
If you cite this paper, please use the ICN reference: C. Gündoğan, C. Amsüss, T. C. Schmidt, M. Wählisch. Reliable Firmware Updates for the Information-Centric Internet of
Things. In Proc. of ACM ICN, ACM, 2021.

Reliable Firmware Updates for the
Information-Centric Internet of Things

Cenk Gündoğan
HAW Hamburg

cenk.guendogan@haw-hamburg.de

Christian Amsüss
christian@amsuess.com

Thomas C. Schmidt
HAW Hamburg

t.schmidt@haw-hamburg.de

Matthias Wählisch
Freie Universität Berlin

m.waehlisch@fu-berlin.de

ABSTRACT
Security in the Internet of Things (IoT) requires ways to regularly
update firmware in the field. These demands ever increase with new,
agile concepts such as security as code and should be considered
a regular operation. Hosting massive firmware roll-outs present a
crucial challenge for the constrained wireless environment. In this
paper, we explore how information-centric networking can ease
reliable firmware updates. We start from the recent standards devel-
oped by the IETF SUIT working group and contribute a system that
allows for a timely discovery of new firmware versions by using
cryptographically protected manifest files. Our design enables a
cascading firmware roll-out from a gateway towards leaf nodes
in a low-power multi-hop network. While a chunking mechanism
prepares firmware images for typically low-sized maximum trans-
mission units (MTUs), an early Denial-of-Service (DoS) detection
prevents the distribution of tampered or malformed chunks. In
experimental evaluations on a real-world IoT testbed, we demon-
strate feasible strategies with adaptive bandwidth consumption and
a high resilience to connectivity loss when replicating firmware
images into the IoT edge.

CCS CONCEPTS
•Networks→Network protocol design;Network reliability;
Network experimentation; • Computer systems organization→
Embedded and cyber-physical systems.

KEYWORDS
Constrained IoT, ICN, firmware updates, security, performance
measurement

1 INTRODUCTION
The deployment of Information-Centric Networking (ICN) [4, 51]
on embedded wireless devices [38] was first considered a decade
ago. With the advent of the Internet of Things (IoT), early experi-
ments [10] confirmed benefits for constrained multi-hop networks
from operating NDN [22, 53] as a network layer directly on top of
data links. Since then a large body of work has proposed and evalu-
ated ICN in the IoT context [1, 5, 7, 10, 14, 17, 40, 44, 45]. Essential
findings show that hop-wise forwarding with caching and a leaner
network stack improve network performance over IP as well as the
adaptability to lossy regimes.

Figure 1: Massive firmware roll-out campaign in distributed
and heterogeneous networks

Regular software updates are part of the common life cycle for
today’s computer systems, and increasing security and agility de-
mands require a similar practice for the IoT. The distribution of
firmware or application updates on the Internet, however, is one
of the most challenging and resource-consuming tasks [28]. Major
updates from popular vendors are repeatedly visible as peak loads
at Internet exchange points. Consequently, it is natural to question
whether the constrained, lossy networks of the IoT can carry such
burdens and how update campaigns may perform.

In this work, we devise and evaluate procedures for reliable,
secure, yet scalable software updates in the constrained IoT. Our
target objective is the massive roll-out of firmware in edge networks
as visualized in Fig. 1. We want to prove feasibility by leveraging
the potential benefits of ICN forwarding and caching. Our key
contributions are (i) context-specific naming, version discovery,
and verification, (ii) scalable and reliable chunk distribution across
updating network nodes with inbuilt DoS detection, (iii) thorough
experimental evaluations of different update strategies in a real
testbed with realistic multi-hop radio links.

In this paper, we can show that reliable updates of large firmwares
in deep multi-hop topologies are indeed feasible. Our findings in-
dicate that firmware dissemination in large networks nested up
to seven hops complete within 10 to 30 minutes. We also observe
that rapid roll-outs in these networks will fully exhaust resources,
whereas slower, cascading update strategies leave sufficient re-
sources at intermediate nodes for continued operations.

ar
X

iv
:2

10
8.

09
55

5v
1

 [
cs

.N
I]

 2
1

A
ug

 2
02

1

C. Gündoğan et al.

The remainder of this paper is structured as follows. We intro-
duce the problem of firmware propagation in the IoT along with
related work in Section 2. Section 3 presents the core concepts of
secure and reliable firmware updates. A thorough evaluation and
discussion of the results follows in Section 4. Finally, we conclude
with an outlook in Section 5.

2 THE PROBLEM OF FIRMWARE
PROPAGATION AND RELATEDWORK

2.1 Challenges in low-power regimes
Secure firmware roll-out campaigns for large-scale IoT deployments
demand a coordinated interaction with great regularity between
multiple stakeholders. Vendors prepare and publish firmware ver-
sions and local site administrators oversee the roll-out procedure.
An autonomous firmware update without physical proximity can
drastically reduce the roll-out time and management overhead for
local site administrators. IoT devices connect through low-power
and lossy networks (LLNs) to powerful border routers. Especially
in industrial and rural settings where infrastructure is challenged
by natural and regulatory constraints, wireless multi-hop networks
are prominent and continuous access to deployed hardware is not
always feasible. These regimes are subject to radio interferences and
individual link error probabilities that accumulate in a destructive
manner. In addition, limited maximum transmission units as well as
low bandwidth and high delay link capabilities further complicate
the distribution of large firmware objects, which necessarily split
into hundreds to thousands of fragments. While corrective actions
on the link, network, and application layer usually recover packet
loss, small amounts of retransmissions behave additive and induce
link stress in broadcast range, which impacts energy expenditures
of battery-operated devices. The exhaustive task of delivering im-
age files also opens up significant attack vectors for denial of ser-
vice (DoS) attempts. Willfully tampered or inadvertently modified
firmware images deplete network and memory resources to a point
where devices neglect mission-critical duties.

The importance of well-thought-out firmware roll-out architec-
tures that efficiently operate in low-power regimes and display a
resilient security posture is undisputed. Several approaches have
been proposed in research or have already been deployed in indus-
trial solutions.

2.2 Firmware updates in the IoT
SUIT [34] is a recent addition to the menagerie of firmware update
architectures. It is driven by the eponymous IETF working group
and aims for a standardized update mechanism in constrained IoT
networks that is reliable and secure. SUIT specifies a concise and
machine-processable manifest document [32, 33] that describes
meta-data of firmware images, such as their download location,
firmware version, and optional processing steps to decompress and
decrypt binaries. This architecture relies on the Internet protocol
stack for retrieving updates and therefore expects certain protocol
mechanisms to be present, like congestion and flow control, packet
fragmentation, and the ability to resume corrupted transfers. Given
its current momentum at the IETF, we consider SUIT as a suitable
blueprint for our information-centric firmware update approach.

ZigBee [56] is a protocol specification harboring various network
solutions to inter-connect a wide range of heterogeneous, ZigBee
certified devices. It builds on IEEE 802.15.4 and is prominently used
by several product lines, such as Philips Hue, OSRAM lightify, and
some Xiaomi devices, albeit not always securely [41]. In the Zig-
Bee Over the Air (OTA) Upgrade Cluster module, clients regularly
poll firmware information, or a server performs Image Notify push
operations for clients not in hibernation. The distribution of up-
grade images via broadcast or multicast is not recommended due
to a missing point-to-point security. In this case, ZigBee advises
a separate unicast attestation with the upgrade server after com-
pleting an image transfer. In contrast to ZigBee, we believe the
vendor-independent manifest files of SUIT to concisely organize
meta-data provide a greater accessibility to the update process in
heterogeneous network deployments.

2.3 Reliable content transfers and data
management in constrained networks

Large data objects, such as uncompressed binary images with mod-
erate software complexity for embedded devices, can reach file
sizes in the range of tens to hundreds of kilobytes. Prior to the
IoT era, wireless sensor networks (WSNs) explored network repro-
grammability of low-power devices in broadcast media and reliably
disseminated large data objects (e.g., a firmware) using epidemic
routing methodologies [21, 27, 49]. Delicate adjustments to the clas-
sic flooding, such as node density awareness, windowing, the use
of negative acknowledgments (NACKs), and unicast requests with
broadcast data transmissions have shown promising results in lossy
networks. Due to the generally inconsistent protocol layering in
formerWSNs, packets exceeding linkMTUs in constrained network
environments had to be fragmented on the application level.

In contrast, the current IoT mostly builds on IPv6 and to bypass
transmission limits of typical link layers, the IETF designed 6LoW-
PAN [31]—a convergence protocol to adapt IPv6 functionalities
to challenging LLNs. It supports a header compression to reduce
header verbosity and a fragmentation scheme [31], which caps at
2048 bytes and is therefore inoperable for firmware propagations.
The constrained application protocol (CoAP) [46] is part of the IETF
envisioned IoT network stack and supplements IoT networks with
a RESTful communication paradigm. Block-wise transfer [12] is
an add-on to CoAP for splitting payload into equally sized blocks,
which are then iteratively transmitted with minimal server-side
state. Chunking on the CoAP level further enables the use of CoAP
reliability features for each separate block.

Recent studies [6, 17, 30] reveal a superior data delivery per-
formance for named-data networking (NDN) [22] in low-power
networks compared to end-to-end IoT protocols, such as CoAP
and the message queuing telemetry transport for sensor networks
(MQTT-SN) [48]. NDN leaves the fragmentation of larger named-
data objects to upper layers, since naming decisions for newly
created chunks are highly application-specific. Link fragmentation
extensions [18, 36, 47] operate below NDN and modify the packet
structure. Other approaches [13, 19, 35] apply a fragmentation and
naming scheme on the application to yield a structured access to
data chunks with predictable names.

Reliable Firmware Updates for the Information-Centric Internet of Things

VendorsVendorsVendorsVendorsVendorsVendors Operator

Manifest

. . .
Fir
mw

are

Firmware Repository

Deployment A

Deployment B

publish
sign

Figure 2: Overview on the back-end system of our information-centric, reliable firmware roll-out approach.

3 BUILDING BLOCKS FOR RELIABLY
UPDATING FIRMWAREWITH NDN

3.1 Roll-out campaign management
We design a secure and reliable campaign management system for
firmware roll-outs that handles the delivery of software updates to
numerous constrained edge devices in multiple sites using NDN.We
use the SUIT [34] model as a blueprint for our information-centric
approach and adopt essential system components and the same
terminology. Figure 2 illustrates our name-based back-end proposal,
which consists of three components: (i) publishing and versioning
firmware images and manifest files by vendors, (ii) managing the
storage of chunked software updates by an operator and providing
access to the IoT deployment sites, and (iii) a timely notification
of version updates and a reliable delivery of necessary updates
towards edge devices on the IoT side.

3.2 Firmware preparation and publication
Namespace management. Large site deployments can consist
of heterogeneous devices from varying vendors and the highest
level of interoperability is essential to construct an energy-efficient
system. A systematic namespace management regulates all interac-
tions between vendors and IoT devices. Figure 3 demonstrates our
name schema used for all components, ranging from upper-layer
application functions down to forwarding and caching duties.

Each deployment has a globally unique name and may identify
an offshore drilling rig, segments of a connected urban network, or
a smart home environment. We consider the deployment identifier
as the leading component in our name schema to keep forwarding
states towards single deployment sites minimal, i.e., they most cer-
tainly aggregate due to the spatial proximity of devices within the
scope of a deployment. Vendor names are equally globally unique
like deployment identifiers and both components are managed by
the same, external registry. Finally, a device class designates a spe-
cific firmware for all nodes of the same product type. The timestamp
component describes the actuality of a firmware and is encoded as
a Unix timestamp with a predefined granularity. To fully leverage
the in-network caching abilities of NDN, binaries are prepared for
device classes instead of yielding unique binaries for each single

device. This also reduces the binary management overhead on the
vendor site.

/ OilRig-3 / IoTCompany-5 / Valve-7 / 1632261600

Deployment Vendor Device Class Timestamp

Figure 3: Namespace schema.

Firmware generation. Vendors precompile firmware images for
their deployed product lines and keep track of the software ver-
sioning. Since binaries are prepared for device classes, the images
cannot ship with sensitive data. Device-specific configurations are
rather obtained on run-time after a successful firmware installation
on an IoT node. This requires that each IoT device is provisioned
with vendor-specific data for bootstrapping purposes during the
manufacturing stage or with the use of an out-of-band channel,
which is already common practice for real-word deployments. This
data outlasts firmware upgrades and is stored independently of
the program code, e.g., in a dedicated address space on the flash
memory, or using an SD card. To protect the firmware integrity,
vendors also generate a message digest of the binary alongside the
firmware image.
Preparation of firmware chunks. The small-sized MTUs in
common network link technologies disallows the transmission of
images in single network packets. For a successful delivery, an im-
age fragmentation at the vendor and a reassembly at the IoT edge
devices is necessary. Fragmentation on convergence layers [18, 31]
is a solution to provide a hop-wise, fragmented delivery between
two peers, but due to the layering, these schemes make the caching
of individual fragments impossible. Thus, we focus on a fragmen-
tation approach that chunks the image on application level and
reassembles them at the IoT edge device after all chunks have been
successfully retrieved.

The reassembly of fragmented images must be as simplistic as
possible for the constrained devices. We therefore follow a linear
chunking of the image file in our solution, where each chunk is of
fixed length (the last chunk being an exception). The reconstruc-
tion on the low-power devices is straightforward as fixed-length

C. Gündoğan et al.

Manifest File
/OilRig-3/IoTCompany-5/Valve-7/1632261600/manifest

Payload indicator: ./firmware/

Payload digest: 0xc01dcafe

Size: 113,968 bytes

Chunk size: 64 bytes

. . . /163. . . 600/
firmware/

Figure 4: Manifest description and fixed-length chunks of a
corresponding firmware image.

chunks can be joined using offsets, which makes the need for an
ordered delivery unnecessary. Chunk sizes may vary between de-
vice classes, since different link-layers will yield different MTUs.
Each chunk is addressed by appending a monotonically increasing
chunk identifier /chunk/id to the base name (see Figure 3), starting
at /chunk/0.
Manifest description. As demonstrated in Figure 4, a vendor
also creates a manifest file following the SUIT model to organize
meta-data on the firmware version and binary image. They include
the binary size and message digest as well as parameters for the
chunking algorithm. To preserve the authenticity of manifest files,
vendors sign them during the upload process. This also protects the
message digest, which is later used to validate the final firmware
image on the IoT devices. The manifest is addressed using the base
name (see Figure 3) and the suffix /manifest.
Firmware upload and binary management. Once all artifacts
have been produced, a vendor delivers the manifest and firmware
chunks to the corresponding deployment operator to serve them in
a firmware repository. The publication process runs in an automated
manner and requires an authentication framework to ensure con-
sistency and security, such as the publicly auditable bookkeeping
service NDNDeLorean [52]. A firmware repository stores versioned
images of all vendors and retains them until they are purged. For
replication purposes, an operator can deploy multiple firmware
repository instances, which then synchronize using any data set
synchronization solution [54, 55].

The uploaded firmware binaries and manifests are tagged follow-
ing the naming scheme in Figure 3. The suffix for the actual image
is /firmware and the corresponding manifest is /manifest; chunks
are accessed via /chunk/id. The timestamp in the naming scheme
updates for new firmware versions to reflect the upload time and
the granularity of the epoch time is coordinated with the polling
interval of the devices, e.g., a daily alignment on midnight would
yield 1632261600 for 09/22/2021 00:00:00. A vendor chooses
different degrees of granularity on a device class level as illustrated
in Figure 5.
Discussion: full versus incremental updates. We design our
firmware roll-out approach to always deliver the full binary. An
alternate approach would explore the use of differential algorithms
to compute software differences, e.g., with bsdiff [39], and transmit
them in the form of binary patches. While it is undemanding for

Vendor

Ver.
𝑥

Ver.
𝑥 + 1 . . .

Ver.
𝑦

Ver.
𝑦 + 1 . . .

. . .

daily for /𝑙𝑎𝑚𝑝

weekly for /𝑣𝑎𝑙𝑣𝑒
. . .

Figure 5: Vendor publishes firmwares and aligns date granu-
larity with polling interval of device classes.

powerful firmware repositories to calculate a minimal diff represen-
tation, the patch size can grow very quickly for compiled binaries.
Especially in the IoT, binaries are compiled with optimizations to
reduce the binary size as far as possible to fit the image on the pro-
grammable flashmemory. This can lead to large differences for small
changes between software versions due to code re-organizations,
up to the point, where caching them in the content store becomes
unfeasible and would evict application data.

Incremental updates using the linear chunking approach is an-
other alternative, which appears to be attractive on first sight.
Chunks from previous versions could be reused with a correct
name mapping in the manifest file to reorder the fragments in-
dependent of their sequential chunk identifier. However, this can
quickly inflate the size of the meta-data itself and may require a
separate fragmentation for the manifest file.

Sophisticated linking techniques that use auxiliary information
about the structure of deployed software modules [25] can produce
concise patches compared to naïve diff algorithms which operate on
the byte level. Run-time relinking of software components directly
on the sensor nodes can lead to minimal diff representations, but re-
quires an extensive tooling support during binary compilation and
software installation [29]. While we only focus on the propagation
of the binary, the actual representation of such an artifact (full bi-
nary or an increment) is rather secondary and may only necessitate
slight protocol adaptations regarding the naming schema.

3.3 Firmware update process
Firmware version discovery. IoT devices are naturally provi-
sioned with an up-to-date firmware version before they become
operational in a deployment. Over time, vendors release new soft-
ware versions to update device functionalities or to handle security
related issues. Depending on the network availability, a device may
be a single or multiple versions behind the current firmware. A
version discovery is therefore the first step to any upgrade process.

Two fundamental strategies exist when determining the avail-
ability of a new firmware update: (i) proactively notifying the IoT
devices using push mechanics, and (ii) periodically polling the
firmware repository. While timely notifications from a firmware
server to the IoT device minimize the operational run time of out-
dated software components, it also bears the following issues. First,
notifications are not guaranteed to arrive in low-power regimes

Reliable Firmware Updates for the Information-Centric Internet of Things

indirect indirect poll

direct

poll
direct

Pending Interest Table (PIT)

. . . /manifest face𝑖𝑛 , face𝑎𝑝𝑝

Pending Interest Table (PIT)

. . . /manifest face𝑖𝑛 , face𝑎𝑝𝑝

add update
process to PIT

upcall to update process

Network

Network

Figure 6: Direct and implicit version discovery.

where nodes favor extended sleep cycles. Second, it requires server-
side state and maintenance overhead to keep track of deployed
versions as well as topological information to ensure node reacha-
bility, and last, the push mechanism is not native to NDN.

Our approach primarily relies on a pull-driven version discov-
ery, where the embedded devices periodically request the latest
manifest file for a dedicated time frame. Vendors convey a sensible
polling interval on device class level, e.g., a daily check on midnight
for remotely deployed gas valves, or flexible intervals based on
harvested energy levels for battery-less sensors. These guidelines
are programmed during run-time configurations and may change at
an operator’s discretion. Since the Unix epoch denotes the actuality
of a firmware image in the name schema, all IoT devices need to re-
adjust drifting system clocks using an external mechanism, e.g., by
relying on the time information of an equipped GPS module, or by
operating a time synchronization protocol, such as NDNTP [37].
Retrieval of firmware versions. To discover a new version, IoT
devices send Interests to the name that identifies the latest firmware
version by setting the correct time frame. Following our previous
example, the Interest may describe the name /OilRig-3/IoTCompany-
5/Valve-7/1632261600/manifest, in which the requested time frame
is greater than the time frame of the locally running firmware. The
firmware repository returns a manifest file if the requested update is
available, i.e., a vendor published the binary image for the specified
time frame. Interest retransmissions retry the update request for a
configurable, but limited number of times to recover manifests from
packet loss. In the event that a requested manifest does not exist yet
or all corrective actions fail, the Interest times out as part of the de-
fault NDN forwarding logic and the IoT node triggers a subsequent
update request on the next polling interval, potentially on midnight
of the next day. Negative acknowledgments for Interests (NACKs)
is a supported NDN protocol element to hint at the absence of
requested data or to carry nuanced error codes of the application.
For our retrieval mechanism, they may include application-level
indications about the latest firmware version. While NACKs are

not necessary to ensure a continuous operation, this feature (i)
provides an optimization to reduce the amount of retransmissions
when polling for a new, non-existent firmware version, and (ii)
assists with the convergence of updates for devices that missed a
version publication, e.g., due to network unavailability. The life-
times of cacheable NACKs need to be aligned with the firmware
release cycles to prevent them from wrongly satisfying requests for
eventually released versions. To reduce the attack surface, NACKs
require similar security considerations as manifest packets.

IoT nodes may be disconnected for longer periods from the core
network and thereby may fall several versions behind. Fixing a
maximal update frequency at the application level allows a node
to always request the latest version at the appropriate Unix epoch.
Hence, outdated devices need not attempt to retrieve obsolete ver-
sions. Forwarding states are handled by an external routing system,
e.g., [20, 43], preferably using a single default route from all IoT
devices toward the firmware repository.
Implicit consumption of firmware versions. Polling intervals
of devices within the same class can drift apart over time, so we
utilize an implicit version discovery process to reduce the amount
of individual manifest requests and to increase the reactivity of the
firmware roll-out. Each IoT forwarder in a multi-hop request path
compares incoming manifest requests with its own device class. On
a positive match and if the requested name has a greater epoch time
than the currently operating firmware, then the update process of
a forwarding device internally registers to the same entry in the
Pending Interest Table (PIT) as illustrated in Figure 6. This assures
that each device of the same class on a request path consumes the
manifest and then initiates the retrieval procedure of the firmware
image before its local request interval triggers.
Retrieval of firmware image chunks. Once an edge node deter-
mines the need for a version upgrade by receiving an up-to-date
manifest file, it prepares for retrieving the associated binary image.
Initially, the manifest signature is validated using key materials
previously provisioned by a vendor. On a failed check, the upgrade
process aborts and this incident is reported to the vendor. A valid
signature triggers the retrieval of all firmware chunks as designated
by the manifest. Each chunk is addressed by appending the chunk
identifier (/chunk/id) to the base name, where id starts at 0 and
gradually increments to the maximum chunk number as appointed
by the manifest. This also ensures that a few resources are avail-
able for alternative forwarding duties. Since memory and network
resources are generally limited in low-power regimes, the system
uses a stop-and-wait automatic repeat-request (ARQ) error-control
method, i.e., each chunk is retrieved iteratively as illustrated in Fig-
ure 7. Characteristically, resource-constrained class 2 devices [11]
equip less than 100 KiB of main memory, where larger parts are
inevitably consumed by the operating system, the network stack,
and reserved for application purposes. This leaves only persistent
memory components, e.g., flash and SD cards, to buffer intermedi-
ate chunks during the retrieval. In contrast to the available RAM,
external memory often displays storage capacities that are orders
of magnitude larger, but uncoordinated access can also consume
the available energy budget as I/O operations tend to be slower and
energy-draining.

C. Gündoğan et al.

IoT
Device

Firmware
Server

Interest (manifest𝑣1)

Data (manifest𝑣1)

Interest (chunk𝑣1,1)

Data (chunk𝑣1,1)
...

...

Interest (chunk𝑣1,𝑛)

Data (chunk𝑣1,𝑛)

verify image

boot new firmware

Figure 7: Iterative retrieval of firmware chunks.

chunk buffer

Interest /𝑐0
Data /𝑐0

Interest /𝑐5
Data /𝑐5

collect into
chunk buffer

Figure 8: Local buffer collects chunks from overlapping up-
grade processes.

We define two different chunk retrieval strategies that we assess
in our experimental evaluations. The first method allows concurrent
firmware updates from nodes on the same request path. The second
retrieval method disallows overlapping updates and rather prefers
an ordered update that cascades downstream into the IoT network.
Concurrent firmware updates. While nodes request one chunk
at a time, they still perform forwarding duties for other devices.
Overlapping upgrade processes may also yield incoming data ob-
jects that are farther advanced in the firmware buffer than the local
chunk identifier as illustrated in Figure 8. In this case, a firmware
consumer diverts matching chunks with higher progression into
the local buffer. Simultaneously, this buffer is also used for serv-
ing incoming chunk requests from other devices. Although this
optimization results in an unordered data retrieval, the use of fixed-
length chunks eliminates the need for reorganizing the fragments
when reconstructing the image. Power demanding I/O operations
to persistent memory are thus minimized.
Cascading firmware updates. In this retrieval method, a node
denies the delivery of firmware chunks for the same device class as
long as a node did not complete the update process itself. Down-
stream nodes run into request timeouts for the first chunk and
application retransmissions retry the retrieval using a configurable
polling interval. With this strategy, firmware versions propagate
hop-wise from a gateway device towards any leaf node of a multi-
hop network.
Firmware verification. After completing the retrieval, all neces-
sary chunks reside in the local chunk buffer and this also concludes
the full image reassembly. A node calculates a message digest across
the buffer and validates it against the previously received firmware

digest. On a positive verification, the binary is copied to the cor-
rect flash region, the temporary chunk buffer is cleared, and the
bootloader is notified to invoke the new firmware. The timer for
the next version request is armed as soon as the new image boots
successfully. Following the SUIT [34] philosophy, the update pro-
cess still keeps the old firmware image on the device as a backup
in case the recent firmware update breaks the node operation. At
worst, the bootloader initiates a fail-safe to re-flash the old binary
and return to a correct and consistent behavior.
Firmware replication on connectivity loss. Once the upgrade
completes, a device can also serve the latest manifest and binary
chunks to downstream devices. The advantage of using a linear bi-
nary chunking is that an up-to-date forwarder device serves chunk
requests directly from its read-only flash region where the cur-
rently running firmware resides, without separately consuming
main memory. A firmware version can therefore cascade down-
stream into the IoT network in a hop-by-hop fashion without nec-
essary operations from the firmware server. This design confines
chunk retrievals to a single link and therefore leads to a reduction in
bandwidth usage. It also provides a loose coupling, so that upgrade
processes become resilient to uplink outages and are unaffected by
temporary network disruptions.
Early denial of service (DoS) detection. Images may consist
of hundreds or thousands of chunks, depending on the firmware
complexity and the (usually small) MTUs of underlying link-layer
technologies. NDN protects singular content objects (see Figure 9a),
but (i) the chunk-wise computation of digital signatures using asym-
metric cryptography is infeasible for the constrained environment,
in particular if no hardware acceleration is available [24]; (ii) full-
length signatures inflate each packet, thereby immensely reducing
the actual goodput of the firmware delivery, and (iii) IoT devices
must storemessage signatures alongside the respective data to serve
requests from the local cache. This consumes a storage capacity
that can grow as large as the firmware itself in low MTU scenarios
(e.g., for 802.15.4 with less than 128 bytes payload room).

Figure 10 illustrates the aggravating effect of comparatively large
signature sizes. In this example, we assume the 802.15.4 MTU, a data
name of 16 bytes, a structural NDN encoding overhead of another
16 bytes, and the link-layer header further consumes 23 bytes when
using the long MAC address mode. This sums up to 55 bytes and
leaves 73 bytes for the payload and signature. The Edwards-Curve
Digital Signature Algorithm (EdDSA) [23] is a prominent choice in
the IoT as it provides a high performance and relatively small signa-
tures of 64 bytes—at least with the Ed25519 curve. Yet this reduces
the available space for application data down to 9 bytes, resulting
in numerous chunk packets containing individual signatures. Even
for small firmware sizes of 36 KiB, 4000 chunk transmissions accu-
mulate to a signature overhead of 256 KiB. For larger images, this
linearly increases: a firmware with 144 KiB requires 16000 chunk
transmissions and produce a signature overhead of 1 MiB. The
ICNLoWPAN convergence layer [18] can remove names from Data
messages and reduces the structural header overhead. Following
our exercise, these enhancements increase the available space for
firmware data from 9 to 35 bytes, thereby requiring four times less
chunks to complete the firmware delivery. Regardless, the signature
overhead remains intolerable. The severity shows in NDN cache

Reliable Firmware Updates for the Information-Centric Internet of Things

1 2 3

— —

1 2

1 2

Chunks

long sig. verification

store in cache
serve on cache hit

fast sig. verification

discard
recompute on cache hit

pa
yl
oa
d

sig
.

pa
yl
oa
d

sig
.

(a) native integrity verification (asymm.)

(b) enhanced integrity verification (HMAC with PSK)

Figure 9: Enhanced chunk-wise integrity verification to save
device and network resources compared a native NDN pro-
tection with asymmetric cryptography.

environments where each signature has to be stored alongside the
chunk data due to the asymmetric aspect of this signature algorithm
that prevents IoT devices from generating them.

The integrity and authenticity of a firmware image is validated
against the protected message digest from the corresponding mani-
fest file once all chunks have been received and reassembled. Hence,
signatures of individual NDN messages are redundant and we omit
for the sake of efficiency. Unauthenticated packets, though, open a
forceful attack vector to exhaust the resources of the IoT network:
Injecting (even few) illegitimate chunks violates the integrity of the
firmware and an identification of these invalid chunks is difficult
after firmware reassembly. The only approach to recover the bi-
nary is then to repeatedly request the firmware, which requires all
chunks to traverse the network first. To save device and network
resources, a detection of erroneous deliveries and an early exit of
the retrieval process is desired.

We augment individual chunks with a keyed-hash message au-
thentication code (HMAC [26]) that is verified upon reception (see
Figure 9b). Next to the asymmetric cryptography, NDN already
provides the protocol elements to encode a 32-byte HMAC authen-
tication code. To check for data integrity as well as authenticity,
the HMAC requires seeding. For this early DoS detection module,
we assume a pre-shared secret at all devices of a class, which can
be pre-installed by the vendor or obtained in an out-of-band man-
ner and eventually protected in secure memory. A chunk is then
recorded in the chunk buffer only after correctly verified by its
recipient. If a chunk validation fails, a recipient repeats requests for
invalid chunks only. After iterated (e.g., three) failing verification
attempts, a node marks the firmware as irrecoverable, aborts the
update process, and notifies the vendor.

It is noteworthy that these signature hashes based on pre-shared
secrets can be discarded during caching in the chunk buffer, since
nodes of the same device class can easily re-generate them using
the same secret at any time. This relieves storage capacities, while
preserving an intact cache operation for incoming chunk requests.
For low-power regimes with small-sized MTUs, a full HMAC signa-
ture may occupy too many bytes in a frame. For optimization, we
only transmit a configurable prefix of the hash, e.g., 8, or 16 bytes.

0

500

1,000

1,500 144 KiB108 KiB72 KiB36 KiB

firmware data signature

4,000 8,000 12,000 16,0000

500

1,000

1,500 546 KiB410 KiB273 KiB136 KiB

Chunk [#]

Ac
cu
m
ul
at
ed

by
te
s[
Ki
B]

w
/o

com
pression

w
/com

pression

Figure 10: Chunk-wise signature overhead compared to the
actual firmware data. Chunks contain 9 bytes (w/o ICNLoW-
PAN compression) and 35 bytes (w/ ICNLoWPAN compres-
sion) of application data. Signatures are 64 bytes for EdDSA
(Curve25519).

This trade-off increases the susceptibility to hash collisions, but
drastically increases the goodput. Security and robustness of the
final image verification remain unaffected by these optimizations.

4 EXPERIMENTAL EVALUATION
In this section, we quantitatively assess our previously outlined
information-centric firmware update approach using a real protocol
implementation and constrained nodes in a testbed.

4.1 Experiment setup
Scenario and network topology. We conduct our experiments
in a wirelessly connected IoT deployment where a gateway node
is situated at the network edge to provide an uplink connectivity
to a set of 30 IoT devices. A new binary version is rolled out into
the stub network. On system initialization, the constrained nodes
statically arrange in a destination-oriented, directed and acyclic
graph (DODAG) as depicted in Figure 11. DODAG topologies pro-
vide shortest paths from IoT devices to root nodes (i.e., gateway
or cloud) and therefore incur a minimal routing overhead for the
prevalent converge cast scenario, i.e., a large amount of traffic is
directed to or from a central point. In fact, RPL [50]—the predomi-
nant routing protocol for the IoT—uses DODAGs as a fundamental
part of its routing system. While we rely on a static topology in
our test environment to sidestep the delays of routing convergence
and to solely focus on the propagation of large data objects, an
authentic deployment would use an orthogonal routing protocol to
dynamically construct and repair the DODAG as necessary.
Software and hardware platform. On all IoT nodes, we deploy
the RIOT [9] operating system in version 2021.04. It integrates
with CCN-lite, which implements a minimal NDN forwarder. The
necessary update logic runs as a small IoT application using the
portability layers of RIOT and CCN-lite, which opens the imple-
mentation to a wide range of hardware platforms.

C. Gündoğan et al.

𝑔𝑤

𝑛1

𝑛2
𝑛3

𝑛4

𝑛5

𝑛6
𝑛7

𝑡1 𝑡2 𝑡3

scheduled version publication

jittered version requests

Figure 11: Logical testbed topology modeling multiple
branches from rank zero to seven of the forwarding hierar-
chy.

We conduct all evaluations on the FIT IoT-LAB [3] testbed. It
features large deployments of several ARM Cortex-M3 based class
2 devices [11] with 64 kB of RAM and 256 kB of ROM. The testbed
nodes are equipped with an Atmel AT86RF231 [8] transceiver to
operate on the IEEE 802.15.4 2.4 GHz radio.
Deployment parameters. We externally align the system clock
of the IoT devices and the gateway node with the Unix epoch using
the instrumentation tools of the testbed. In a configured interval
of one hour, we generate new binary versions and record the cor-
responding manifest and image files in the content store of the
gateway. Once the time is synchronized, the IoT nodes request new
manifest files from the gateway node as soon as they are generated.
In our experiment, we deploy the same device class throughout
the network, i.e., the same firmware image for all devices, but also
provide a glance at the end of the evaluation on the performance
for the other extreme: all nodes are of a different device class. We
separately explore the two retrieval strategies: concurrent, where
update processes overlap between multiple nodes, and cascading,
where downstream nodes first wait for upstream nodes to complete
the update.

We choose names for manifests and chunks (see Figure 3) with a
total size of 45 bytes when encoded in the NDN TLV format. While
we increase the image size from 32 to 128 kB in our experimental
evaluations, we gradually raise the number of maximum chunks
from 1000 to 4000. Thereby, we keep the chunk size fixed to 32 bytes
across all configurations. This yields a length of 92 bytes for chunk
data packets and the total frame size sums up to 115 bytes includ-
ing the IEEE 802.15.4 link header. Thus, these parameters produce
chunk packets that are very close to the link MTU of 128 bytes. The
NDN forwarder performs three retransmissions in a two-second
interval and the application triggers retransmissions in a jittered
interval of 10±5 seconds after a designated chunk request times out.
We configure three link-layer retransmissions that operate in the

lower millisecond range, whereby each retransmission is slightly
delayed by a random exponential backoff algorithm.

4.2 Firmware update progress
In our first evaluation, we gauge the update progression over time
for a set of selected nodes with increasing firmware size. This nodal
timemeasurement starts when the first firmware chunk is requested
and terminates on the successful delivery of the last chunk. Our
node selection consists of 𝑛1...7, i.e., the nodes that reside on the
longest path in our topology. Figure 12 summarizes the various
evolutions over the experiment duration.

We observe that both retrieval strategies yield very different
progression charts. In the concurrent mode, all update procedures
of 𝑛1...7 start almost simultaneously and run concurrently for a des-
ignated time. The first two nodes 𝑛1,2 advance with a similar chunk
retrieval speed in all configurations and the remaining nodes 𝑛3...7
display a similar alignment, albeit with a much slower evolution.
While the firmware distribution with 1000 chunks continues for
≈8 minutes to complete for the whole network branch, the duration
multiplies to ≈30 minutes for an image file of 128 kBytes (4000
chunks). The cascading deployments display the anticipated stop-
and-wait characteristic. Single nodes wait for the immediate uplink
node to finish the update process, before any chunk retrievals are in-
voked. This serialization positively affects individual update speeds.
In the extreme configuration, the update duration for 𝑛7 declines
from 30 minutes down to 3 minutes, which is the quickest update
completion on the request path. However, while individual updates
appear to be faster in the cascading mode, the global roll-out on
this path is ≈8 minutes slower than in the concurrent mode.

4.3 Goodput analysis
In our next comparison, we emphasize on nodal chunk retrieval
rates to elucidate the previous progression differences. Figure 13
displays the amount of accumulated chunks that nodes retrieve in a
second. We observe highly fluctuating rates throughout the update
process ranging from zero chunks per second up to accumulated
retrievals around 60 chunks per second. With the concurrent re-
trieval strategy, nodes 𝑛3...7 generally display lower rates while 𝑛1,2
have ongoing transmissions. The average performance of the 𝑛7
leaf node nets to an average of approximately 2 chunks per second
for all configurations. Roughly at the middle of the experiment
duration the first two nodes complete their update process, which
leads to slightly increased retrieval rates for the remaining nodes.
This is an indication that nodes in this deployment are competing
for bandwidth in the shared wireless medium. When retrievals are
cascading, then the number of simultaneously competing nodes in
the topology is drastically reduced to single nodes in all request
paths of the topology that have overlapping broadcast ranges. The
nodal goodput moderately improves for all nodes across all pre-
sented configurations. For 𝑛7, this translates into a performance
gain that is nearly twelve-fold. The evident oscillations are a result
of request retransmissions. Unlike layer 2 retransmissions which
operate on the millisecond range and are mostly invisible in the
considered timescale, corrective actions on upper layers block the
retrieval process by multiple seconds until messages are recovered

Reliable Firmware Updates for the Information-Centric Internet of Things

20
40
60
80
100

0 500 1,000 1,500 2,0000
20
40
60
80
100

0 500 1,000 1,500 2,000 0 500 1,000 1,500 2,000 0 500 1,000 1,500 2,000

Up
da
te

pr
og

re
ss

[%
]

Experiment duration [sec]

concurrent
cascading

1000 chunks 2000 chunks 3000 chunks 4000 chunks
𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛7

Figure 12: Overall firmware update progression for the selected nodes 𝑛1...7 with an increasing number of maximum chunks
using the concurrent and cascading retrieval strategies.

20
40
60
80

0 500 1,000 1,500 2,0000
20
40
60
80

0 500 1,000 1,500 2,000 0 500 1,000 1,500 2,000 0 500 1,000 1,500 2,000

Ch
un

k
re
tri
ev
al
ra
te

[
𝑠𝑒
𝑐
]

Experiment duration [sec]

concurrent
cascading

1000 chunks 2000 chunks 3000 chunks 4000 chunks
𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛7

𝝁 (𝒏7) ≈ 2 𝝁 (𝒏7) ≈ 2 𝝁 (𝒏7) ≈ 2 𝝁 (𝒏7) ≈ 2

𝝁 (𝒏7) ≈ 24 𝝁 (𝒏7) ≈ 25 𝝁 (𝒏7) ≈ 26 𝝁 (𝒏7) ≈ 24

Figure 13: Chunk retrieval rate per second for our node selection using both retrieval strategies.

by the network layer or application, thereby impairing the nodal
goodput rates.

4.4 Link stress
The preceding evaluations suggest that both retrieval methods ex-
perience varying degrees of network stress when firmware updates
are progressing in the multi-hop topology. We now measure the
link stress for 𝑛7 by quantifying the amount of retransmitted chunk
requests. Figure 14 accumulates request retransmissions for blocks
of 100 chunks and differentiates between corrective actions on the
network and application layer. In the concurrent configuration, 𝑛7
triggers a seemingly continuous stream of ≈5–45 retransmissions
which is higher at the beginning and then slightly decreases over
the experiment duration. This is in accordance with our former ob-
servation that chunk rates increase as soon as competing upstream
nodes complete their updates and access to the shared medium
lessens. Overall, the amount of application retransmits is rather
minuscule compared to the number of network retransmissions,

i.e.,NDN is able to recover most of the chunks with its three request
attempts.

The cascading setup shows a much less pronounced retransmis-
sion behavior: many chunks experience no packet loss at all while
other groups register less than ten network retransmissions for 100
chunks—still considerably less than the concurrent configuration.
This relaxed progression also confirms the previously observed per-
formance gains when firmware images are distributed in a hop-wise
fashion. Application retransmissions are virtually absent, exclud-
ing the very first chunk. 𝑛7 retries the retrieval of the first chunk,
but 𝑛6 denies the delivery until it completes its own update. This
leads to the large amount of ≈160 application and ≈500 network
retransmissions that originate from 𝑛7. These numbers appear to
be disproportionately high, however, these packets trigger moder-
ately in the seconds range over a period of ≈30 minutes and do not
pose a significant stress to the shared medium. Overall, we observe
sufficient idle resources to continue regular network operations
during the update.

C. Gündoğan et al.

0

20

40

1 10 20 30 400

20

40

Chunk block [#]

application layer
network layer

1 0

200

400

Re
qu

es
tr
et
ra
ns
m
iss

io
n
[#
] concurrent

cascading

Figure 14: Chunk request retransmissions on the applica-
tion and network layer grouped into blocks of 100 chunks
for the 𝑛7 node.

4.5 Multiparty assessment
Up until now, our experiments updates the same device class through-
out the network. A roll-out of a collective firmware image clearly
benefits from the NDN multicast support: in-network caches and
request aggregations can greatly balance the network utilization.
In this last assessment, we configure a different device class for
each device in the deployment to deliver individual binaries to the
respective nodes. While this contrary extreme is usually imprac-
ticable in real-world deployments, it gives a sensible estimation
on the performance of protocol ensembles without caching and
aggregation capabilities. Due to the low memory, nodes are only
able to cache a maximum of 64 foreign chunks, but they mostly
evict before they can be utilized by retransmissions, because of
the significant chunk flow rate that leads to rapid and frequent
cache replacements. The internal chunk buffer is reserved for the
respective binary image of the node and is therefore inaccessible
by the remaining nodes.

We measure the chunk arrival times for nodes 𝑛1...7 and demon-
strate the update progression in Figure 15. Nodes request 4000
chunks to complete the image delivery, i.e., 28k distinct chunks
in total are transmitted on that particular path. The distributions
indicate a completion time of ≈30 minutes for the setup with a
single device class and a collective binary. On the other hand, the
update time considerably decelerates if the NDN multicast features
are inactive. Hence, the update process continues for more than
two hours when individual binaries are deployed to propagate. The
missing hop-wise caching ability means that retransmissions need
to traverse the full request path up to the gateway node on each
retry, which again promotes higher packet loss probabilities due
to the generated side traffic for other, ongoing transmissions. In
contrast, in-network caches reduce the number of necessary hops
and confine retransmissions in the best case to a single link. The
greater slopes towards the end of both cascading measurements are
an indication that leaf nodes operate quicker with the coordinated
retrieval method due to absent nodes in the vicinity that compete
for the bandwidth, irrespective of caching abilities.

0 2,000 4,000 6,000 8,000
0

0.2
0.4
0.6
0.8
1

CD
F

concurrent

0 2,000 4,000 6,000 8,000

cascading

collective binary
individual binaries

Update completion time [sec]

Figure 15: Update completion time for the selected path𝑛1...7
with a maximum amount of 4000 chunks per firmware im-
age.

5 CONCLUSIONS AND OUTLOOK
We have studied massive roll-outs of firmware in large-scale con-
strained multi-hop networks, which is an emerging need but also a
major challenge for the IoT edge.We found that information-centric
content replication fosters efficient and reliable chunk dissemina-
tion, which makes routinely firmware updates feasible even for
nodes that are highly constrained in processing power, memory,
and radio capacity. Hop-wise forwarding and in-network caching in
particular facilitate update campaigns across homogeneous wireless
regimes even with intermittent connectivity.

Using the IETF SUIT update model as a blueprint, we further
devised and evaluated firmware propagation strategies based on
the Named Data Networking (NDN) protocol. We conducted a fea-
sibility analysis using real protocol implementations on a wireless
testbed to quantify the effective network performance of retrieving
large firmware images in the information-centric Internet of Things.
Our findings indicate that (i) a simultaneous, uncoordinated distri-
bution of firmwares results in high cross traffic within the broadcast
domain that degrades nodal operability, (ii) deployments with col-
lective binaries significantly benefit from in-network caching, and
(iii) a hop-wise, cascading delivery relaxes strain on network re-
sources, allows for continued regular operations during the roll-out
process, and preserves limited energy budgets by allowing longer
sleep cycles due to prompt firmware deliveries.

This work raises research questions in three directions. First,
further insights and optimizations of current design decisions and
operational practices are expected to be learned from long-term
deployment studies. Second, experiences from massive firmware
roll-outs in ICN deployment scenarios may generate valuable feed-
back for the RESTful, CoAP-centered IoT [15]: Which insights can
help to develop the emerging data-centric Web of Things? Third,
we propose to explore how content object security [16] can be
optimized for the IoT to ease voluminous data transfers without
sacrificing integrity, authenticity, and DoS resistance.

ACKNOWLEDGMENT
We want to thank the anonymous reviewers and our shepherd Alex
Afanasyev for constructive feedback and inspiration on how to
improve the paper. This work was supported in part by the German
Federal Ministry for Education and Research (BMBF) within the

Reliable Firmware Updates for the Information-Centric Internet of Things

projects RAPstore – RIOT App Store and the Hamburg ahoi.digital
initiative with SANE.
A Note on Reproducibility. We fully support reproducible re-
search [2, 42] and perform all our experiments using open source
software and an open access testbed. Code and documentation
will be available on Github at https://github.com/inetrg/ACM-ICN-
2021-FWUPDATE.

REFERENCES
[1] Amar Abane, Mehammed Daoui, Samia Bouzefrane, Soumya Banerjee, and Paul

Muhlethaler. 2020. A Realistic Deployment of Named Data Networking in the
Internet of Things. Journal of Cyber Security and Mobility 9, 1 (2020), 1–46.

[2] ACM. Jan., 2017. Result and Artifact Review and Badging. http://acm.org/
publications/policies/artifact-review-badging.

[3] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton,
Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner,
Julien Vandaele, and Thomas Watteyne. 2015. FIT IoT-LAB: A large scale open
experimental IoT testbed. In 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT). 459–464.

[4] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher, and Börje
Ohlman. 2012. A Survey of Information-Centric Networking. IEEE Communica-
tions Magazine 50, 7 (July 2012), 26–36.

[5] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro. 2015. Information Centric Net-
working in IoT scenarios: The case of a smart home. In Proc. of IEEE International
Conference on Communications (ICC). IEEE, Piscataway, NJ, USA, 648–653.

[6] Sobia Arshad, MuhammadAwais Azam,Mubashir Husain Rehmani, and Jonathan
Loo. 2019. Recent Advances in Information-Centric Networking-Based Internet
of Things (ICN-IoT). IEEE Internet of Things Journal 6, 2 (2019), 2128–2158.

[7] Onur Ascigil, Sergi Reñé, George Xylomenos, Ioannis Psaras, and George Pavlou.
2017. A Keyword-based ICN-IoT Platform. In Proc. of 4th ACM Conference on
Information-Centric Networking (ICN). ACM, New York, NY, USA, 22–28.

[8] Atmel. 2009. Low Power 2.4 GHz Transceiver for ZigBee, IEEE 802.15.4, 6LoWPAN,
RF4CE, SP100, WirelessHART, and ISM Applications. Atmel Corporation. http:
//www.atmel.com/images/doc8111.pdf

[9] Emmanuel Baccelli, Cenk Gündogan, Oliver Hahm, Peter Kietzmann, Martine
Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias
Wählisch. 2018. RIOT: an Open Source Operating System for Low-end Embedded
Devices in the IoT. IEEE Internet of Things Journal 5, 6 (December 2018), 4428–
4440. http://dx.doi.org/10.1109/JIOT.2018.2815038

[10] Emmanuel Baccelli, Christian Mehlis, Oliver Hahm, Thomas C. Schmidt, and
Matthias Wählisch. 2014. Information Centric Networking in the IoT: Experi-
ments with NDN in the Wild. In Proc. of 1st ACM Conf. on Information-Centric
Networking (ICN-2014) (Paris). ACM, New York, 77–86. http://dx.doi.org/10.1145/
2660129.2660144

[11] C. Bormann, M. Ersue, and A. Keranen. 2014. Terminology for Constrained-Node
Networks. RFC 7228. IETF.

[12] C. Bormann and Z. Shelby. 2016. Block-Wise Transfers in the Constrained Applica-
tion Protocol (CoAP). RFC 7959. IETF.

[13] Jeff Burke, Paolo Gasti, Naveen Nathan, and Gene Tsudik. 2013. Securing Instru-
mented Environments over Content-Centric Networking: the Case of Lighting
Control and NDN. In Computer Communications Workshops (INFOCOMWKSHPS),
2013 IEEE Conference on. IEEE, Piscataway, NJ, USA, 394–398.

[14] Asit Chakraborti, Syed Obaid Amin, Aytac Azgin, Satyajayant Misra, and Rav-
ishankar Ravindran. 2018. Using ICN Slicing Framework to Build an IoT Edge
Network. In Proceedings of the 5th ACM Conference on Information-Centric Net-
working (Boston, Massachusetts) (ICN ’18). ACM, New York, NY, USA, 214–215.

[15] Cenk Gündogan, Christian Amsüss, Thomas C. Schmidt, and Matthias Wählisch.
2020. Toward a RESTful Information-Centric Web of Things: A Deeper Look at
Data Orientation in CoAP. In Proc. of 7th ACM Conference on Information-Centric
Networking (ICN) (Montreal, CA). ACM, New York, 77–88. https://doi.org/10.
1145/3405656.3418718

[16] Cenk Gündogan, Christian Amsüss, Thomas C. Schmidt, and Matthias Wählisch.
2021. Content Object Security in the Internet of Things: Challenges, Prospects,
and Emerging Solutions. IEEE Transactions on Network and Service Management
(TNSM) (2021). https://doi.org/10.1109/TNSM.2021.3099902

[17] Cenk Gündogan, Peter Kietzmann, Martine Lenders, Hauke Petersen, Thomas C.
Schmidt, and Matthias Wählisch. 2018. NDN, CoAP, and MQTT: A Comparative
Measurement Study in the IoT. In Proc. of 5th ACM Conference on Information-
Centric Networking (ICN). ACM, New York, NY, USA, 159–171. https://doi.org/
10.1145/3267955.3267967

[18] Cenk Gündogan, Peter Kietzmann, Thomas C. Schmidt, and Matthias Wählisch.
2020. Designing a LoWPAN convergence layer for the Information Centric
Internet of Things. Computer Communications 164, 1 (December 2020), 114–123.
https://doi.org/10.1016/j.comcom.2020.10.002

[19] Peter Gusev and Jeff Burke. 2015. NDN-RTC: Real-Time Videoconferencing
over Named Data Networking. In Proceedings of the 2nd ACM Conference on
Information-Centric Networking (San Francisco, California, USA) (ICN ’15). ACM,
New York, NY, USA, 117–126.

[20] Mahmudul Hoque, Syed Obaid Amin, Adam Alyyan, Beichuan Zhang, Lixia
Zhang, and Lan Wang. 2013. NLSR: Named-data Link State Routing Protocol. In
3rd ACM SIGCOMMWorkshop on Information-centric Networking (ICN ’13). ACM,
New York, NY, USA, 15–20.

[21] J.W. Hui and D. Culler. 2004. The dynamic behavior of a data dissemination
protocol for network programming at scale. In Proc. of the 2nd Int. Conf. on
Embedded Networked Sensor Systems (SenSys’04). ACM, New York, NY, USA,
81–94.

[22] Van Jacobson, Diana K. Smetters, James D. Thornton, and Michael F. Plass. 2009.
Networking Named Content. In 5th Int. Conf. on emerging Networking Experiments
and Technologies (ACM CoNEXT’09) (Rome). ACM, New York, NY, USA, 1–12.

[23] S. Josefsson and I. Liusvaara. 2017. Edwards-Curve Digital Signature Algorithm
(EdDSA). RFC 8032. IETF.

[24] Peter Kietzmann, Lena Boeckmann, Leandro Lanzieri, Thomas C. Schmidt, and
Matthias Wählisch. 2021. A Performance Study of Crypto-Hardware in the Low-
end IoT. In International Conference on Embedded Wireless Systems and Networks
(EWSN) (Delft, NL). ACM, New York, USA, 12.

[25] Joel Koshy and Raju Pandey. 2005. Remote incremental linking for energy-
efficient reprogramming of sensor networks. In Proceeedings of the 2nd European
Workshop on Wireless Sensor Networks (Istanbul, Turkey). IEEE Press, Piscataway,
NJ, USA, 354–365.

[26] H. Krawczyk, M. Bellare, and R. Canetti. 1997. HMAC: Keyed-Hashing for Message
Authentication. RFC 2104. IETF.

[27] Joanna Kulik, Wendi Heinzelman, and Hari Balakrishnan. 2002. Negotiation-
Based Protocols for Disseminating Information in Wireless Sensor Networks.
Wireless Networks 8 (2002), 169–185.

[28] Gregor Maier, Anja Feldmann, Vern Paxson, and Mark Allman. 2009. On Dom-
inant Characteristics of Residential Broadband Internet Traffic. In Proc. of the
9th ACM SIGCOMM Conference on Internet Measurement (Chicago, Illinois, USA)
(IMC ’09). ACM, New York, NY, USA, 90–102.

[29] Pedro José Marrón, Matthias Gauger, Andreas Lachenmann, Daniel Minder, Olga
Saukh, and Kurt Rothermel. 2006. FlexCup: A Flexible and Efficient Code Update
Mechanism for Sensor Networks. In Proceedings of the 3rd European Conference
on Wireless Sensor Networks (Zurich, Switzerland) (EWSN’06). Springer-Verlag,
Berlin, Heidelberg, 212–227.

[30] BertrandMathieu, CedricWestphal, and Patrick Truong. 2016. Towards the Usage
of CCN for IoT Networks. In Internet of Things (IoT) in 5G Mobile Technologies.
Springer, Cham, Switzerland, 3–24.

[31] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. 2007. Transmission of IPv6
Packets over IEEE 802.15.4 Networks. RFC 4944. IETF.

[32] Brendan Moran, Hannes Tschofenig, and Henk Birkholz. 2020. An Information
Model for Firmware Updates in IoT Devices. Internet-Draft – work in progress 08.
IETF.

[33] Brendan Moran, Hannes Tschofenig, Henk Birkholz, and Koen Zandberg. 2020.
A Concise Binary Object Representation (CBOR)-based Serialization Format for the
Software Updates for Internet of Things (SUIT) Manifest. Internet-Draft – work in
progress 11. IETF.

[34] B. Moran, H. Tschofenig, D. Brown, and M. Meriac. 2021. A Firmware Update
Architecture for Internet of Things. RFC 9019. IETF.

[35] Marc Mosko. 2016. CCNx Content Object Chunking. Internet-Draft – work in
progress 02. IETF.

[36] Marc Mosko and Christian Tschudin. 2016. ICN ’Begin-End’ Hop by Hop Frag-
mentation. Internet-Draft – work in progress 02. IETF.

[37] Abderrahmen Mtibaa and Spyridon Mastorakis. 2020. NDNTP: A Named Data
Networking Time Protocol. IEEE Network 34, 6 (September 2020), 235–241.

[38] S. Y. Oh, D. Lau, and M. Gerla. 2010. Content Centric Networking in tactical and
emergency MANETs. In 2010 IFIP Wireless Days. IEEE, Piscataway, NJ, USA, 1–5.

[39] Colin Percival. 2003. Naive differences of executable code. Technical Report.
daemonology.net.

[40] George C. Polyzos and Nikos Fotiou. 2015. Building a reliable Internet of Things
using Information-Centric Networking. Journal of Reliable Intelligent Environ-
ments 1, 1 (2015), 47–58.

[41] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. 2017. IoT Goes
Nuclear: Creating a ZigBee Chain Reaction. In IEEE Symposium on Security and
Privacy (SP) (San Jose, CA, USA). IEEE Press, Piscataway, NJ, USA, 195–212.

[42] Quirin Scheitle, MatthiasWählisch, Oliver Gasser, Thomas C. Schmidt, and Georg
Carle. 2017. Towards an Ecosystem for Reproducible Research in Computer
Networking. In Proc. of ACM SIGCOMM Reproducibility Workshop. ACM, New
York, NY, USA, 5–8.

[43] Thomas C. Schmidt, Sebastian Wölke, Nora Berg, and Matthias Wählisch. 2016.
Let’s Collect Names: How PANINI Limits FIB Tables in Name Based Routing. In
Proc. of 15th IFIP Networking Conference (Vienna, Austria). IEEE Press, Piscataway,
NJ, USA, 458–466.

https://github.com/inetrg/ACM-ICN-2021-FWUPDATE
https://github.com/inetrg/ACM-ICN-2021-FWUPDATE
http://acm.org/publications/policies/artifact-review-badging
http://acm.org/publications/policies/artifact-review-badging
http://www.atmel.com/images/doc8111.pdf
http://www.atmel.com/images/doc8111.pdf
http://dx.doi.org/10.1109/JIOT.2018.2815038
http://dx.doi.org/10.1145/2660129.2660144
http://dx.doi.org/10.1145/2660129.2660144
https://doi.org/10.1145/3405656.3418718
https://doi.org/10.1145/3405656.3418718
https://doi.org/10.1109/TNSM.2021.3099902
https://doi.org/10.1145/3267955.3267967
https://doi.org/10.1145/3267955.3267967
https://doi.org/10.1016/j.comcom.2020.10.002

C. Gündoğan et al.

[44] E. M. Schooler, D. Zage, J. Sedayao, H. Moustafa, A. Brown, and M. Ambrosin.
2017. An Architectural Vision for a Data-Centric IoT: Rethinking Things, Trust
and Clouds. In IEEE 37th Intern. Conference on Distributed Computing Systems
(ICDCS). IEEE, Piscataway, NJ, USA, 1717–1728.

[45] Wentao Shang, Adeola Bannis, Teng Liang, Zhehao Wang, Yingdi Yu, Alexander
Afanasyev, Jeff Thompson, Jeff Burke, Beichuan Zhang, and Lixia Zhang. 2016.
Named Data Networking of Things (Invited Paper). In Proc. of IEEE International
Conf. on Internet-of-Things Design and Implementation (IoTDI). IEEE Computer
Society, Los Alamitos, CA, USA, 117–128.

[46] Z. Shelby, K. Hartke, and C. Bormann. 2014. The Constrained Application Protocol
(CoAP). RFC 7252. IETF.

[47] Junxiao Shi and Beichuan Zhang. 2012. NDNLP: A Link Protocol for NDN. NDN,
Technical Report NDN-0006. NDN Team.

[48] Andy Stanford-Clark and Hong Linh Truong. 2013. MQTT For Sensor Networks
(MQTT-SN) Version 1.2. Protocol Specification. IBM. http://mqtt.org/new/wp-
content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf

[49] T. Stathopoulos, J. Heidemann, and D. Estrin. 2003. A remote code update mech-
anism for wireless sensor networks. Technical Report 30. Center for Embedded
Networked Sensing (CENS), Los Angeles, CA, USA.

[50] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, JP.
Vasseur, and R. Alexander. 2012. RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks. RFC 6550. IETF.

[51] George Xylomenos, Christopher N. Ververidis, Vasilios A. Siris, Nikos Fotiou,
Christos Tsilopoulos, Xenofon Vasilakos, Konstantinos V. Katsaros, and George C.
Polyzos. 2014. A Survey of Information-Centric Networking Research. IEEE
Communications Surveys and Tutorials 16, 2 (2014), 1024–1049.

[52] Yingdi Yu, Alexander Afanasyev, Jan Seedorf, Zhiyi Zhang, and Lixia Zhang.
2017. NDN DeLorean: an authentication system for data archives in named data
networking. In 4th ACM Conference on Information-Centric Networking (Berlin,
Germany) (ACM-ICN ’17). ACM, New York, NY, USA, 11–21.

[53] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
Data Networking. SIGCOMM Comput. Commun. Rev. 44, 3 (2014), 66–73.

[54] Minsheng Zhang, Vince Lehman, and Lan Wang. 2016. PartialSync: Efficient
Synchronization of a Partial Namespace in NDN. Technical Report NDN-0039-1.
NDN. https://named-data.net/wp-content/uploads/2016/06/ndn-0039-1-partial-
sync.pdf

[55] Zhenkai Zhu and Alexander Afanasyev. 2013. Let’s ChronoSync: Decentralized
Dataset State Synchronization in NamedData Networking. In Proc. of the 21st IEEE
International Conference on Network Protocols (ICNP 2013) (Goettingen, Germany).
IEEE, Piscataway, NJ, USA, 1–10.

[56] ZigBee Alliance. 2015. ZigBee Specification. Specification Document 05-3474-21.
ZigBee Alliance. https://zigbeealliance.org/wp-content/uploads/2019/11/docs-
05-3474-21-0csg-zigbee-specification.pdf

http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
https://named-data.net/wp-content/uploads/2016/06/ndn-0039-1-partial-sync.pdf
https://named-data.net/wp-content/uploads/2016/06/ndn-0039-1-partial-sync.pdf
https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf
https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf

	Abstract
	1 Introduction
	2 The Problem of Firmware Propagation and Related Work
	2.1 Challenges in low-power regimes
	2.2 Firmware updates in the IoT
	2.3 Reliable content transfers and data management in constrained networks

	3 Building Blocks for Reliably Updating Firmware with NDN
	3.1 Roll-out campaign management
	3.2 Firmware preparation and publication
	3.3 Firmware update process

	4 Experimental Evaluation
	4.1 Experiment setup
	4.2 Firmware update progress
	4.3 Goodput analysis
	4.4 Link stress
	4.5 Multiparty assessment

	5 Conclusions and Outlook
	References

