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ABSTRACT
Video is becoming a dominant medium for the delivery of educa-
tional material. Despite the widespread use of video for learning,
there is still a lack of understanding about how best to help people
learn in this medium. This study demonstrates the use of ther-
mal camera as compared to traditional self-reported methods for
assessing learners’ cognitive load while watching video lectures
of different styles. We evaluated our approach in a study with 78
university students viewing two variants of short video lectures
on two different topics. To incorporate subjective measures, the
students reported on mental effort, interest, prior knowledge, con-
fidence, and challenge. Moreover, through a physical slider device,
the students could continuously report on their perceived level of
difficulty. Lastly, we used thermal sensor as an additional indicator
of students’ level of difficulty and associated cognitive load. This
was achieved through, continuous real-time monitoring of students
by using a thermal imaging camera. This study aims to address the
following: firstly, to analyze if video styles differ in terms of the
associated cognitive load. Secondly, to assess the effects of cogni-
tive load on learning outcomes; could an increase in the cognitive
load be associated with poorer learning outcomes? Third, to see if
there is a match between students’ perceived difficulty levels and a
biological indicator. The results suggest that thermal imaging could
be an effective tool to assess learners’ cognitive load, and an in-
creased cognitive load could lead to poorer performance. Moreover,
in terms of the lecture styles, the animated video lectures appear
to be a better tool than the text-only lectures (in the content areas
tested here). The results of this study may guide future works on
effective video designs, especially those that consider the cognitive
load.
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1 INTRODUCTION
Digital learning environments are becoming pervasive especially
in the higher education sector as they offer scalability, flexibility
and convenience. Video lectures contribute as the main informa-
tion delivery tool in these environments [26]. They are also often
employed as an important teaching method in traditional, flipped
and blended classrooms [25, 46]. In a recent study, students’ percep-
tion of instructional strategies that use video lectures, was ‘over-
whelmingly positive’. Students in fully online and blended courses
reported that they felt ‘more connected’ to instructors through
the instructor-made videos [41]. Media based content delivery can
positively impact students’ actual and perceived learning [18], con-
tent delivered via this medium is also believed to promote deeper
thought processes, communication and interaction among learn-
ers [14].

Although there is ample evidence that these multimedia tools are
effective for students’ learning, there are no set guidelines or stan-
dard as to how the videos be created [15]. Therefore, the challenge
remains for the researchers to identify the conditions under which
different media are most effective for learning [30]. While, recent
works on multimedia design have found that lecture production
decisions such as length of the lecture, narration and language,
speaking rate of the instructor, presence of instructor’s image and
the instructional design can have a significant impact on students’
engagement and learning experiences [12, 23, 32]; several aspects
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of instructional videos are not adequately investigated yet. In par-
ticular, what are the merits and limitations of different video lecture
designs [8]? How different video designs affect learners’ experi-
ences and outcomes? Can we analyse through digital, physiological
or bio markers when a learner is facing difficulty during a video
lecture? A better understanding of these questions could ultimately
enable the design of instructional videos that can harness learners’
motivation, improve their learning performance and outcomes and
can also meet the needs of individual learners.

Existing research suggests that for an effective design of multime-
dia based videos, learners’ cognitive abilities should be catered for.
Therefore, a first step to achieve this goal requires an indicator of the
cognitive load a student is experiencing. Previous attempts at infer-
ring cognitive load incorporated self-report questionnaires [11, 40].
However, these indicators are subjective and are often collected
under the assumption of constant cognitive load across a learning
activity. Consequently, researchers are now attempting to measure
cognitive load by combining subjective and physiological meth-
ods [24]. Particularly continuous real-time measures (multi-channel
approaches), such as those collected through psycho-physiological
instruments, have the potential to capture the variations in cogni-
tive load throughout the learning session [4]. In this regard, some
researchers suggest that skin temperature (ST) and the galvanic
skin response (GSR) could be associated to the level of task difficul-
ties [13, 34]. However,a major drawback of using such sensors and
measurement techniques is that they often need to be physically
attached to the learners, and therefore are potentially invasive.

With recent advances in psycho-physiological research, thermal
imaging has shown great potential for estimating the cognitive load
people are experiencing by measuring temperature fluctuations
of different facial regions [2, 50]. Unlike traditional physiological
techniques, thermal imaging is uniquely contact-free, making it a
promising tool for ubiquitous computing environments.

However, being contact-free, thermal imaging also poses unique
methodological challenges [42]. For example, data collection in
previous studies has been carried out under highly controlled con-
ditions where participants were asked to restrict their head move-
ments in order to robustly track their facial temperature from de-
fined facial regions (nose and forehead). This high level of physical
restraint has perhaps constrained the adoption of thermal imaging
in educational research.

Therefore, in this paper, we present a complete pipeline for
automatically extracting the facial temperature of different regions
based on computer-vision and image processing techniques. Later,
we demonstrate the effectiveness of this tool in estimating the
cognitive load of the students, while they watched a video lecture.
In particular, through real-time continuous tracking using a thermal
camera, we advance the traditional cognitive load measurement
techniques by following contributions:

(1) Methodological: We demonstrate using information from
visible spectrum images (RGB-images) and applying image-
processing and computer-vision techniques, that we can
reliably and robustly extract facial temperature profiles of
the students without imposing any movement restriction on
them.

(2) Analytical : We demonstrate howmeasures based on thermal
imaging could be related to cognitive load by -

(a) assessing the impact of different instructional designs on
students’ cognitive load

(b) analysing the effects of cognitive load on learning out-
comes of the students

(c) comparing their perceived difficulty with the changes in
their facial temperature

We evaluated our approach in an experiment with 78 students
who watched two short video lectures on two different topics while
continuously being monitored by a thermal camera. Additionally,
the students self-reported their difficulty level throughout the lec-
ture using a physical slider. Later, after watching the lecture, they
were asked to report on their mental effort, challenge, confidence
and interest levels. We aim to see how different video types affect
students’ perceived difficulty levels and physiology based difficulty
levels. We also expect that such fine-grained analysis could reveal
if certain parts of the lecture were more difficult for learners (across
different video forms of the same content). Lastly, we aim to anal-
yse if there is a match between learners’ subjective and physiology
based measures of task based difficulties.

2 THEORETICAL FRAMEWORK
Several competing theories have been forwarded to explain diffi-
culties in the learning process in digital environments. Of these
theories, ’cognitive load theory’ (CLT) and ’cognitive theory of mul-
timedia learning’ (CTML) are the most dominant [28]. Researchers
have used CLT and CTML as tools for describing the ways through
which videosmay assist or hinder students’ learning. Based on these
works, researchers have also suggested some of the key principles
and recommendations for an effective video design [5, 29]. We can
infer from the CTML theory that to improve students’ learning,
retention and to enhance their experience audio-video modalities
should be combined [29].

Similarly, an implication of CLT is that to improve students’
usage of working memory, multimedia should be designed to re-
duce the cognitive load [5]. Based on the CLT theory, cognitive
load can be classified into three categories: intrinsic, extraneous
and germane [44]. Intrinsic load pertains to the learning content;
complex learning material may lead to an increased intrinsic load.
Extraneous load is inherent to the learning activities and their de-
sign. Lastly, the germane load relates to the mental effort associated
with the processing of new information and then its integration
into existing schema. Each type of cognitive load competes for the
limited resources of the working memory; and learning can only
occur when the total load of the three stays within the capacity of
the working memory [22]. An instructional designer should take
the different types of cognitive load into account. They should try
to find a right balance between keeping the learners engaged and
challenged but still within their cognitive capacities [11] which also
aligns with Vygotsky’s zone of proximal development [49].

Previous studies have explored cognitive load in a variety of
ways. Some authors have worked on the optimization of cogni-
tive load and have suggested that the extraneous cognitive load
should be reduced [9, 36, 47]. These works highlighted some of the
non-cognitive factors (such as emotion, fatigue, vigilance) that can
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affect learners’ cognitive resources [6]. Learners’ mental effort is
then defined by taking together the cognitive and non-cognitive
factors [17]. Physiology-based measures are currently being in-
vestigated for monitoring learners’ cognitive load [45]. Examples
include electroencephalography (EEG) [19], heart rate [38], elec-
trodermal activity (EDA) [24] Although these techniques could
provide biological indicators (less susceptible to user manipulation),
these sensors need to be in direct contact with the learners, making
them impractical for most environments [39].

Thermal imaging, however, is a strong candidate for inferring
cognitive load due to its non-invasive physiological approach [2, 10,
50]. Being unobtrusive and small in size, thermal imaging cameras
add sensing capabilities to the environment rather than burden-
ing the user. Moreover, compared to other contact-less approaches,
they are more robust, since temperature signature is more resistant
to conscious manipulation than heart rate or EDA [16]. By mea-
suring temperature fluctuations of different facial regions, these
devices have shown great potential in inferring the physiological
and cognitive states of the users [7]. For example, emotions like
stress, fear, anxiety, startle responses and attention [1, 16, 42] could
be detected by monitoring facial temperature changes. The reason
why this is possible is that human skin temperature is modulated
by ANS (autonomic nervous system) activities, and cognitive and
affective states strongly influence how the blood flows through the
body. For example, when we feel embarrassed, blood flows to our
face, making our cheeks red. Because blood carries heat, it changes
the temperature distribution of the skin, underlying tissues, and
vessels.

However, apart from detecting emotional and affective states,
there are few studies which have utilized this tool for measuring the
mental workload of participants [2]. These studies found that there
is a direct relation between workload and the facial temperature.
Due to the involvement of ANS, increased brain activity correlates
with a surge in blood supply. Tasks that require higher workload
result in blood flowing from the adjacent facial areas to the brain
leading to a detectable variation in facial temperature. Therefore,
monitoring changes in different facial regions can provide insight
into the changes in cognitive load. We particularly build upon
previous work that inferred cognitive load based on the temperature
variations in the forehead and nose regions [2]. We focused on
these two facial regions, as they can be monitored even if the user
is wearing glasses.

Another constraint, in the existing studies on mental effort is
that cognitive load was induced artificially using an experimental
manipulation [2]. The changes in facial temperature were measured
while subjects completed tasks that were high in cognitive demand
(such as a Stoop Test). Therefore, the feasibility of thermal imaging
in real-educational scenarios (where cognitive load is not constant
and may arise in episodes) still remains an open question. We aim
to explore the usefulness of thermal imaging in educational domain.
Further, there is little advice on how to analyze such continuous data
in order to obtain actionable insights regarding the instructional
and production designs of videos.

Therefore in this paper, through real time continuous tracking,
we aim to answer the following research questions:

RQ1 : (a) Using thermal imaging, can we assess the impact of dif-
ferent instructional designs on the mental effort expended
by students? (b) Can we analyse, through a thermal camera
how (the learning processes or) the video content experience
differ between the high and low achieving students?

RQ2 : Using an interactive sliding scale and a thermal camera can
we analyse learners’ perceived and biological responses to
task difficulty and what is the relationship between these
indicators?

3 STUDY SETUP AND PROCEDURE
Our analysis is based on the dataset collected in our prior study [43].
In our original study, we did not analyse the thermal data, restricting
our scope to the analysis of the slider data. In this paper, we extend
our previous work by also analysing the thermal imaging dataset.
In this section, we briefly describe the dataset and its collection
procedure.

3.1 Participants
Participants were 100 university students, aged between 18 and
42 ((Mean = 25.04, SD = 4.66). There were 52 females and 48 male.
Based on their education level, 38 were undergraduate, 30 were mas-
ters and the remaining 32 were PhD students. Based on students’
background and the learning material, 21 had previous knowledge
about neuroscience only, 35 had previous knowledge about binary
numbers only, and 22 had previous knowledge of both the topics.
The experiment required 1 hour per participant and it was con-
ducted in a lab-setting.All the participants were rewarded with a
gift card for their time and contribution.

3.2 Video Lectures
In selecting our video material, we drew from the literature on
educational psychology by reusing four video lectures designed
to evaluate instructional design techniques [27, 48]. For our study,
we selected two lecture topics - neuroscience (explaining the basic
working of neurons in the human brain) and binary numbers (focus-
ing on binary-number conversion, addition and 2’s complement).
We deliberately chose these two topics to have a diverse range of
contents to counter the prior knowledge effect. Additionally, we
selected the lectures, where these topics where presented in two
different conditions -

(1) Text-based : The lectures in this condition employed voice-
over production style,i.e. synchronized recording of slide-
ware with instructor’s voice. The neuroscience lecture con-
tained slides with only text, no illustration, whereas binary
lecture contained slides with equations.

(2) Animation-based : The lectures in this condition were pre-
sented using graphics and illustrations. For example, the
neuroscience lecture contained the following: slides, anno-
tated images and instructor’s voice-over. On the other hand,
the binary lecture used a digital ink style, where the lecture
contained the same slides as the text version, but with addi-
tional examples recorded with digital pen. Moreover, before
each example, there was also a Socratic dialogue between
the instructor and a novice.
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To summarise, all the participants were presented with two
variants of short video lectures on the topics of neuroscience and
binary numbers. The neuroscience lecture consisted of two different
slides used to explain the same topic - one using animated video
and the other through bullet point slides with no pictures. Whereas
in the binary video lecture, the same slides were used in both the
versions, however they differed in terms of their presentation styles
(see Figure 1). All lectures were manually transcribed and annotated
using Anvil1.

3.3 Measurement instruments
3.3.1 Subjective measurements. We collected two types of subjec-
tive measures in our experiment – survey-based and slider-based.

Survey-based : The participants were asked to fill out a feedback
questionnaire at the end of the video. These questions have been
designed to reflect standard student evaluation instruments typi-
cally used in universities. The questionnaire consisted of following
items:

• Prior knowledge: We asked the participants “have they
ever studied or been exposed to [neuroscience principles or
binary numbers] before?”

• Mental-effort: We asked the participants to rate “howmuch
mental effort [they invested] while watching the lecture” on
a 10-point bipolar scale ranging from “Not much” (1) to
“Very”(10).

• Challenge, Confidence and Interest: For each item, we
asked the participants to rate the lecture in terms of ‘chal-
lenge’, ‘confidence’ and ‘interest’ on a 10-point bipolar scale.

• Lecture-style: Participants were also asked to rate the lec-
ture according to following five factors on a Likert agreement
scale ranging from “Strongly disagree”(1) to “Neutral (3)” to
“Strongly agree”(5):
(1) Organization: “The video was well-organized”
(2) Clarity : “The video was clear”
(3) Engagement: “The video engaged me in learning”
(4) Helped to Learn: “The teaching in this video helped me

learn”
(5) Satisfaction: “Overall, I am satisfied with video”

In addition, before and after watching each video lecture, partici-
pants were asked to report their Judgement of Learning (JOLs). For
1http://www.anvil-software.org/
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Figure 1: Sample frames from each version of the lectures.
Both versions of the neuroscience lecture had the same au-
dio track. The binary lecture combined slides and digital ink,
and had different audio tracks.

example, before watching the binary lecture theywere asked - “How
confident you are now that you can correctly answer questions
about the binary conversion, binary addition and two’s comple-
ment (0 being not confident, 100 being very confident)”. The same
question was asked again after they watched the lecture. In the
educational psychology literature, these ratings have important
implications for understanding how people learn and use mem-
ory [27, 48].

Slider-based: To capture continuous subjective reactions of partic-
ipants in real-time, we asked our participants to rate the difficulty
throughout the lecture using a physical slider. The slider was one of
the faders available in the Numark Mixtrack PRO Midi Controller,
which outputs a number between 0 and 127 (see Figure 2).

The survey-based self-reported mental effort and slider-based
difficulty served as the ”ground truth“ for measuring the cognitive
load of the students.

Slider

Thermal 
cam

Webcam

Eye 
tracker

  

Control
Station

Figure 2: Experimental setup used during the study. It con-
sists of a thermal camera, web-camera, eye-tracker and a
slider.

3.3.2 Physiological measurements. We used an Optris PI-400 2 ther-
mal camera to record participants’ facial temperature while they
were watching the video lectures. Being equipped with a frame rate
of 80 Hz and an optical resolution of 382 x 288 pixels, these small
cameras can capture real-time thermographic images in high speed
unobtrusively (see Figure 2). These cameras operate with a thermal
sensitivity of 0.04◦C and can measure temperatures between −20◦C
and 900◦C.

As this study sits within a wider research project about develop-
ing adaptive e-learning tools that respond to changes in biometric
signals, we also recorded participants’ facial expressions with a
Logitech webcam, their eye movements with a Tobii Pro X2-30
eye-tracker. However, for the purpose of this paper, our focus is
limited to facial temperature analysis.

3.3.3 Pre-test and Post-test scores. To test the prior knowledge
and lecture understanding of the participants, they were asked to
complete two separate tests: one before and one after the lecture.
The tests were also drawn from the same previous work as the
lectures [27]. Each test contained 9 multiple choice questions with
4 answers and one "I don’t know" (IDK) option. To counteract
correct answers from random guesses, we instructed participants
to select IDK if they were not sure which was the right answer. The
2https://www.optris.global/thermal-imager-optris-pi400-pi450
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Figure 3: Proposed facial temperature extraction pipeline shown for one of the participant (P19). It consists of four steps-(1)
The thermal and RGB images are acquired. (2) [2a.] A homography matrix H is calculated using Thermal-RGB stereo cal-
ibration. [2b.] Facial landmarks are detected on RGB image, and mapped directly on thermal image by applying the same
homography matrix H. (3) Two regions of interest (ROI)–forehead and and nose are defined. (4) Temperature signals are ex-
tracted from each ROIs, pre-processed and used for analysis.

tests were marked by awarding one point for each correct answer,
while the incorrect, unselected or IDK options received zero points.

3.4 Study Procedure
Upon arrival, participants were asked to read a plain language state-
ment describing the purpose of the study and the procedure, to sign
a consent form and to fill in a short demographics questionnaire
asking about their age, gender, department and degree of study at
the university. We then calibrated the eye tracker using the manu-
facturer’s default 9-point procedure. We also verbally explained the
purpose of the experiment and how the participants should operate
the slider during the experiment. The experimenter was present
in the same room during the course of the whole experiment, but
outside the field-of-view of the participant.

The procedure was split into two learning tasks, where each task
corresponded to each of the lecture topics (neuroscience and binary).
For each learning task, participants first completed the pre-test with
9 multiple-choice questions and rated their confidence-level about
the lecture topic (JOLs). Then, participants watched the correspond-
ing video lecture without pausing, rewinding or note-taking. While
they watched the lecture, they continuously rated the difficulty
level of the lecture using the slider. After the lecture, participants
were first asked to fill out the questionnaire asking them about
their engagement and opinion of each lecture. Then they answered
a post-test questionnaire which assessed their retention and under-
standing of the material. The same procedure was then repeated
for the second topic. Throughout the procedure, we recorded their
facial temperature using an unobtrusive thermal camera, and also
recorded their eye-movements and facial expressions.

To summarise, all the participants viewed one lecture in one style
condition and then viewed the other in the other style condition.
For example, if the first lecture was the animated version of the
neuroscience lecture, then the second lecture was the text version
of the binary lecture. The order of the topics and the videos styles
were counter-balanced between participants. The complete session
lasted approximately 60 minutes.

4 FACIAL TEMPERATURE EXTRACTION
AND ANALYSIS

A block diagram of the employed feature extraction framework
is displayed in Figure 3. In each extracted thermal image frames,
68-facial landmarks were detected by using a two-step framework
which combined the techniques from image processing and computer-
vision (Section 4.2). Next, for each participant, we defined two re-
gions of interest (ROI)–center of the forehead and tip of the nose
(Section 4.3). Finally, the mean temperature in each of the ROIs was
extracted from each frame, and these two temperature time series,
after pre-processing, were used to assess the cognitive load of the
participants.

4.1 Data Acquisition
For extracting the thermal facial landmarks, we utilized the infor-
mation from visible spectrum images (RGB). For our data collection,
we built an application in C#, which can collect data from all the
sensors simultaneously and in real-time Next, we used the thermal
and RGB images of each participant to extract the facial landmarks.
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4.2 Facial Landmark Detection
To investigate the effects of lecture difficulty on participants’ facial
temperature, accurate identification of facial landmarks in thermal
images was important. However, detecting these facial regions in
thermal images is a challenging task for several reasons. Firstly, the
traditional facial landmark detection techniques which are trained
on RGB images fail to work for thermal images as these images lack
the details present in the visible spectrum. Secondly, most previous
research involved acquiring data under highly controlled conditions
where participants were asked to restrict their head movements in
order to robustly track their facial temperature from defined regions
of interest (ROIs). We believe, a computer-assisted learning scenario
should not impose such restrictions on the participants. Therefore,
we propose to use a two-step feature extraction pipeline, using
the techniques from image processing (i.e. stereo calibration based
approach), and computer-vision (68-facial landmarks detection).

4.2.1 Thermal-RGB Stereo Calibration. Before each participant’s
recording, we performed a small calibration step. The step involved
capturing pictures from multiple angles within the focus region
of the cameras holding a masked checkerboard (a checkerboard
whose white colored regions are masked out) on top of the body
(as shown in Figure 3). As heat is generated from our body, both
the thermal and RGB checkerboard images looked similar in the
visible domain. We calculated the corresponding points in both the
images by detecting the checkerboard corners using MATLAB’s
Stereo Camera Calibrator App 3. The software returned the list of
corresponding detected points in both the images.

4.2.2 Landmark Detection. The corresponding points detected in
both the images were used to construct a 3x3 homography matrix.
Next, we detected the facial landmarks on the RGB images using
deep-learning based open source free library (OpenFace [3]) and
later applied the homograhy matrix on the detected landmarks, to
map the corresponding facial points on the thermal image.

4.3 Identifying the Facial Regions
Temperature changes in different facial areas such as tip of the nose,
centre of the forehead have been shown to be linked to changes
in mental workload [2]. Therefore, we considered only these two
important facial regions for our analysis. The midpoint between
the two medial eyebrow landmarks was used to define the forehead
region, while the center of the nose landmark was used as the nasal
region. Instead of considering a single temperature point, a radius
of 3-pixels was considered to define a region. Figure 3 illustrates
the location of these ROIs.

4.4 Facial Temperature extraction
For extracting the temperature profiles, we followed a protocol used
in previous research [42]. First, the mean temperature across all pix-
els in two ROIs—forehead and nose was calculated per each thermal
frame. There were few frames where participants’ faces were not
detected or detected with lesser confidence (Confidence<95%), tem-
perature values corresponding to the ROIs of previous frames were
then used. Next, each time series was corrected for outliers using

3https://au.mathworks.com/help/vision/ug/stereo-camera-calibrator-app.html

mean-value imputation method. To reduce the heteroscedasticity 4

effect, we log-transformed the signals for each participant. Finally,
the resulting signal values were subtracted from the mean-baseline
to reduce the inter-subject variability. We used the first 10 seconds
on the experiment as the baseline condition of each participant.

Landmarks could not be reliably and accurately estimated for 12
participants. Further, we discarded 7 participants thermal data as
there forehead was not visible either because of their hairstyle (6) or
because of wearing a cap (1). Moreover, we found that 3 participants’
landmark estimation was lost at critical points during the lecture,
so we discarded them as well. Overall, this study analysis thermal
data of 78 participants.

5 RESULTS AND DISCUSSION
Consistent with existing works [20, 33], we adopted an ‘iterative’
analytics approach where the analysis is presented at different
levels of granularity: (a) lecture design level (b) group level and (c)
individual level (Figure 4). At the lecture design level, the effects
of different video styles on students’ mental effort were analysed
using a thermal camera. Next, at the group level, a comparison of
the high and low achieving student groups is presented in terms of
their learning processes and experiences with particular video style.
Lastly, we analysed how an individual’s subjective experence and
physiology based experience varies while watching video lectures.
This deeper analysis is conducted on the neuroscience video only,
as the participants found its contents to be more difficult.

Figure 4: Study Dimensions. As shown, we conducted anal-
ysis at three different levels of granularity—lecture-level,
group level and individual level.

In the following sections, we have focused on two Region of
Interests (ROIs)—forehead (center of the forehead) and nose (tip of
the nose). Also, we define the term “Change in Temperature” as
the difference between the absolute values of the temperature in
these ROIs and the mean temperature of the first 10s of the lecture.
We represent it in terms of percentage.

4Heteroscedasticity refers to the condition in which the variability of a variable is
unequal across the range of values of a second variable that predicts it
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Figure 5: Effect of different instructional designs on (a) forehead and (b) nose temperature. Time is indicated on x-axis, and
average change in temperature(%) on y-axis. The highlighted regions refers to the time where the forehead temperature in the
text-group showed a decreasing trend, while animated-group had an increasing trend. Shading indicates non-filtered signals.

5.1 Lecture-design level analysis: Effect of
instructional design

To begin our analysis, we divided the participants into two sub-
groups (1) participants who watched the animated version of the
lecture (n = 43), and (2) participants who viewed the text version
of the same lecture (n = 35). Next, we examined the changes in
facial temperature in the two ROIs—forehead and nose for the two
groups. For the neuroscience video, the audio track was the same
in both versions, only the visual content differed. This allowed us
to perform time-frame by time-frame comparison of the responses
to the videos – text version with the animated version. Figure 5
shows the temperature changes in the forehead and nose region
averaged across all the participants.

This comparison allowed us to identify interesting points about
the lectures. First, we see that the nose temperature for both the
groups starts to converge at t = 246s . However, before that time, we
can observe that the group watching the text-based version of the
lecture had lower nose-temperature than the group watching the
animation-lecture. Upon inspection of the video material, we found
that during the first 4 minutes of the lecture, the participants in the
text-based were presented with slides containing the definition for

all the terms such as Axon, Axon Hillock, Myelin Sheath, Nodes of
Ranvier , whereas the animated version of the video presented one
concept at a time. In line with previous research, the decrease in
nose temperature here could be an indicator of higher cognitive
load [2].

Second, we could observe similar changes in the forehead tem-
perature of the two groups. The participants who watched the
text-based lecture showed higher temperature changes than the
participants watching the animated version of the lecture. Again,
previous research suggests that an increase in forehead temperature
here could also indicate higher cognitive load [2]. However, we can
also notice there are two regions in the time-series signals, where
text-version showed a relative decreasing trend in temperature
while the animated-version showed an increasing trend. Through
visual inspection of the lecture, we found that at t = 74s , the text-
based lecture has all the terms present in a single slide, whereas the
animated version contained moving annotated images. Similarly,
the segment starting at t = 520s , which corresponded to the part
where ions flowed through synapses, we can observe this trend.
After the lecture, participants reported that it was difficult for them
to focus on the audio of the lecture with the moving ions. We can

Table 1: Statistical analysis results after comparing neuroscience text-based and animation-based lectures, ***p < 0.001

Text-based Lecture
n = 35

Animation-based Lecture
n = 43

M SD M SD T - stat p value Effect size
Self-reported Measures [1-10]

Mental Effort 7.54 1.93 6.77 2.02 -1.73 0.09 -0.39
Challenge 6.77 2.16 6.14 2.28 -1.25 0.21 -0.28

Confidence 5.66 2.47 6.35 2.09 1.32 0.19 0.30
Post score 4.23 2.25 5.00 2.26 1.50 0.14 0.34

Facial Temperature Changes [%]
Mean Forehead Temperature 0.47 0.26 0.14 0.12 -30.32 0.000*** -1.61

Mean Nose Temperature -0.03 0.30 0.12 0.32 9.15 0.000*** 0.49
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also, see a decrease in the nose-temperature for these intervals in
the nose-temperature time-series signals, although the differences
are quite small. These physiological responses could be indicating
that during these segments in the lecture, participants preferred
the text version more compared to the animated version.

We also performed a statistical comparison (Welch two sam-
ple t-test) on the facial temperature changes. Consistent with the
previous work around cognitive load [31] and cognitive theory
of multimedia learning [35, 37], we found that, when participants
were exposed to text-based lectures, their forehead temperature
was significantly higher and nose temperature was significantly
lower than the animation-based lectures (Table 1).

Further, to interpret these differences, we evaluated participants’
subjective experiences about the two lecture designs. We com-
pared their perceived difficulty (mental-effort), their confidence
and challenge levels and their post-test scores in both conditions.
We found that participants who viewed the text-based lectures re-
ported higher mental effort, higher challenge, lower confidence and
achieved poorer learning outcomes compared to the participants
who watched the animation-based lecture, although the differences
were not significant (p-value>0.05, effect size<0.5) (see Table 1).

5.2 Group level analysis: High-achievers vs
Low-achievers

To understand the impact of cognitive load on learning outcomes,
we divided the participants into two sub-groups: high-achieving
and low-achieving. We used the mean post-test score of all the
participants as the cut-off point. Following, we present the analysis
for the neuroscience text-based lecture.We chose this lecture, as this
was the most-difficult lecture (Mental-Effort:mean = 7.54, SD =
1.93) among all, and therefore, could help us understand the effects
of difficulty on facial temperature.

Out of 35 participants, 16 participants scored higher marks in
the post-test, while the remaining 19 participants scored lower
marks. The self-report measures for mental-effort, challenge and
confidence for both the groups are presented in Table 2. We found
that high-achieving group reported significantly higher confidence
(Cohen′s d = −1.70), than the low-achieving group. This group
also reported less mental-effort and challenge levels, however, the
difference was not significant.

Comparing these changes with the facial temperature changes,
we found that the high-achieving group showed less variation in
their forehead temperature (M = −0.14%, SD = 0.08%). The partici-
pants in this group seem to have a constant temperature relative
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Figure 6: Forehead and Nose temperature of high-achieving
and low-achieving groups. Time is indicated on x-axis,
and average change in temperature(%) on y-axis. The high-
lighted regions refers to the time where the forehead tem-
perature for the low-achieving group showed a decreasing
trend. Shading indicates non-filtered signals.

to the participants in the low-achieving group (M = 0.81%, SD =
0.43%).We found that the forehead temperature of the low-achieving
group increased until t = 425s and then started to decrease. Tem-
perature further increased only at t = 475s . A visual inspection of
the video lecture then revealed that around these two time stamps
the lecture-slide contents and audio were not well-synchronised.
The words spoken by the instructor were not present on the slides.
This mismatch in audio and video channels could have resulted
in higher difficulty levels for the participants – as apparent by an
increase in their nose temperature around the same time stamp
(Figure 6).

5.3 Individual level analysis: Comparison
between perceived difficulty and changes in
facial temperature

As mentioned, in this study the participants could report on the per-
ceived difficulty of the video lecture, in real-time using a physical
slider. The usage of thermal camera then allowed us to continu-
ously monitor the physiological changes related to difficulty. We
compared how individuals’ perception about the lecture differs
from their physiological measurements. It was noticed that some
participants forgot to move the slider during certain sections of
the lecture, which made it difficult to present a statistical view-
point for the above analysis. Therefore, we present here a case
study for one participant watching the text version of the neuro-
science lecture - P58 (Figure 7). The participant aged 22 is a male

Table 2: Statistical analysis results after comparing high-achieving students and low-achieving students groups, ***p < 0.001

High-Achieving Group
n = 16

Low-Achieving Group
n = 19

M SD M SD T - stat p value Effect size
Self-reported Measures [1-10]

Mental Effort 7.50 2.10 7.58 1.83 -0.12 0.91 0.04
Challenge 6.19 2.29 7.26 1.97 -1.48 0.15 0.50

Confidence 7.38 1.54 4.21 2.17 5.02 0.000*** -1.70
Facial Temperature Changes [%]

Mean Forehead Temperature -0.14 0.08 0.88 0.44 -61.32 0.000*** 3.26
Mean Nose Temperature -0.15 0.40 0.05 0.23 -11.89 0.000*** 0.63
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undergraduate Commerce student, with no knowledge about the
neuroscience topic. His subjective measures for confidence, chal-
lenge and mental-effort and interest are 2, 9, 9 and 2 respectively.
Of the total achievable score of 9, the participant’s pre-test score
was zero, and post-test score was 4. These measures indicate he is
low in confidence, less interested in the lecture but invested high
mental-effort while watching the lecture. Although he found the
lecture challenging, he showed an improvement of 44.4% in the
post-test.
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Figure 7: Changes in forehead temperature and perceived
difficulty values for participant (P58) throughout the lec-
ture.

When comparing his absolute slider ratings with the absolute
values of forehead temperature, we found that the perceived dif-
ficulty of the lecture correlated with the changes in participant’s
forehead region (Pearson − correlation = 0.23). Although there
will be some latency between the slider-movement and forehead
temperature change, the focus of this analysis is to understand the
trend, not the absolute values.

We found that, consistent with increasing difficulty ratings for
the slider, the forehead temperature increased. However, at one
particular instance, we can start to observe a decrease in partic-
ipant’s forehead temperature. We believe this might be an indi-
cation of increasing task difficulty. We can refer to this point as
the “point of deviation”. We noticed that slider-ratings and tempera-
ture values positively correlated before this point(cross-correlation
= 0.71 ± 0.017), and negatively correlated after this point(cross-
correlation = −0.18±0.042), considering a maximum of 10s lag. This
probably suggests a clear shift in their attitude to the learning task,
i.e. they are getting frustrated or feel like giving up. [21]

To summarise, when the related works indicated a higher cogni-
tive load by an increase in the forehead temperature and a decrease
in the nose temperature, their hypothesis was based on experi-
ments where participants completed high cognitive-demand tasks
(e.g. Stroop tests). In our analysis, we tested the same hypothesis
but in a more naturalistic task. As the task was not deliberately de-
signed to elicit high cognitive load, we didn’t observe a similar trend
throughout the experiment. However, during the difficult parts of
the lecture (as determined by the average slider-based difficulty
ratings [43]), our results matched with the existing studies.

5.4 Limitations & Future Work
This study did not incorporate participants’ interaction patterns
since in the lab environment they were not permitted to rewind,
pause or replay the videos. The authors understand that such ’trace
data’ could provide meaningful interactions especially those re-
lated to learning behaviours and processes. However, the main
focus of this study was the usage of physiological sensors towards
understanding students’ mental effort. This trace data could be
incorporated into future study designs.

Another possible future direction could be to explore why we ob-
served certain peaks and troughs in the facial temperature signals.
For example, a decrease in forehead temperature or an increase in
nose temperature (lower cognitive load) could indicate two conflict-
ing factors: the participants might have found the lecture content
easy to understand, or they might have disengaged from the task.

We believe video-stimulated recall or physiological responses
from other sensors (e.g. eye-trackers) could help us address these
questions and complement our quantitative findings.

6 CONCLUSIONS
In this paper, we demonstrated that thermal imaging is a promising
tool to assess learners’ cognitive load. This work has two major
contributions: first, we provided a complete pipeline for facial tem-
perature extraction. Second, this work provides advice on how to
analyse continuous data for obtaining insights about video lecture
designs. We believe that our work could guide future studies to-
wards reliable and efficient extraction of facial temperature, which
thus far had limited adoption in educational research.

While the findings of this study do not depart from previous
research in educational technology, our results reaffirm the pre-
vious findings on learning from multimedia and add additional
support in the form of psycho-physiological data. Furthermore,
we have demonstrated that these principles can be seen in simu-
lated real world learning environments without the use of invasive
instruments.
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