skip to main content
10.1145/3362789.3362874acmotherconferencesArticle/Chapter ViewAbstractPublication PagesteemConference Proceedingsconference-collections
research-article

Learning computational thinking and social skills development in young children through problem solving with educational robotics

Published:16 October 2019Publication History

ABSTRACT

The technological advance that is currently evident in the different social contexts is contributing to consolidate educational processes that allow the strengthening of technological and social skills in students. This paper presents some results obtained in the development of a learning experience in computational thinking and social interaction skills, using problem solving activities and educational robotics in a playful way. The experience involved 46 students and 2 teachers of the first level of primary education of a concerted school in Salamanca, Spain, during the period 2017-2018. A rubric and checklists were used as data collection instruments. The results show a significant advance in the computational thinking and social development skills explored.

References

  1. Karampinis, T. (2018). Robotics-based learning interventions and experiences from our implementations in the RobESL framework. International Journal of Smart Education and Urban Society, 9(1), 13--24. https://doi.org/cxnt.Google ScholarGoogle ScholarCross RefCross Ref
  2. Di Lieto, M. C., Inguaggiato, E., Castro, E., Cecchi, F., Cioni, G., Dell'Omo, M., ... & Dario, P. (2017). Educational Robotics intervention on Executive Functions in preschool children: A pilot study. Computers in Human Behavior, 71, 16--23. https://doi.org/10.1016/j.chb.2017.01.018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2016). Developing fundamental programming concepts and computational thinking with ScratchJr in preschool education: a case study. International Journal of Mobile Learning and Organization, 10(3), 187. https://doi.org/10.1504/ijmlo.2016.077867).Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Sullivan, A., & Bers, M. U. (2016). Robotics in the early childhood classroom: learning outcomes from an 8-week robotics curriculum in pre-kindergarten through second grade. International Journal of Technology and Design Education, 26(1), 3--20. https://doi.org/10.1007/s10798-015-9304-5.Google ScholarGoogle ScholarCross RefCross Ref
  5. Sánchez, F. Á. B., y Guzmán, A. F. (2012). La robótica como un recurso para facilitar el aprendizaje y desarrollo de competencias generales. Education in the Knowledge Society, 13(2), 120--136. Recuperado a partir de http://revistas.usal.es/index.php/revistatesi/article/view/9002.Google ScholarGoogle Scholar
  6. García-Peñalvo, F. J., & Mendes, A. J. (2018). Exploring the computational thinking effects in pre-university education. Computers in Human Behavior, 80, pp. 407--411. https://doi.org/10.1016/j.chb.2017.12.005.Google ScholarGoogle ScholarCross RefCross Ref
  7. Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33--35. https://bit.ly/2ASUK9Q.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research Association (AERA) (pp. 1--25), Vancouver, Canada.Google ScholarGoogle Scholar
  9. Bers, M. U. (2017). The Seymour test: Powerful ideas in early childhood education. International Journal of Child-Computer Interaction, 14, pp. 10--14. https://doi.org/10.1016/j.ijcci.2017.06.004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bers, M. U. (2012). Designing Digital Experiences for Positive Youth Development: From Playpen to Playground, Oxford, Cary, NC.Google ScholarGoogle ScholarCross RefCross Ref
  11. Grover, S. y Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the Field. Educational Researcher, 42(1), 38--43. http://doi.org/10.3102/0013189X12463051.Google ScholarGoogle ScholarCross RefCross Ref
  12. Zapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital. RED, 46, 1--47. https://doi.org/10.6018/red/45/4Google ScholarGoogle Scholar
  13. F. J. García-Peñalvo and J. A. Mendes, "Exploring the computational thinking effects in pre-university education". Computers in Human Behavior, vol. 80, pp. 407--411, 2018.Google ScholarGoogle Scholar
  14. Zapata-Ros, M. (2019). Pensamiento computacional desconectado. Computational thinking unplugged. (Preprint). https://doi.org/10.13140/RG.2.2.12945.48481.Google ScholarGoogle Scholar
  15. Leidl, K. D., Bers, M. U. y Mihm, C. (2017). Programming with ScratchJr: a review of the first year of user analytics. En S. C. Kong, J. Sheldon y K. Y. Li (Eds.), Conference Proceedings of International Conference on Computational Thinking Education 2017 (pp. 116--121). Hong Kong: The Education University of Hong Kong.Google ScholarGoogle Scholar
  16. Sullivan, A., Strawhacker, A. y Bers, M. U. (2017). Dancing, Drawing, and Dramatic Robots: Integrating Robotics and the Arts to Teach Foundational STEAM Concepts to Young Children. En M. S. Khine (Ed.), Robotics in STEM Education: Redesigning the Learning Experience (pp. 231--260). Springer International Publishing. http://doi.org/10.1007/978-3-319-57786-9_10.Google ScholarGoogle Scholar
  17. Szurmak, J., & Mindy, T. (2013). Tell me a story: The use of narrative as a tool for instruction. In Imagine, Innovate, Inspire: The Proceedings of the ACRL 2013 Conference (pp. 546--552). Indianapolis, IN, USA:ACRL.Google ScholarGoogle Scholar
  18. Berrocoso, J., Sánchez, M., & Arroyo, M. (2015). El pensamiento computacional y las nuevas ecologías del aprendizaje. Red, 46, 1--18. https://doi.org/10.6018/red/46/3.Google ScholarGoogle Scholar
  19. Campbell, D., & Stanley, J. (1993). Diseños experimentales y cuasiexperimentales en la investigación social. Buenos Aires: Amorrortu.Google ScholarGoogle Scholar
  20. Chiara, M., Lieto, D., Inguaggiato, E., Castro, E., Cecchi, F., Cioni, G., ... Dario, P. (2017). Educational Robotics intervention on Executive Functions in preschool children: A pilot study. Computers in Human Behavior, 71, 16--23. https://doi.org/10.1016/j.chb.2017.01.018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. García-Valcárcel, A. & Caballero-González, Y. (2019). Robotics to develop computational thinking in early Childhood Education. Comunicar, 59, 63--72. https://doi.org/10.3916/C59-2019-06.Google ScholarGoogle ScholarCross RefCross Ref
  22. Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers and Education, 72, 145--157. https://doi.org/10.1016/j.compedu.2013.10.020Google ScholarGoogle ScholarCross RefCross Ref
  23. Strawhacker, A. & Bers, M. U. (2018). Promoting Positive Technological Development in a Kindergarten Makerspace: A Qualitative Case Study. European Journal of STEM Education, 3(3), 09. https://doi.org/10.20897/ejsteme/3869Google ScholarGoogle ScholarCross RefCross Ref
  24. Kazakoff, E., & Bers, M. (2012). Programming in a robotics context in the kindergarten classroom: The impact on sequencing skills. Journal of Educational Multimedia and Hypermedia, 21(4), 371--391.Google ScholarGoogle Scholar
  25. Misirli, A., & Komis, V. (2014). Robotics and programming concepts in Early Childhood Education: a conceptual framework for designing educational scenarios. In Research on e-Learning and ICT in Education (pp. 99--118). Springer, New York, NY.Google ScholarGoogle ScholarCross RefCross Ref
  26. Sullivan, A., Elkin, M., & Bers, M. U. (2015, June). KIBO robot demo: engaging young children in programming and engineering. In Proceedings of the 14th international conference on interaction design and children (pp. 418--421). ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sullivan, A. A., Bers, M. U., & Mihm, C. (2017). Imagining, Playing, and Coding with KIBO: Using Robotics to Foster Computational Thinking in Young Children. Siu-cheung KONG The Education University of Hong Kong, Hong Kong, 110.Google ScholarGoogle Scholar
  28. Chalmers, C. (2018). International Journal of Child-Computer Interaction Robotics and computational thinking in primary school. International Journal of Child-Computer Interaction, 17, 93--100. https://doi.org/10.1016/j.ijcci.2018.06.005.Google ScholarGoogle ScholarCross RefCross Ref
  29. F. J. García-Peñalvo, M. S. Ramírez-Montoya, and A. García-Holgado. 2017. TEEM 2017 Doctoral Consortium Track. In Fifth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM'17) (Cádiz, Spain, October 18--20, 2017) J.M. Dodero, M.S. Ibarra Sáiz and I. Ruiz Rube Eds. ACM, New York, NY, USA, Article 93. https://doi.org/10.1145/3144826.3145440.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. F. J. García-Peñalvo. 2014. Formación en la sociedad del conocimiento, un programa de doctorado con una perspectiva interdisciplinar. Education in the Knowledge Society 15, 1, 4--9.Google ScholarGoogle ScholarCross RefCross Ref
  31. FJ García-Peñalvo. 2015. Las contribuciones de ingeniería para una perspectiva multicultural sociedad del conocimiento. IEEE Revista Iberoamericana de Tecnologías del Aprendizaje (IEEE RITA) 10, 1, 17--18. http://doi.org/10.1109/RITA.2015.2391371.Google ScholarGoogle Scholar

Index Terms

  1. Learning computational thinking and social skills development in young children through problem solving with educational robotics

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            TEEM'19: Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality
            October 2019
            1085 pages
            ISBN:9781450371919
            DOI:10.1145/3362789

            Copyright © 2019 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 16 October 2019

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited

            Acceptance Rates

            Overall Acceptance Rate496of705submissions,70%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader