, .9 and .99 quantiles are
.69, 2.30, and 4.61 respectively. The relative performance of
the estimates under the exponential is similar to that in the
normal and t2 simulations, with the RMSEs falling between
those for the normal and the t2. Again, w = .05 is the best
choice of updating weight among those considered.

3.2 Nonstationary Data
The SA and the MNCO estimates assign decreasing weights
to the current observations, which is appropriate only if the
distribution generating the data remains the same. The
EWSA and EWMA, on the other hand, use constant up-
dating weights, which allows them to adapt to some amount
of nonstationarity. This section reports the simulation re-
sults for nonstationary data.

3.2.1 Normal Distribution With Drift
A normal distribution with variance one and a mean of .006n
at update n was used to simulate data with a linear trend
in the mean. (This induces a linear drift of rate .006 in the
quantiles.) The same mean was used to generate all obser-
vations in the same update. A weight of w = .05 was used
for the EWSA and EWMA. Figure 3 displays the result-
ing RMSE curves for the EWMA, SA, EWSA and MCNO
estimators.

As would be expected, the SA and MNCO estimates break
down under nonstationarity. In fact, their RMSE curves
increase linearly with update number because their biases
become more negative as the target quantile drifts upward.
The SA and MNCO RMSEs in the M = 15 panels are
smaller because the number of simulated updates decreases
with M in our simulation.

The EWSA and EWMA, on the other hand, adapt to the
nonstationarity, and their RMSE curves stabilize. The sta-
bilized RMSEs are larger under nonstationarity than under
stationarity, though. For example, the stabilized EWSA
RMSEs for the median, .9 and .99 quantiles under the nor-
mal drift model are .23, .27 and .54, compared to a stabi-
lized RMSE of about .17 for all three quantiles under the
stationary normal model. The RMSEs relative to the quan-
tile being estimated do not increase under nonstationarity,
though. The EWMA again behaves poorly at the .99 quan-
tile because it has a large negative bias. At the median for

all M and at the .9 quantile for M = 5 or 15, the EWMA is
competitive with the EWSA. Overall, the EWSA estimate
has the best RMSE curve, with the additional advantage
that it can be used with M = 1.

3.2.2 t2 and Exponential Distributions with Drift
The same drifting mean was used to simulate nonstationary
t2 data, giving quantiles that increase linearly at a rate of
.006 per update. The RMSE curves, which are not shown
here, are qualitatively similar to those in Figure 3, so the
conclusions about the performance of the estimates are the
same. The SA and MNCO break down under nonstationar-
ity for heavy tailed data, and the EWSA and EWMA adapt
to the nonstationarity. The EWSA outperforms the EWMA
at the .99 quantile for all M and and at the .9 quantile for
M = 5. The stabilized EWSA and EWMA RMSEs tend to
be larger when the mean drifts, but the RMSE relative to
the quantile being estimated is not sensitive to the drift in
mean.

The nonstationary exponential model added .006 to the mean
at each update, starting at a mean of 1.006. The data also
become more variable as the mean increases, because the
mean equals the standard deviation for an exponential dis-
tribution, and the target exponential quantiles are multi-
plied by a factor of 1.006 at each update. For example, the
quantiles after 1000 updates are 600% larger than the orig-
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Figure 3: RMSE curves for the EWSA, SA, EWMA,
and MNCO incremental quantile estimates for a
normal process with a mean that increases by .006 at
each update, starting from .006. Each panel corre-
sponds to a combination of sample size and quantile.
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inal quantiles, so the exponential nonstationarity is more
severe than the normal and t2 nonstationarity.

The RMSEs of the estimators under exponential nonstation-
arity are similar to the RMSEs under normal and t2 non-
stationarity, but the SA and MNCO estimates deteriorate
faster and the stabilized EWSA and EWMA RMSEs are
worse. After 1000 updates, the SA RMSE for the .99 quan-
tile is 27.7 under exponential nonstationarity, compared to
5.2 for the normal nonstationary model and 9.3 for the t2.
The stabilized EWSA RMSE ranges from .13 for the median
with M = 15 to 7.8 for the .99 quantile with M = 1. The
conclusions about normal and t2 nonstationary also apply to
exponential nonstationarity: EWSA is best able to handle
nonstationarity at all sample sizes and quantiles.

4. AN APPLICATION: TRACKING CALL
DURATION

The cost of establishing service for a new telecommunica-
tions customer is so high and competition for customers is
so fierce, that service providers are asking to have up-to-date
information on each caller on their network. This informa-
tion is always fresh for marketing analyses and it enables
the kinds of real-time analyses that are needed for fraud de-
tection (See [1].) In many of these applications, especially
fraud, extreme behavior is most interesting, so the goal is to
track extreme percentiles of at least some aspects of calling
behavior. To keep the information as up-to-date as possible,
we use M = 1 in these applications. Thus, only the SA and
EWSA estimates can be used.

Here we focus on tracking the .99 quantile of call duration
for a random sample of 146 callers who made between 1150
and 3400 completed calls during peak hours over a three
month period, where peak hours are defined to be 9:00 a.m.
to 8:00 p.m. Monday through Friday. To evaluate the per-
formance of the EWSA and SA estimates, we assume that
the call durations for each customer are stationary over the
three month period, so the target quantile to be estimated
is the .99 sample quantile Qi computed from all the com-
pleted peak hour calls made by customer i during the three
month period. Because there is a wide range in target quan-
tiles across customers, we use the absolute relative error,

100| bQi −Qi|/Qi, to evaluate performance at each call n for
each customer i. The median and .25 and .75 quantiles of
the absolute relative error at call n across all customers that
made at least n calls are shown in Figure 4.

As in the simulations described in Section 3, the EWSA
clearly outperforms the SA estimate for the .99 quantile.
The EWSA median absolute relative error stabilizes at about
5%, while the stabilized SA median absolute relative error
is about ten times larger. After about 500 calls, the .75
quantile curve for EWSA stays below the .25 quantile curve
for SA, suggesting that the EWSA is better than the SA
for a majority of customers. The .75 quantile of the EWSA
relative error stabilizes at 12%, which is about one third the
stabilized .25 quantile of the SA relative error of 35%. In
this application, then, the EWSA is a reliable and efficient
estimate for tracking call duration behavior.
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Figure 4: Absolute relative error curves for the SA
and EWSA estimates of the .99 call duration quan-
tiles. An updating weight of w = .05 is used for both
estimates. The three curves in each panel refer to
the .25, .5, and .75 pointwise quantiles of the abso-
lute relative errors across customers. The .25 and
.75 pointwise quantile curves are drawn in dashed
lines, while a solid line is used for the pointwise me-
dian curves.

5. CONCLUSIONS
Increasingly, real-time applications involve massive amounts
of data that are collected through a pipe and cannot be held
in main memory. The goal may be to summarize the data
collected so far (static distribution), or to understand the
behavior at the current time or to predict the behavior at
the next observation (dynamic distribution). Extreme be-
havior is often the most interesting in tracking applications,
in which case quantiles are more useful summaries than the
mean and standard deviation. This paper describes a space-
efficient, computationally simple incremental estimate for
quantiles: the exponentially weighted stochastic approxi-
mation (EWSA) estimate. The EWSA can be used with
stream data collected in batches of any size, including one
observation at a time. Simulations suggest that the EWSA
outperforms other space-efficient, incremental estimates for
extreme quantiles, especially when the data are not station-
ary, and the EWSA is as good as other estimators otherwise.
In the application to tracking the .99 quantile of call dura-
tion call-by-call in Section 4, the EWSA was better than the
only competing procedure that we are aware of, which is the
stochastic approximation estimate.

This paper has focused on estimation from stream data,
which is collected in batches. The EWSA estimate can also
be used with very large, static databases that require in-
cremental computations, though. The data would need to
be split into subsets, and the subsets would be treated se-
quentially. Much larger batch sizes than the ones considered
here could be used. It would be interesting to compare the
EWSA in this context to the NCO and other quantile es-
timates designed for static databases. Other performance
metrics not considered here, such as processing time, would
also need to be considered. Approximate bounds on the er-
ror in an EWSA estimate in this context can be based on
the distributional properties of the data.
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Further research is needed to design methods for choosing
optimal updating EWSA weights as a function of the quan-
tile fraction q and the distribution of the data. Simulation
results suggest that a weight of .05 is adequate for stationary
data, but a different weight may be better for nonstation-
arity and for different distributions and parameter values.
Presumably, more nonstationarityy requires a larger w, but
we do not know how fast a drift the EWSA can accommo-
date for different kinds of distributions. More investigation
is also needed on optimal batch sizes for EWSA estimation.
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