skip to main content
10.1145/3450268.3453523acmconferencesArticle/Chapter ViewAbstractPublication PagesiotdiConference Proceedingsconference-collections
research-article

Design and Optimization of Traffic-Aware TSCH Scheduling for Mobile 6TiSCH Networks

Authors Info & Claims
Published:18 May 2021Publication History

ABSTRACT

Time-Slotted Channel Hopping (TSCH) is a medium access control technology defined by the IEEE 802.15.4e standard to address reliability and timeliness requirements of low-power Internet of Things (IoT) applications. Based on a communication schedule, TSCH exploits time-synchronization combined with frequency channel hopping to cope with wireless interference and multi-path fading. While standards define mechanisms for the basic configuration and communication of TSCH nodes, computing and adapting a schedule to the network and traffic dynamics are left as open research problems. In this paper, we propose a novel Distributed Traffic-aware Scheduling Function (DT-SF) for mobile IoT networks. DT-SF dynamically adapts the TSCH schedule to the changes of the traffic and the network topology. It estimates the node mobility by using a new lightweight approach and monitors the queue backlog to balance the traffic loads of children nodes. We model allocating TSCH timeslots to one-hop neighbors as a Mixed-Integer Convex Programming (MICP) problem which is solved by using the method of Lagrange multipliers and the Branch-and-Bound algorithm. We implement DT-SF on Zolerita Firefly IoT motes and the Contiki operating system to evaluate its performance on the testbed with 18 nodes. Evaluation results show that DT-SF improves the packet delivery ratio by up to 52% compared to the state-of-the-art method.

References

  1. Nicola Accettura, Maria Rita Palattella, Gennaro Boggia, Luigi Alfredo, and Mischa Dohler. 2013. Decentralized Traffic Aware Scheduling for multi-hop Low power Lossy Networks in the Internet of Things. In 2013 IEEE 14th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  2. Adan Aijaz and Usman Raza. 2017. DeAMON: A Decentralized Adaptive Multi-Hop Scheduling Protocol for 6TiSCH Wireless Networks. IEEE Sensors Journal 17, 20 (2017), 6825--6836.Google ScholarGoogle ScholarCross RefCross Ref
  3. Giuseppe Anastasi, Marco Conti, and Mario Di Francesco. 2011. A Comprehensive Analysis of the MAC Unreliability Problem in IEEE 802.15.4 Wireless Sensor Networks. IEEE Transactions on Industrial Informatics 7, 1 (2011), 52--65.Google ScholarGoogle ScholarCross RefCross Ref
  4. Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Maximilien Charlier, Bruno Quoitin, and David Hauweele. 2019. Challenges in Using Time Slotted Channel Hopping with Ultra Wideband Communications. In Proceedings of the International Conference on Internet of Things Design and Implementation (IoTDI '19). ACM, 82--93.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Contiki. 2019. Contiki-NG: The OS for Next Generation IoT Devices. https://github.com/contiki-ng/contiki-ngGoogle ScholarGoogle Scholar
  7. Roberta Daidone, Gianluca Dini, and Giuseppe Anastasi. 2014. On evaluating the performance impact of the IEEE 802.15.4 security sub-layer. Computer Communications 47 (2014), 65--76.Google ScholarGoogle ScholarCross RefCross Ref
  8. Hiba Dakdouk, Erika Tarazona, Reda Alami, el Feraud, Georgios Z. Papadopoulos, and Patrick Maille. 2018. Reinforcement Learning Techniques for Optimized Channel Hopping in IEEE 802.15.4-TSCH Networks. In Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWIM '18). ACM, 99--107.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Nikos Deligiannis, Jao F. C. Mota, George Smart, and Yiannis Andreopoulos. 2015. Decentralized Multichannel Medium Access Control: Viewing Desynchronization as a Convex Optimization Method. In Proceedings of the 14th International Conference on Information Processing in Sensor Networks (IPSN '15). ACM, 13--24.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Marc Domingo-Prieto, Tengfei Chang, Xavier Vilajosana, and Thomas Watteyne. 2016. Distributed PID-Based Scheduling for 6TiSCH Networks. IEEE Communications Letters 20, 5 (2016), 1006--1009.Google ScholarGoogle ScholarCross RefCross Ref
  11. Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and Thomas Watteyne. 2015. Orchestra: Robust Mesh Networks Through Autonomously Scheduled TSCH. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems (SenSys '15). ACM, 337--350.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Atis Elsts, Simon Duquennoy, Xenofon Fafoutis, George Oikonomou, Robert Piechocki, and Ian Craddock. 2016. Microsecond-Accuracy Time Synchronization Using the IEEE 802.15.4 TSCH Protocol. In 2016 IEEE 41st Conference on Local Computer Networks Workshops (LCN Workshops). 156--164.Google ScholarGoogle ScholarCross RefCross Ref
  13. Atis Elsts, James Pope, Xenofon Fafoutis, Robert Piechocki, and George Oikonomou. 2019. Instant: A TSCH Schedule for Data Collection from Mobile Nodes. In Proceedings of the 2019 International Conference on Embedded Wireless Systems and Networks (EWSN '19). USA, 35--46.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Google. 2019. Open Thread. https://openthread.google.cn/Google ScholarGoogle Scholar
  15. IETF Working Group. 2015. IPv6 over the TSCH mode of IEEE 802.15.4e. https://tools.ietf.org/wg/6tisch/Google ScholarGoogle Scholar
  16. C. Gundogan, C. Adjih, O. Hahm, and E. Baccelli. 2016. Let Healthy Links Bloom: Scalable Link Checks in Low-Power Wireless Networks for Smart Health. In Proceedings of the 6th ACM International Workshop on Pervasive Wireless Healthcare. ACM, 11--16.Google ScholarGoogle Scholar
  17. Carsten Herrmann, Fabian Mager, and Marco Zimmerling. 2018. Mixer: Efficient Many-to-All Broadcast in Dynamic Wireless Mesh Networks. In Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems (SenSys '18). ACM, New York, NY, USA, 145--158.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hyung-Sin Kim, Hongchan Kim, Jeongyeup Paek, and Saewoong Bahk. 2017. Load Balancing Under Heavy Traffic in RPL Routing Protocol for Low Power and Lossy Networks. IEEE Transactions on Mobile Computing 16, 4 (2017), 964--979.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hyung-Sin Kim, Jeong Gill Ko, and Saewoong Bahk. 2017. Smarter Markets for Smarter Life: Applications, Challenges, and Deployment Experiences. IEEE Communications Magazine 55, 5 (2017), 34--41.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Seohyang Kim, Hyung-Sin Kim, and Chongkwon Kim. 2019. ALICE: Autonomous Link-Based Cell Scheduling for TSCH. In Proceedings of the 18th International Conference on Information Processing in Sensor Networks (IPSN '19). ACM, 121--132.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jeonggil Ko, Jong Hyun Lim, Yin Chen, Rvazvan Musvaloiu-E, Andres Terzis, Gerald M. Masson, Tia Gao, Walt Destler, Leo Selavo, and Richard P. Dutton. 2010. MEDiSN: Medical Emergency Detection in Sensor Networks. ACM Transactions on Embedded Computing Systems 10, 1 (2010).Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jon Lee and Sven Leyffer. 2012. Mixed Integer Nonlinear Programming. Springer.Google ScholarGoogle Scholar
  23. Zi Cai Li. 1998. Lagrange Multipliers and Other Coupling Techniques. Springer.Google ScholarGoogle Scholar
  24. Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John Anderson. 2002. Wireless Sensor Networks for Habitat Monitoring. In Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications (WSNA '02). ACM, 88--97.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Piergiuseppe Di Marco, Carlo Fischione, Fortunato Santucci, and Karl H. Johansson. 2014. Modeling IEEE 802.15.4 Networks Over Fading Channels. IEEE Transactions on Wireless Communications 13, 10 (2014), 5366--5381.Google ScholarGoogle ScholarCross RefCross Ref
  26. Jerry Martocci, Pieter De Mil, Nicolas Riou, and Wouter Vermeylen. 2010. Building Automation Routing Requirements in Low-Power and Lossy Networks. RFC 5876. IETF.Google ScholarGoogle Scholar
  27. Esteban Municio and Steven Latre. 2016. Decentralized Broadcast-Based Scheduling for Dense Multi-Hop TSCH Networks. In Proceedings of the Workshop on Mobility in the Evolving Internet Architecture (MobiArch '16). ACM, 19--24.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Mike O. Ojo, Stefano Giordano, Davide Adami, and Michele Pagano. 2019. Throughput Maximizing and Fair Scheduling Algorithms in Industrial Internet of Things Networks. IEEE Transactions on Industrial Informatics 15, 6 (2019), 3400--3410.Google ScholarGoogle ScholarCross RefCross Ref
  29. Maria Rita Palattella, Nicola Accettura, Luigi Alfredo Grieco, Gennaro Boggia, Mischa Dohler, and Thomas Engel. 2013. On Optimal Scheduling in Duty-Cycled Industrial IoT Applications Using IEEE802.15.4e TSCH. IEEE Sensors Journal 13, 10 (2013), 3655--3666.Google ScholarGoogle ScholarCross RefCross Ref
  30. Kris Pister, Pascal Thubert, Sicco Dwars, and Tom Phinney. 2009. Industrial Routing Requirements in Low-Power and Lossy Networks. RFC 5673. IETF.Google ScholarGoogle Scholar
  31. I. Quesada and I.E. Grossmann. 1992. An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Computers and Chemical Engineering 16, 10 (1992), 937--947.Google ScholarGoogle ScholarCross RefCross Ref
  32. Sana Rekik, Nouha Baccour, Mohamed Jmaiel, Khalil Drira, and Luigi Alfredo Grieco. 2018. Autonomous and traffic-aware scheduling for TSCH networks. Computer Networks 135 (2018), 201--212.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Gianantonnio Sacchi. 1985. Lagrange Multiplier Methods for Optimization with Constraints. Springer.Google ScholarGoogle Scholar
  34. IEEE Computer Society. 2012. IEEE Standard for Local and metropolitan area networks: Part 15.4 Low-Rate Wireless Personal Area Networks (LR-WPANs): Amendment 1: MAC sublayer. IEEE Standard 802.15.4e. IEEE.Google ScholarGoogle Scholar
  35. Ridha Soua, Pascale Minet, and Erwan Livolant. 2016. Wave: A Distributed Scheduling Algorithm for Convergecast in IEEE 802.15.4e TSCH Networks. Transactions on Emerging Telecommunications Technologies 27, 4 (2016), 557--575.Google ScholarGoogle Scholar
  36. David Stanislowski, Xiavier Vilajosana, Qin Wang, Thomas Watteyne, and Kristofer. S. J. Pister. 2014. Adaptive Synchronization in IEEE802.15.4e Networks. IEEE Transactions on Industrial Informatics 10, 1 (2014), 795--802.Google ScholarGoogle ScholarCross RefCross Ref
  37. Yad Tahir, Shusen Yang, and Julie McCann. 2018. BRPL: Backpressure RPL for High-Throughput and Mobile IoTs. IEEE Transactions on Mobile Computing 17, 1 (2018), 29--43.Google ScholarGoogle ScholarCross RefCross Ref
  38. Rasool Tavakoli, Majid Nabi, Twan Basten, and Kees Goossens. 2019. Topology Management and TSCH Scheduling for Low-Latency Convergecast in In-Vehicle WSNs. IEEE Transactions on Industrial Informatics 15, 2 (2019), 1082--1093.Google ScholarGoogle ScholarCross RefCross Ref
  39. Omid Tavallaie, Javid Taheri, and Albert Y. Zomaya. 2019. MARA: Mobility-Aware Rate Adaptation for Low Power IoT Networks Using Game Theory. In 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA). 1--9.Google ScholarGoogle Scholar
  40. Omid Tavallaie, Javid Taheri, and Albert Y. Zomaya. 2019. QCF: QoS-Aware Communication Framework for Real-Time IoT Services. In International Conference on Service-Oriented Computing. Springer International Publishing, 353--368.Google ScholarGoogle Scholar
  41. Omid Tavallaie, Javid Taheri, and Albert Y. Zomaya. 2020. Towards Optimizing Time-Slotted Channel Hopping Scheduling on 6TiSCH Networks: Poster Abstract. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems (SenSys '20). ACM, 737--738.Google ScholarGoogle Scholar
  42. Fabrice Theoleyre and Georgios Z. Papadopoulos. 2016. Experimental Validation of a Distributed Self-Configured 6TiSCH with Traffic Isolation in Low Power Lossy Networks. In Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM '16). ACM, 102--110.Google ScholarGoogle Scholar
  43. Carlo Vallati, Simone Brienza, Giuseppe Anastasi, and Sajal K. Das. 2019. Improving Network Formation in 6TiSCH Networks. IEEE Transactions on Mobile Computing 18, 1 (2019), 98--110.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Xavier Vilajosana, Kris Pister, and Thomas Watteyne. 2017. Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration. RFC 8180. IETF.Google ScholarGoogle Scholar
  45. Lusheng Wang and Geng-Sheng Kuo. 2013. Mathematical Modeling for Network Selection in Heterogeneous Wireless Networks - A Tutorial. IEEE COMMUNICATIONS SURVEYS & TUTORIALS 15, 1 (2013), 271--992.Google ScholarGoogle ScholarCross RefCross Ref
  46. Qin Wang, Xavier Vilajosana, and Thomas Watteyne. 2018. 6TiSCH Operation Sublayer (6top) Protocol (6P). RFC 8480. IETF.Google ScholarGoogle Scholar
  47. Tim Winter, Pascal Thubert, Anders Brandt, Jonathan W. Hui, Richard Kelsey, Philip Levis, Kris Pister, Rene Struik, JP. Vasseur, and Roger K. Alexander. 2012. RPL: IPv6 routing protocol for low-power and lossy networks. RFC 6550. IETF.Google ScholarGoogle Scholar
  48. Zolerita. 2019. Zolerita Firefly Platform. https://github.com/Zolertia/Resources/wiki/FireflyGoogle ScholarGoogle Scholar

Index Terms

  1. Design and Optimization of Traffic-Aware TSCH Scheduling for Mobile 6TiSCH Networks

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          IoTDI '21: Proceedings of the International Conference on Internet-of-Things Design and Implementation
          May 2021
          288 pages
          ISBN:9781450383547
          DOI:10.1145/3450268

          Copyright © 2021 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 18 May 2021

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Upcoming Conference

          IoTDI '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader