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In the past decade, complementary metal oxide semiconductor-memristor hybrid neuromorphic systems have

gained importance owing to the advantages of memristors such as nano-scale size, non-volatility, and low-

power operation. However, they are often accompanied by non-ideal properties that can impact the sys-

tem’s performance. This article presents device-aware circuit design to mitigate such effects. A bi-memristor

synapse with a robust spike-timing-dependent plasticity (STDP) is designed. A mixed-mode neuron is pre-

sented whose accumulation rate is tunable on-chip and can be used with a variety of memristors without

needing a re-design. The proposed designs are employed together in an example pattern recognition system.

A scalable winner-takes-all circuit is presented for the output stage. A pattern recognition task based on a

simple STDP-based learning is demonstrated such that the recognition rate is directly dependent on the learnt

weights. Device-level issues such as switching speed/threshold asymmetry, limited switching resolution, en-

durance, and varying resistance range (across devices) are shown to adversely affect learning at the system

level and it is demonstrated that the proposed circuits can mitigate them. Last, the area and energy costs of

the proposed designs are evaluated and compared against other implementations in the literature.
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1 INTRODUCTION

The development of computing machines that mimic the cognitive actions of the human brain for
data processing has attracted researchers’ attention for many years [9]. With rapidly increasing
volume of data, conventional computing based on von Neumann architecture faces performance
hurdles due to, among other things, data latency and high power consumption [22]. Further, to
perform cognitive tasks, software implementations of neural networks are resource and power
intensive [37]. Hence, hardware neural networks that resemble biological systems by employing
neurons that propagate information in the form of spikes through electrical synapses have received
increased attention.

Synapses have been built using resistors [15], capacitors [33], floating gate transistors [41], and
Static Random Access Memories (SRAMs) [32]. However, they do not provide a way to realize a
non-volatile analog weight amenable to efficient programming [1]. Nearly a decade ago, a two-
terminal non-volatile resistive switching device known as the memristor was demonstrated in
Reference [49] and was shown to be suitable as a synapse implementing the bio-inspired spike-
timing-dependent plasticity (STDP) rule for weight updates [24, 48]. This device was first hy-
pothesized by Chua [11] as the missing fourth fundamental circuit element, whose resistance can
be modulated by applying a voltage flux. Its nanoscale size, non-volatility, and low-power ana-
log programmability and readability has spurred widespread research interest in memristor-based
neuromorphic systems.

In the recent past, CMOS-memristor hybrid systems have been proposed and experimentally
demonstrated for representative neuromorphic applications such as pattern recognition [2, 10,
28, 39, 46, 53]. Numerous other works have shown in simulation the design and operation of
memristor-based neural networks with on-chip learning [8, 12, 13, 16, 29, 34–37, 40, 47, 54, 55].
However, most of the proposed implementations either have large circuit area overhead for synap-
tic functionality and its on-chip plasticity or they employ such spike shapes at the neuron’s out-
put and feedback, that perform only a single step potentiation/depression (not true STDP), adding
extra area and potentially wasting power for long input pulses as mentioned in Reference [40].
Moreover, largely overlooked device-level issues such as switching speed/threshold asymmetry,
limited switching resolution, endurance and varying resistance (across device types) can hamper
the learning and functioning of neural systems and need to be accounted at the circuit design level.

Addressing the aforementioned concerns, this article presents a device-aware circuit design ap-
proach for synapses and neurons. A bi-memristor synapse with a (device-aware) robust STDP
scheme is designed such that weight updates can be precisely controlled. Also, a generic mixed-
mode neuron is proposed that can be used with a wide variety of memristors, thus avoiding custom
re-design for each new device type. The robustness and reliability of these designs is demonstrated
by employing them together in an example pattern recognition system. The following section
provides a review of the prior work for the design of synapses and neurons in this context and
summarizes the contributions of this work.

2 RELATED WORK

Memristor-based synapses and their plasticity have been implemented using a variety of tech-
niques. Authors of Reference [24] have proposed an STDP scheme by applying pulses whose width
is an exponential function of the relative timing of the pre- and post-neuron spikes. Similarly, in
Reference [48] a time division multiplexing of pulses was proposed. However, both of these ap-
proaches need additional circuits to determine the relative timing of neurons’ spikes and to gen-
erate width modulated pulses. Another STDP scheme was proposed in Reference [36] that has
circuits that take into account the pre- and post-neuron spike timing when performing a weight
update. This method also has the same issues as above. In Reference [37], STDP-based online
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learning was demonstrated using a 1T1R synapse. However, the gating transistor per synapse nul-
lifies the density advantage of the nanoscale memristor device.

In References [12, 16, 26, 54], a single memristor-based synapse is used with neuron spikes that
are dissimilar at its output and feedback and their overlap leads to a weight change. However,
these extra spike shapes need additional circuits for their generation. In Reference [19], spikes
with discrete levels of voltages were used. However, these techniques could only implement an
excitatory (positive weight) synapse.

Analog spikes were also adopted in Reference [45] and the influence of spike shape on the
observed STDP character is shown. Inhibitory synapses were also shown with inverted spikes.
In Reference [27], the neuron was configured as either inhibitory or excitatory using a second
generation current conveyor circuit. In these schemes, the sign of synaptic weight is a neuron
artifact and is not embedded within the synapse. In References [1, 25], a bridge-like memristor
configuration was proposed that could represent both positive and negative weights. However,
this scheme requires an additional differential amplifier to convert the synaptic state information
of the bridge into a corresponding current.

For a simple implementation of non-volatile positive and negative synaptic weights, the use of
two memristors per synapse has been proposed. Authors of Reference [46] have used two memris-
tors, each of which drive opposite signals during a read operation. However, only potentiation has
been applied to the devices for weight updates, requiring an extra “sleep cycle” during its operation
where the devices are reset and the synapse is rewritten. In Reference [17], two memristors were
used per synapse to obtain positive and negative weights, but STDP was not the focus and complex
circuits were required for weight update. A twin-memristor synapse was proposed in Reference [6]
using digital spikes for read and weight updates. However, this scheme needs an additional “control
block” per synapse that takes-in spike information from the pre- and post-neuron. Moreover, these
schemes have not taken into account the limitations of contemporary devices such as asymmetry
of switching speed/threshold, limited resolution and endurance [42]. These non-ideal device prop-
erties can adversely affect the system’s functioning and require meticulous circuit level attention.

The other key component of neuromorphic systems is the neuron. Although many models for
neuron behavior have been proposed, a review of which can be found in Reference [21], most of the
(spiking) systems mentioned above utilize an analog integrate and fire model for the neuron [29].
This neuron relies on the integration of incoming current and accumulation of the resulting charge.
The accumulated voltage is then compared with a threshold to determine the spike condition.
Hence, the rate of charge accumulation (and thereby the neuron spiking probability) is dependent
on the capacitor used for integration. This implies that the neuron needs to be custom designed
to suit the specific memristor used as the synapse and for the specific application. Re-design of
a neuron for a new memristor type not only entails the designer’s time and effort but also huge
re-fabrication costs for the new lithographic masks needed during chip fabrication. Given that
memristor devices can be of varied types, the cost of fabrication will go very high if neuron designs
in the Front-End-of-Line (FEOL) need to be changed every time a new memristor device in the
Back-End-of-Line (BEOL) needs to be tested and integrated with silicon neurons on a chip. This
will have an adverse effect on the time-to-market of this technology.

Overcoming the aforementioned issues, this article presents a device-aware circuit design
methodology for spiking synapses and neurons. Device-aware robust circuit design is shown, that
can adapt to a variety of (realistic) constraints prevalent in contemporary memristor devices. The
specific contributions of this article are as follows:

• A bi-memristor synapse is presented that can implement both positive and negative weights
without any additional local circuitry at the synapse.
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• An STDP mechanism for precise weight updates is achieved based on a spike that is dis-
cretized both in voltage and time, where both of them can be controlled on-chip.

• The STDP behavior and weight change magnitude of the synapse is shown to be adjustable
and its resilience to the asymmetry of device switching is demonstrated.

• A generic mixed-mode neuron is proposed whose accumulation rate is tunable on-chip,
thus eliminating the need for a neuron re-design with a change in the memristor type used.

• The proposed synapse and neuron are employed together in an example pattern recognition
system with STDP-based learning. A simple and scaling-friendly winner-takes-all (WTA)
scheme is proposed at the output layer of this system.

• It is shown that the detrimental impact on STDP and hence on the system performance due
to device issues such as switching asymmetry, limited resolution, endurance, and memristor
change can be remedied by virtue of using the proposed circuits.

3 MEMRISTOR MODEL

Memristor models proposed in the literature can be broadly classified into two categories: physics-
inspired models and behavioral models. While physics-inspired models are often preferred, the
lack of complete understanding of the physical dynamics of memristive switching has promoted
the development of behavioral models that are sufficiently accurate, converge well in circuit simu-
lation and amenable to parameter extraction. Most behavioral models start by defining an internal
state variable controlled by the applied electrical excitation (voltage or current). Another relation-
ship is then used to link the state variable with the device’s resistance. This modeling paradigm
may not be readily suitable for parameter extraction as the state variable is not a measurable pa-
rameter. A model based on the instantaneous resistance as the state variable was proposed in
Reference [3] and has been used in this work. Adopting the instantaneous resistance as the state
variable has an advantage that it can be easily extracted from I-V sweeps. This model is described
as follows:

dM

dt
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−CLRS

(
V (t )−Vtp

Vtp

)PLRS

fLRS (M (t )), V (t ) > Vtp ,

CH RS

(
V (t )−Vtn

Vtn

)PH RS
fH RS (M (t )), V (t ) < Vtn ,

0, otherwise,

(1)

where C and p are the speed and non-linearity parameters, respectively. fH RS and fLRS capture
the resistance plateauing near the edges (commonly referred to as window functions). Equation (2)
presents the window function used here that can be easily fitted to measurable parameters:

f (M (t )) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

1+e

M (t )−θH RS H RS

βH RS Δr

,V (t ) < Vtn ,

1

1+e

θLRS LRS−M (t )
βLRS Δr

,V (t ) > Vtp .
(2)

Here, Δr = HRS − LRS and θ and β are fitting parameters of the window function that determine
the onset of the plateauing and the slope of the transition therein, respectively. For simulations
in this article, the following parameters have been used: HRS = 12KΩ,LRS = 2.5KΩ,Vtp = 0.6V ,
Vtn = −0.6V , θH RS = 0.85, θLRS = 1.6, βH RS = βLRS = 0.07, CH RS = CLRS = 9.5 × 109, PH RS =

PLRS = 2. This is based on the device presented in Reference [50] that was experimentally demon-
strated to have analog switching characteristics with intermediate resistance states.
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Fig. 1. (a) The bi-memristor synapse with its connections to the pre- and post-neuron. (b) The synapse
configuration when the pre-neuron spikes and the post-neuron is accumulating. (c) The synapse after the
post-neuron also spikes.

4 BI-MEMRISTOR SYNAPSE

4.1 Synapse Structure and Operation

The bi-memristor synapse is composed of two memristors, named Mp and Mn , connecting a pre-
neuron and a post-neuron as illustrated in Figure 1(a). Note that although a similar synapse has
been shown in Reference [6], it requires a “control block” per synapse, that takes-in spike infor-
mation from the pre- and post-neuron. This implementation uses additional circuitry local to the
synapse for weight update. The bi-memristor synapse presented here eliminates such additional
local circuits and its operation can be divided into two phases: accumulation and learning. Dur-
ing the accumulation phase, as the pre-neuron spikes, the switches S1 and S2 of the post-neuron
are closed, giving the configuration as shown in Figure 1(b). The pre-neuron applies spikes with
opposite voltage polarity on nodes 1 and 2 as shown, whereas the other node is grounded by the
post-neuron. This leads to opposite current flow in Mp and Mn , the sum of which flows into the
post-neuron, and is given as

i = iMp
− iMn

= (Gp −Gn )Vspike . (3)

Therefore, the effective weight of the synapse, designated by its effective conductance is given by

Geff = Gp −Gn =
1

Mp
− 1

Mn
. (4)

This incoming current is then “accumulated” in the post-neuron and a spike is generated once
the accumulation crosses the threshold. When the post-neuron spikes, switches S1 and S2 are
opened while S3 and S4 are closed, leading to the configuration shown in Figure 1(c). The post-
neuron, while propagating spikes onward to the next synapse, also feeds them back to its input
synapse(s). When the post-neuron spikes, the pre-neuron could be in the middle of its spiking
event (they operate independently). Thereby, the memristors are biased with voltages from the
spikes of both neurons and the resulting learning (weight change) depends on the relative timing
of these spikes.

The relation between the relative timing of the neurons’ spikes and the resultant voltage differ-
ence across the memristors is illustrated in Figure 2. As seen in Figure 2(a), when the post-neuron
spikes after the pre-neuron, a net positive voltage across Mp crosses the threshold. Also, since the
spikes associated with Mn are inverted in polarity, a net negative voltage greater than the thresh-
old is applied across Mn . Hence, Mp decreases whereas Mn increases leading to a net increase in
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Fig. 2. The temporal occurrence of the pre- and post-neurons’ spikes and the resulting voltage drop across
Mp and Mn for (a) potentiation and (b) depression obtained from circuit simulations in Cadence Spectre.

Geff (potentiation) as per Equation (4). The new conductance G ′
eff

can be given as

G ′eff =
1

Mp − ΔM
− 1

Mn + ΔM

=
1

Mp

(
1 − ΔM

Mp

) − 1

Mn

(
1 + ΔM

Mn

)

=
1

Mp

⎡⎢⎢⎢⎢⎣
1 +

ΔM

Mp
+

(
ΔM

Mp

)2

+ · · ·
⎤⎥⎥⎥⎥⎦
− 1

Mn

⎡⎢⎢⎢⎢⎣
1 − ΔM

Mn
+

(
ΔM

Mn

)2

− · · ·
⎤⎥⎥⎥⎥⎦

=
1

Mp
− 1

Mn
+ ΔM �


1

M2
p

+
1

M2
n

�
�
+ ΔM2 �


1

M3
p

− 1

M3
n

�
�
+ · · ·

= Geff + ΔM (G2
p +G

2
n ) + ΔM2 (G3

p −G3
n ) + · · · .

(5)

Therefore, the net change in the conductance after potentiation is given as

ΔG = G ′eff −Geff

= ΔM (G2
p +G

2
n ) + ΔM2 (G3

p −G3
n ) + · · · .

(6)

Similarly, when the post-neuron spikes before the pre-neuron (a depression condition), Mp and
Mn experience a net negative and positive voltage greater than the threshold, respectively, as
illustrated in Figure 2(b). Hence, Mp increases and Mn decreases in this case, leading to a net
decrease in Geff. The corresponding change in the conductance is given by

ΔG = −[ΔM (G2
p +G

2
n ) − ΔM2 (G3

p −G3
n ) + · · · ]. (7)

It can be seen from Equations (6) and (7) that the ΔG expression resembles the series expansion
of an exponential function, where ΔM is the independent variable. As noted in Section 3, the
change in memristance is of the format ΔM = kV p , whereV is the effective voltage applied across
the memristor and k is a constant dependent on the device’s switching mechanism. Hence, the
change in the conductance can also be represented as

ΔG = k1V
p + k2V

2p + k3V
3p + · · · . (8)
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Fig. 3. (a) The neuron with the spike generation block and the control switches (b) Spike generation block.

It is evident from Equation (8) that ΔG is an exponential-like function of the voltage across the
devices. Moreover, the neuron spikes in Figure 2 are shaped such that the voltage changes linearly
after each clock period. Hence, the net voltageV across devices also changes linearly with respect
to ΔT = tpost − tpr e , the temporal difference between the pre- and post-neurons’ spikes. Therefore,
ΔG is exponentially dependent on ΔT, thus implementing an exponential STDP behavior [29].

4.2 Spike Generation Block

The block diagram of the neuron integrated with the spike generator block along with its con-
trol switches is shown in Figure 3(a). As explained in Section 4.1, during the accumulation mode,
switches S1 and S2 close (S3 and S4 open), thus summing the input currents from Mp and Mn . The
total current i flows into the neuron and is “accumulated” therein. When the accumulation crosses
the threshold, the neuron spikes and enters its refractory period. During this period, the neuron
propagates its spikes onward to its output synapses and also sends the same spikes as a feedback
to its input synapses by opening S1 and S2 and closing S3 and S4.

The spike generator block is shown in Figure 3(b). It consists of two groups of switches, one
each to control spikes for Mp and Mn . The switches are controlled by the nodes Q1–Q5 such that
each node controls a particular switch in each group. As the spike from the neuron is input to this
circuit, switches SP1 and SN1 are closed first. At each clock edge, the spike propagates through
the nodes Q1–Q5 and therefore one switch among SP1–SP5 and SN1–SN5 is closed sequentially,
while the rest of the switches remain open. For each switch that is closed, the output spike receives
the corresponding voltage as shown in the figure. Note that the voltages here are linearly graded
and can be produced using an on-chip voltage divider. Also, when there is no spike, the default
switches SD are closed, biasing the memristors at half-rail (GND in this case) to avoid sneak paths
in a crossbar configuration.

4.3 STDP Behavior of the Bi-Memristor Synapse

4.3.1 STDP Characteristics. To study the STDP behavior of the bi-memristor synapse, simula-
tions have been carried out using Cadence Virtuoso with Spectre as the simulator. A 65-nm design
kit has been used to implement the CMOS portions, while the memristor model described in Sec-
tion 3 was written in Verilog-A and used with the device parameters mentioned therein.

To simulate the STDP behavior, the setup shown in Figure 4(a) has been used. It consists of
two synapses S1 and S2 connected between neuron pairs N1–N3 and N2–N3, respectively. S2 is
configured to have a high positive weight such that when N2 spikes, the accumulation in N3
is enough to make it spike. This way, the timing of the N3 spike is fixed and N1 spike is con-
trolled to perform the STDP in synapse S1. S1 is initially configured to have a weight of zero, with
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Fig. 4. (a) The simulation setup to study the STDP behavior of the synapse. (b) The STDP observed in the
proposed synapse.

Fig. 5. The dependence of STDP characteristics on clock frequency.

Mp =Mn . The resultant STDP is shown in Figure 4(b). Note that this simulation has been performed
at a clock frequency of 50 MHz.

4.3.2 Effect of Clock Frequency. In Figure 2, the neuron spike’s temporal length is a function
of the clock frequency. The longer the clock period, the longer each voltage level is sustained and
hence the larger the ΔM during weight change. Hence, by controlling the clock frequency, we can
fine tune the weight increments/decrements and hence the STDP character. Figure 5 shows STDP
dependence on the clock frequency. As expected, a lower clock frequency (higher clock period)
leads to higher ΔG and a steeper STDP curve, whereas the opposite happens with higher frequency.
Moreover, for higher frequencies, when ΔM becomes small, the higher-order terms in Equation (6)
can be neglected and hence it can be reduced to ΔG ≈ (G2

p +G
2
n )ΔM = kΔM , suggesting a linear

STDP behavior. This tendency can be observed in Figure 5 at higher frequencies.

4.3.3 Effect of Device Switching Asymmetry. Due to the fundamentally distinct switching dy-
namics in the memristor during resistance increase and decrease, contemporary devices often have
faster switching in one direction compared to the other. This switching speed asymmetry can be
as high as two orders of magnitude [4, 18] and can hamper the learning of a synapse, since it
involves switching in both directions. This implies that in case of a huge asymmetry, the device
that is switching in the direction of faster speed will experience a larger change and hence will
dominate the overall change in weight. These large changes can affect the resolution of ΔG during
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Fig. 6. (a) STDP behavior in the presence of switching speed asymmetry, where “X” representsCLRS /CH RS .
(b) STDP behavior rectification after duty cycle modulation.

Fig. 7. Duty cycle modulation of neuron spikes to alleviate switching asymmetry effects for (a) Potentiation
(b) Depression. Note that the pre neuron spikes here are unaltered and due to the duty cycle modulation,
(in a given clock period) portions of the post neuron spike are “cut off,” leaving that node floating (hence it
follows the pre-neuron node for that part). Therefore, for this portion, the net bias across the synapse is zero.

learning (potentially impacting the granularity of the synaptic weights learnt in a neuromorphic
system) and can also worsen the STDP behavior of the synapse as shown in Figure 6(a).

The adverse effects of switching speed asymmetry can be remedied by the virtue of the dis-
cretized spike shape proposed here. By reducing the flux applied to the faster switching direction,
we can equalize the resistance change in both directions. To implement this, duty cycle modulation
has been adopted. By controlling the duty cycle of the spike shape, the flux applied is controlled.
This is illustrated in Figure 7 for the case where resistance decrease is much faster than resistance
increase (CLRS > CH RS ). Here, the neuron’s output spikes responsible for accumulation are left
unchanged, whereas only the feedback spikes are modulated. The new spike shapes are as shown
in Figure 7. The reason for these shapes is as follows: during weight change, the memristance
decreases when a net positive voltage is applied across the device. This occurs due to a positive
pulse from the pre-neuron and a negative one from the post-neuron. Hence, the negative voltage
portion of the post-neuron feedback is curtailed in time as shown in Figure 7. To produce this
modulation, switches S3 and S4 need to be controlled such that they are opened whenever the
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Fig. 8. (a) The integrator of an analog integrate-and-fire neuron. (b) The accumulation of voltageVmem in the
integrator for three device types. Here, multiple lines for each device type indicate different input synapse
weights, with the lighter shade representing low weight and the darker shade standing for high weight.

Table 1. The Three Devices Considered in This
Work with a Wide Range of Resistances

Mem1[50] Mem2[30] Mem3[23]
LRS 2.5 kΩ 15 kΩ 250 kΩ
HRS 12 kΩ 150 kΩ 2.5 MΩ

voltages are to be shortened in time. For this, the corresponding control of these switches (“Fire”
signal in Figure 3(b)) is logically ANDed with a duty cycle modulated clock. Note that this duty
cycle modulated clock can be generated from the global clock of the system using a programmable
delay circuit as in Reference [31]. A “delayed” version of the global clock (say “d-CLK”) can be pro-
duced with this circuit and the logical operation (d-CLK⊕CLK)·CLK yields a duty cycle modulated
clock. Hence, owing to the discretized spikes adopted here, this system can cope with and rectify
the switching rate asymmetry effect prevalent in memristor devices.

5 MIXED-MODE NEURON

Conventional analog integrate-and-fire neurons operate on the incoming synaptic current by in-
tegrating it using a capacitor-based integrator and store it as an ‘accumulated’ voltage as shown

in Figure 8(a). The accumulated voltage, expressed as Vmem = − 1
RinCint

∫ t

0
Vindt is a function of

the capacitor (Cint ) used; the larger it is, the slower the accumulation. This implies that to obtain
a detectable accumulation, the value of Cint must be meticulously designed for the synapse (Rin )
under consideration. However, a wide variety of memristor devices have been proposed in the lit-
erature with a range of resistance values. Hence, when a new memristor device is to be used, the
neuron is likely to fail to accumulate voltages to reasonable values. Here, three such devices have
been considered with different resistance values as shown in Table 1. Note that these devices have
been demonstrated experimentally to have analog switching with intermediate resistance states,
making them suitable for use as synapses.

The neuron’s response when designed and simulated for the device Mem2 is shown in
Figure 8(b). Five different synaptic weights (set as Gmax/x , where x=1-5 and Gmax =

1
LRS
− 1

H RS
)

were used at the input and it is seen here that the accumulation rate changes with weight; higher
weights (darker shades in Figure 8(b)) leading to faster accumulation. The same neuron was also
used with the other two synapses. For the case of device Mem1, the resistance is smaller than that
of device Mem2, hence producing more input current. Since the designed capacitor for Mem2 is too
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Fig. 9. (a) Block diagram of the proposed mixed-mode neuron. (b) Analog block of the mixed-mode neuron
responsible for encoding the input current as digital bits.

small for Mem1, the accumulation rate is too fast, leading to very highVmem values to work with.
Similarly, when Mem3 was employed with the neuron, the resistance of Mem3 being greater than
that of device Mem2, it produced smaller currents. The capacitance of the neuron proved too large
for this current, leading to too slow accumulation and thereby too small voltages to be detected
and differentiated.

The analysis above indicates that the neuron needs to be re-designed for each new type of device
that is to be used with it. Since a variety of contemporary memristors are available, each with its
own set of advantages, developing different systems to tap their specific desirable properties entails
re-designing and fabricating a system for each new device type, proving costly in terms of design
time, effort and re-fabrication costs (for the new FEOL masks). To eliminate this issue, a generic
mixed-mode neuron is proposed here, whose accumulation rate is tunable on-chip.

The block diagram of the proposed neuron is shown in Figure 9(a). The incoming current from
the synapses is assigned a digital value by the analog block (n = 3 here), based on its magnitude.
This digital value is then accumulated in the digital block and stored therein. A digital thresh-
old value is used to compare the stored value with it and produce a spike when the threshold is
exceeded.

The details of the analog block are shown in Figure 9(b). It consists of a transimpedance amplifier,
that converts the input current iin into a voltageVmem (note thatVmem is negative due an inverting
configuration of the operational amplifier). This voltage is then input to a dynamic CMOS block
that assigns a digital value to it based on the result of comparison with some reference voltages.
The higher the incoming current magnitude, the higher the voltage magnitude Vmem and hence
the higher the digital value assigned. SinceVmem is dependent on the tunable resistor Rtune , it can
be implemented with transistors operating in the linear region such that Rtune can be tuned on-
chip (with the gate voltage) to obtain the same Vmem for a given abstract synaptic weight across
all device types. This on-chip tunability enables the neuron to adapt to various devices and have
the same accumulation for all of them, thus eliminating the need for re-design.

The dynamic CMOS block (Figure 10) consists of pairs of transistors, each of which determines
if the input current is within a certain magnitude range. The pairs consist of a pre-charge and a
discharge transistor, which are responsible for charging-up and discharging the evaluation node,
respectively. During the positive half of the clock period, the pre-charge transistor is ON and
charges the evaluation node. During the negative half of the clock period, the pre-charge tran-
sistor is OFF. The discharge transistor has Vmem as the gate voltage and a reference voltage at
its source. Thus, Vmem determines the state of this transistor. If the Vmem is sufficient enough
to switch ON this transistor, then it discharges the evaluation node. The Vr ef values (which can
be written as Vmem −Vth ) are graded such that Vr ef 1 < Vr ef 2 < · · · < Vr ef 7. Note that these val-
ues must be separated enough to account for the expected resistive drops and noise effects in a
big system design. Thus, with different magnitudes of input current, different Vmem values are
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Fig. 10. The dynamic CMOS circuit to convertVmem

into a digital value, where x = 1–7. The ENx nodes’
states are encoded as shown in Table 2.

Table 2. The Truth Table for Encoding
Bits Based on the Discharging of

Dynamic Nodes

Nodes Discharged Encoded Value
EN1−7 000
EN1−6 001
EN1−5 010
EN1−4 011
EN1−3 100
EN1−2 101
EN1 110

None 111

Fig. 11. (a) Simulation result for the evaluation nodes in the dynamic CMOS block showing the case for a
“100” accumulation, where EN1−3 are discharged. (b) Similar behavior observed in the nodes for the three
different device types after on-chip tuning of accumulation.

generated, such that with increasing current, Vmem gets more negative, making it difficult for the
NMOS transistors to switch ON and hence, less number of evaluation nodes are discharged at the
end of evaluation phase in a clock period. Therefore, for a high current, Vmem is highly negative
and none of the nodes discharge, while for a very low current,Vmem is much less negative and all
of the nodes discharge. Note that the capacitance of the node ENx comprises the drain-body (Cdb )
and gate-drain capacitances (Cдd ) of the NMOS and PMOS devices therein. Hence these devices
need to be sized appropriately such that these capacitances charge/discharge reasonably within the
clock period used. Based on the number of discharged nodes, a logic block generates a 3-bit value,
which is the assigned digital value to the input current, as shown in Table 2. Figure 11(a) shows the
(simulated) behavior of the evaluation nodes for a case where the accumulation is “100.” For this
case, nodes EN1−3 are discharged fully before the end of the evaluation phase. In Figure 11(b), when
the synaptic device type is changed, Rtune is tuned on-chip to obtain the sameVmem and hence the
same discharge behavior is seen for these nodes (for the same input weight). This demonstrates
that the neuron can be tuned on-chip to act the same for various device types without any change
of design.

The digital value generated by the analog block is input to a digital block that contains an adder
to add the incoming value to the already stored value therein and accumulate it on the register
block as shown in Figure 12. To generate a spike, the accumulated digital value is compared with
an input digital threshold. Additionally, a spike is also generated when there is an overflow in the
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Fig. 12. Digital half of the neuron for digital mode accumulation and comparison for spike generation.

Fig. 13. (a) Block diagram of a neuromorphic crossbar system implemented with the proposed bi-memristor
synapse. (b) Circuit-level diagram of the WTA system implementing bit comparison for each bit column and
its use for spike decision at each neuron.

adder block. The digital comparator block determines both the comparison result and the overflow
condition, and generates a spike decision. Whenever the spike condition from the comparator is
true, the register block is RESET, implementing a refractory period for the neuron.

6 PATTERN RECOGNITION SYSTEM

In this section, the proposed bi-memristor synapse and the mixed-mode neuron are employed to-
gether to build and demonstrate a system for a representative pattern recognition task. The system
structure and its operation using the proposed circuits is described in the following subsections.

6.1 System Structure and Operation Scheme

The block diagram of the system is shown in Figure 13(a). It consists of two layers of neurons
fully interconnected by synapses in a crossbar fashion. The layer of p input neurons Ni1. . .p apply a
spike pattern to the system that is representative of the input pattern. This spike pattern generates
currents through the connected synapses and causes accumulation in the q output neurons No1. . .q

as shown. Based on the accumulation therein, the winner-takes-all (WTA) block arbitrates between
the output neurons, choosing a “winner neuron” (the one with the most accumulation). The output
neurons here are different in the only aspect that their accumulation is passed to the WTA block.

The implementation of the WTA block is shown in Figure 13(b). This circuit operates as follows:
to determine the winner neuron, the accumulated values in the output neurons are considered bit-
by-bit, with highest priority to the most significant bit (MSB). For example, if the accumulated
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Fig. 14. (a) The bit comparison circuit at each bit line to ascertain the number of neurons with a 1 for that
bit. (b) The spike decision block at each neuron to determine if it is the winner among all the output neurons.

value in a neuron Nom
is b2m

b1m
b0m

, where b2m
is the MSB, then it is the winner if b2m

= 1 and
no other neuron’s MSB is a 1, that is to say

∑r=q
r=1,r�m b2r

= 0. If any of the remaining bits b2{1. .q }−m

are 1, or if all of the bits b2{1. .q } are 0, then the next bit b1m
is compared with b1{1. .q }−m

in a similar
fashion. Similarly, if b1m

= 1 and if any of b1{1. .q }−m
is 1 or if all of b1{1. .q } are 0, then the evaluation

moves to b0m
.

To facilitate this decision making, all of the bits from the neurons are used to operate switches
as shown in Figure 13(b). For a given bit bx (x = 1, 2, 3), the switches from all the neurons are
connected such that their ON resistances are in parallel. As explained above, to decide if a given
accumulation in a neuron is the highest, three conditions need to be detected for each bit: (i) all
neurons have 0 for that bit, (ii) only one neuron has a 1, and (iii) more than one neuron has a 1.
These conditions must be used in conjunction with each neuron’s accumulated bits to decide if
its value is the highest. To differentiate between these conditions, the parallel-connected switches
(size 1×) for each bit drives current into a bit comparison block, shown in Figure 14(a). This block
contains switches that drive opposite currents and are sized such that the resultant current is used
to detect these conditions. The 1.5× sized switch Q1 detects if there is more than one neuron with
a value 1. If more than one neuron has a 1, then at least two switches (effectively 2× size or more)
drive positive current into the Op Amp (making the net positive) and hence d1 is 0, and it is 1 if
one or less neurons have a value 1 for that bit. The 0.75× switch Q0 differentiates between one or
more neurons having a 1 and none of them having a 1. Similarly, d0 is 0 if one or more neurons
have a 1 and is 0 if all of them have a 0 for that bit. Thus, a combination of these two comparisons,
cx (x = 1, 2, 3) helps in concluding the count of neurons with a value 1. cx is 1 if only one neuron in
a given bit column has a 1, whereas it is 0 if more than one of them have a 1 or if all of them have
a 0. This bit comparison for all three bits is passed on to all the neurons’ spike decision blocks.
This block has the combinational logic (shown in Figure 14(b)) that decides if a given neuron has
the highest accumulation, as explained in the paragraph above: a given neuron has the highest
accumulation if c2 = 1 and its b2 = 1. If c2 = 0, then this evaluation moves to bit b1 and so on.
As a proof of concept, the proposed WTA system was implemented in Cadence Virtuoso and an
example simulation was run, whose results are tabulated in Table 3. 10 accumulated values (from
10 neurons) are provided as input to the system and as seen therein, the system appropriately chose
the winning value and did not choose anyone where there were multiple inputs with highest value.

After the WTA block makes the spike decision for each neuron, the logic output No−spk in
Figure 13(b) controls the spike feedback switches (S3 & S4) for each neuron. Since this logic will
hold TRUE for a maximum of only one neuron, only the winning neuron can propagate a feedback
spike (that aids STDP in the synapses). Also, it must be noted that since the spike propagation is
gated locally at each neuron (by No−spk ), the spike generating circuit can be shared among all
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Table 3. The Simulation Results for the WTA Block Handling the Cases of Only One Neuron
Having a Highest Accumulation and Multiple of Them Having the Same Highest Value

Neuron Accumulation Spike Decision
No1 001 0
No2 010 0
No3 001 0
No4 100 0
No5 110 1
No6 011 0
No7 001 0
No8 010 0
No9 100 0
No10 011 0

Neuron Accumulation Spike Decision
No1 001 0
No2 111 0
No3 001 0
No4 100 0
No5 010 0
No6 011 0
No7 001 0
No8 111 0
No9 100 0
No10 011 0

Fig. 15. (a) Input matrix downsampling and corresponding input spike temporal encoding. (b) Final synaptic
weights of the system representing learnt patterns. The colorbar indicates synaptic conductances in μS.

the output neurons of the system, thus drastically reducing the overhead of the system and also
helping facilitate system scaling.

6.2 Training

To simulate a pattern recognition task, the system shown in Figure 13 and its behavior as described
above were modeled using Python. It operates on the handwritten digits data set from the UCI
Machine Learning Repository [14]. This data set consists of input matrices of 8x8 size representing
instances of digits from 0 to 9. The elements of these matrices are integers in the range 0 to 16.
There are a total of 3,823 instances of digits from all the 10 classes in the training set and an
independent set of 1,797 instances meant for testing. Since the input matrices here are of size
8 × 8 with a total of 10 classes of patterns, the system consists of 64 input neurons and 10 output
neurons, each representing an input matrix element and a pattern class, respectively. The values
of the input elements range from 0 to 16, and are downsampled as values from 0 to 7 such that 0–1
in the input is coded as 0, 2–3 as 1, and so on, as shown in Figure 15(a).

During training, the system is provided with input spike patterns with a temporal encoding to
represent the input pattern as shown in Figure 15(a). The downsampled values of the inputs are
used as delays (in units of clock periods) in triggering the corresponding input neuron’s spike.
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Fig. 16. (a) Recognition rate achieved on the system after several epochs of training (b) Confusion matrix
for the tests performed by presenting all of the 1,797 test patterns.

The input with value 0 spikes first (say at time ti ), the one with value 1 spikes after 1 clock period
(ti + 1) and similarly, the input with value 7 spikes after 7 clock periods (ti + 7). Also, the class
labels of the input patterns are read into the simulator and are used to trigger the output neuron
spike, thus facilitating STDP-based learning. For each input pattern presented, the output neuron
corresponding to the input label is made to spike 1 clock period before the the input time span
begins (time ti−1) and also 1 clock period after it (time ti+1). Since the spike waveform in this work
has four different levels of positive voltages spread over a span of four clock periods, STDP can
occur when two spikes are separated by up to four clock periods in time. Hence, after the first
output neuron spike, the synapses connected to the inputs with values 0–3 will be depressed, with
the synapse with 0-input having the highest depression. Similarly, synapses with 4–7 as the input
will be potentiated by the output spike at the end of input time span. Note that the 1st spike of the
output neuron has no impact on this case, since it is separated too far in time to have an overlap.

The entire 3,823 training set patterns are presented to the system for learning. The synapses
in the crossbar are all initially set to a zero weight (Mp = Mn = HRS). As learning progresses, the
weights evolve, with synapses being both potentiated and depressed. The eventual learnt weight

of a synapse depends on the relative number of potentiations and depressions. For synapses that
mostly receive inputs in the range 4–7, the net potentiation outweighs depression, hence those
synapses reach a high positive weight. The opposite happens with synapses receiving inputs
mostly in the range 0–3. For synapses that receive comparable number of inputs in both the ranges,
the final weight saturates in between the positive and negative extremes. This behavior can be ob-
served in Figure 15(b), where the learnt weights on all the 10 columns of the system are plotted as
8 × 8 patterns.

6.3 Testing

The trained system was tested by applying all of the 1,797 patterns from the testing set. During
testing, the currents flowing out of each column lead to a digital value accumulation in the output-
neurons. The WTA block acts as the judge to decide on the “winner.” If only a single neuron has
the highest accumulated value, then it is declared the winner and its label is compared with the
input label to check for the test case’s success. If the labels do not match, or if the highest value was
attained by multiple neurons, then the case is said to have a wrong inference. These test results
are shown in Figure 16(a). It is seen that the test accuracy attains its maximum after the first epoch
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Fig. 17. The dependence of learning rate on the clock frequency used.

and it remains saturated beyond that point. The recognition rate obtained here is on par with the
83% achieved in literature [42]. Also, it must be noted that only a simple STDP-based learning
on a single crossbar was used, such that the learnt weights are dependent on the efficiency of
STDP. This aids in the evaluation of the robustness of the proposed designs at the system level, as
demonstrated in Section 7, which is the main focus of this work. Also, the confusion matrix for
these tests is shown in Figure 16(b). It can be seen here that test digit was in most of the cases
inferred as the correct one (as indicated by the diagonal boxes). Among the commonly confused
bits were 8 and 1, which is likely caused by the high conductance synapses in the central columns
of both of these patterns as seen in Figure 15(b). Additionally, 1 was confused with 2 and 5 with
9, which can be similarly attributed to the overlap of the location of most of the high conductance
synapses in these patterns.

7 PERFORMANCE ANALYSIS

In this section, we analyse the performance of the proposed designs under several practical de-
vice/circuit considerations and demonstrate their robustness against these factors.

7.1 Effect of Clock Frequency

The amount of weight change during STDP (as seen in Figure 5) in this approach is dependent
on the choice of clock frequency. As can be seen, higher clock frequency leads to smaller ΔG
increments, whereas lower frequency leads to larger increments. This impact of clock frequency
on the weight increments and thereby on the learning curve of the pattern recognition system is
shown in Figure 17.

From Figure 17, it can be seen that for higher frequencies, the learning is slower due to smaller
ΔG. Hence, the learning rate can be increased by reducing the frequency. However, by decreasing
the frequency disproportionately, it is seen here that the learning does not have a smooth satu-
ration. This is due to the larger ΔG at low frequency operation that leads to poor granularity of
weights.

Therefore, based on this trade-off between learning rate and weight granularity, an optimal fre-
quency must be chosen, which in this case is 50 MHz, at which the system’s learning saturates after
about 1 epoch of training and remains constant thereafter. Note that this analysis highlights an
important device metric: resolution of resistance states. As seen here, low resolution of resistance
states yields poor control over the granularity of weights in the system. Hence, higher resolu-
tion devices with greater control over achievable intermediate resistance states are necessary. The
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Fig. 18. The behavior of the pattern recognition system illustrated in terms of (a) recognition rate, (b) learnt
pattern “0,” before and after the switching speed asymmetry effect is remedied.

approach adopted in this work enhances this capability by providing the designer with the choice
of frequency, with which the resolution of weight changes can be controlled and fine tuned.

7.2 Device Switching Asymmetry

7.2.1 Switching Speed Asymmetry. It was shown in Section 4.3.3 that an asymmetry in the
switching speed of the memristor leads to drastic changes in weights during STDP. This con-
dition is simulated for the pattern recognition system and shown in Figure 18(a). It is seen that as
the asymmetry in the device increases, the accuracy drops. As also described in Section 4.3.3, by
adopting a duty cycle modulation technique in the feedback spike, this drop in the accuracy can be
rectified as shown in Figure 18(a). Additionally, Figure 18(b) illustrates an example of a (disfigured)
learnt pattern in the presence of asymmetry and the rectified pattern after using the duty cycle
modulation technique.

7.2.2 Switching Threshold Asymmetry. Apart from switching speed asymmetry, another im-
portant non-ideality is the switching threshold asymmetry prevalent in contemporary devices. As
seen in Equation (1), ΔM is a function of the voltage overdrive V −Vt across the device. Hence,
whenVt in one direction is higher than the other, the overdrive across the device in that direction
will be less, causing reduced switching or no switching if the overdrive is zero. This will hamper
the STDP behavior of the synapse and hence the learning of the system. This effect has been sim-
ulated and shown in Figure 19(a) along with the effect of switching speed asymmetry. Here, both
of theses effects are plotted separately, as well as in combination. It can be seen that when both
of these effects occur in combination, the result is catastrophic, leading to a rapid failure of the
system.

An advantage of using the constant, discrete voltage levels in the spike shape as shown in
Figure 2 is that the designer has the option of assigning the voltage of his choice to each level.
Hence, in the case where there is a reduced overdrive due to a higher Vt , it can compensated by
increasing the voltage levels in the feedback spikes as shown in Figure 19(b). For this particular ex-
ample, it is assumed that ‖Vtn ‖ > ‖Vtp ‖. Hence, the net negative voltage applied across the device
during weight change must be increased to compensate for the higherVtn . A net negative voltage
is applied (across Mn during potentiation and Mp during depression) by the overlap of a negative
pulse from the pre-neuron end and a positive pulse from the post-neuron’s feedback. Hence, the
positive pulses of the feedback are increased in magnitude here. When both the switching speed
and threshold have an asymmetry, a combination of duty cycle modulation and pulse voltage con-
trol can be employed for compensation. The result for this compensation is shown in Figure 19(a).
It is seen here that by using a combination of the compensation techniques in time and voltage,
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Fig. 19. (a) Recognition rate of the system in the presence of switching asymmetry effects and their rectifi-
cation by the proposed methods. (b) Voltage modulation in the feedback spikes to compensate for threshold
asymmetry, demonstrated through simulation in Cadence Spectre.

Fig. 20. The pattern classification accuracy for various devices remains the same with the on-chip tunability
in the proposed neuron. Note that here “without tuning” refers to a test conducted with a “rigid” neuron
designed for a specific device (2.5–12KΩ in this case) employed with other two mentioned device types.

the switching asymmetry issue can be mitigated and the original recognition rate is restored. Note
that the explicit analysis and mitigation methods discussed here differentiate this work from those
described in Section 2.

7.3 Effect of Change in Memristor Device

As explained in Section 5, a wide range of memristor resistance values have been demonstrated in
literature, and a neuron designed for a given device is likely to fail when employed with a differ-
ent device. This is demonstrated at the system level in Figure 20. Here, the proposed mixed-mode
neuron was first used without the tunability feature, wherein it was designed for one particular
memristor device (2.5–12 KΩ). It is seen here that when it was employed with other two devices,
the classification fails. However, with the tunability feature added, the neuron is able to adapt to
other device types and the classification is restored and is consistent across device types. Note that
this was made possible by the transimpedance amplifier employed in the proposed neuron and the
use of tunable resistors. This demonstrates that the proposed neuron is generic and can prevent the
need for custom design, re-design and re-fabrication of the FEOL circuits in memristor neuromor-
phic systems where several device types need to be actively prototyped and experimentally tested.
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Fig. 21. On-chip tunability of the neuron applied to mitigate the effects of limited device switching en-
durance, leading to resistance degradation (shown here as % deviation from their initial value).

7.4 Switching Endurance

Switching endurance in memristor devices is another important reliability concern. With increas-
ing number of switching cycles that the device experiences, the LRS and/or HRS of the device
deviate from normal, with an increase in LRS and decrease of HRS being common [7, 38, 52]. This
leads to a decrease in the HRS/LRS ratio, known as the switching window of the device, as illus-
trated in Reference [7]. This impact has been simulated at the system level by gradually increasing
and decreasing the LRS and HRS values of the device, respectively. With a non-tunable neuron,
Figure 21 shows that with the drifting resistances, the recognition rate also degrades. However,
with the proposed tunable neuron, the accumulation rate can be adjusted as the device proper-
ties change, and hence the classification can be recovered as shown in Figure 21. Note that at 45%
degradation of LRS and HRS for the 2.5–12KΩ device (where the recognition rate starts to roll
down), the switching window is already below 2×. Hence, the proposed neuron helps alleviate
endurance-related reliability concerns in memristive neuromorphic systems. Also, this analysis
highlights another important feature of the proposed neuron: adaptability to shrinking switch-
ing windows. Figure 21 illustrates that the proposed neuron can be tuned to operate with a small
switching window.

8 DISCUSSION

In this section, various implementation aspects of the designs proposed above are discussed.

8.1 Choice of Number of Bits—“n”

As seen in Figure 9, the input current to the mixed-mode neuron is assigned an “n” bit digital
value, which was chosen as 3 in the work above. The impact of varying this value was simulated
and is shown in Figure 22. It is seen here that the accuracy starts to plateau for n ≥ 3 and was
80%, 84% and 84.75% for n = 3, n = 4, and n = 5, respectively. Since the increase in accuracy is
not significant beyond n=3, it remains a good choice (to minimize area overhead). Also, it may
be noted that in Reference [42], an accuracy of 83% was reported on the same dataset. Given the
focus on robustness of the system proposed here, the pattern recognition accuracy obtained is on
par with that in the literature.

8.2 Area Overhead and Energy Consumption

To estimate the area overhead of the proposed neuron, its physical design was performed and
the layout area is shown in Table 4. It is seen here that the area of the proposed neuron is lower
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Fig. 22. The dependence of accuracy of the system on “n.”

Table 4. Layout Area Comparison for Neuron Implementations

This Work Integrate-and-Fire Neuron [6, 44]
Layout Area (μm2) 1,393 (65 nm) ∼2,000 (65 nm)

Table 5. Comparison Table for Energy Consumption per Spike of Various Proposed Designs in Literature

Energy (pJ/Spike/Synapse) Synapse condition used Synapse name/type
This work 1.05 250 kΩ–2.5 MΩ Bi-Memristor
This work 2.4 15 kΩ–150 kΩ Bi-Memristor
This work 8.1 2.5 kΩ–12 kΩ Bi-Memristor

[6] 23.07 2 kΩ–10 kΩ with digital spike Twin Memristor
[51] 9.3 1,000 synapses with 1 MΩ each Resistive synapse
[20] 36.7 70 Ω–670 Ω MD synapse
[5] 11–0.1 1 kΩ–1 MΩ SDC memristor

than a corresponding integrate and fire neuron (employed in Reference [6]) implemented in the
same technology [44] with a few picofarads of capacitance. With large crossbars and/or lower
resistance synapses, the input current increases and therefore the capacitance must increase (to
prevent disproportionate accumulation rate), further increasing the neuron’s area. Also, as the
neuron design changes with the device and system, the neuron’s layout can change considerably,
prompting the designer to alter the floorplan of the bigger system. Hence, the proposed design has
the advantage of having a fixed and compact layout area (due to the minimum sized transistors
used in the digital block).

In addition, the energy cost of the proposed design was evaluated in terms of the energy con-
sumed per spike and is shown in Table 5 along with other values presented in literature. It is
seen that the design in this work consumes less energy than most of those presented in the litera-
ture. In this table, it is noteworthy that the integrate and fire neuron of Reference [6], while using
nearly the same synaptic resistance as the device Mem1 here (2.5–12 kΩ) consumed more energy,
demonstrating the energy efficiency of the proposed neuron.

8.3 Other Design Considerations

An advantage of using the constant (within a period) voltage-based spikes is that it is more ro-
bust to noise and is scaling friendly. As the neuromorphic crossbar size increases, the parasitic
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resistance of the column increases. To compensate for this, width of metals in the routing can be
increased. However, this increases the parasitic capacitance of the column (which is in addition to
the capacitance contributed by the devices connected to the column). Hence, exponentially damp-
ening or ramp-based analog spikes introduce the problem of charge-sharing between their spike
generator circuit and the parasitic capacitances, which is eliminated by the constant voltage-based
(coming from a supply) spike used here. Moreover, the WTA scheme used here introduces minimal
overhead per neuron (Figure 14(b)), thus facilitating scaling without overhead concerns.

In addition to being amenable to scaling, the proposed design also helps eliminate sneak paths
in a crossbar configuration by adopting a half-bias scheme. The proposed design here uses a VDD
(positive)-VSS (negative) scheme, where GND is the mid-rail voltage. As explained in Section 4.2,
the neuron’s output (driving the rows) is at GND when it does not spike. Also, the columns are held
at a virtual ground by the neurons’ inputs. Hence, this puts the crossbar at a half-bias condition,
reducing the sneak paths effect.

Therefore, the analysis presented in this work highlights the importance of considering the
non-ideal behavior/properties of contemporary devices at the circuit design level for successful
functioning of neuromorphic systems. The designs presented here and the analysis performed
clearly demonstrate the immunity provided by them against device issues at the system level. Also,
since the circuit parameters such as VDD, VSS, reference voltages, clock frequency, and duty cycle
are tunable on-chip, they allow a systematic approach for the study of STDP. Based on any new
experimental device behavior observed, the above circuits allow adaptation and hence a repetition
of such experiments can be performed systematically without fundamentally altering our designs.
Another important device-level issue is process variations that can impact the device properties.
This issue must be addressed at the system’s learning/operational algorithm level and hence falls
out of scope of this work. In addition, CMOS circuits too suffer from process variations, which
could impact the system. As a future work, the system presented here can be analysed for the
impact of these variations. It may be noted that since the neuron presented here digitizes a range
of input currents into a single value and performs a digital accumulation and comparison, it is
expected to be robust under variations. As an extension of this work, designs presented here with
their circuit level robustness can be used in conjunction with robust learning algorithms on deep
neural networks to demonstrate more complex and robust machine learning tasks.

9 CONCLUSION

This work has demonstrated a device-aware circuit design methodology to mitigate the detrimen-
tal effects of device-level non-ideal behavior such as switching asymmetry, limited resolution, and
endurance. Through efficient circuit design, careful control of STDP behavior has been demon-
strated. Also, a generic neuron design has been proposed that can be used with a wide range of
devices, hence precluding the need for re-design. The proposed designs have been employed to-
gether in a simple (single layer) pattern recognition system with STDP-based learning such that
its performance is directly dependent on the learnt weights and hence on the efficiency of STDP. A
scaling-friendly WTA scheme is also proposed for the system. It is shown that device-level issues
can hamper the system’s learning behavior and its performance. It is also demonstrated how the
proposed designs can mitigate these adverse effects and make the system robust. Also, the area and
energy costs of implementation of the proposed designs are discussed and it is shown that they are
more efficient than those in the literature. These designs are also shown to be amenable to scaling,
thereby indicating their suitability for use in bigger and more complex, yet robust, neuromorphic
systems.
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