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Abstract

To build AI-based systems that users and the public can justifiably
trust one needs to understand how machine learning technologies impact
trust put in these services. To guide technology developments, this pa-
per provides a systematic approach to relate social science concepts of
trust with the technologies used in AI-based services and products. We
conceive trust as discussed in the ABI (Ability, Benevolence, Integrity)
framework and use a recently proposed mapping of ABI on qualities of
technologies. We consider four categories of machine learning technolo-
gies, namely these for Fairness, Explainability, Auditability and Safety
(FEAS) and discuss if and how these possess the required qualities. Trust
can be impacted throughout the life cycle of AI-based systems, and we
introduce the concept of Chain of Trust to discuss technological needs for
trust in different stages of the life cycle. FEAS has obvious relations with
known frameworks and therefore we relate FEAS to a variety of interna-
tional Principled AI policy and technology frameworks that have emerged
in recent years.

Index terms— trust, trustworthiness, machine learning, artificial intelli-
gence

1 Introduction

With growing interest in ethical dimensions of AI and machine learning has come
a focus on ways of ensuring trustworthiness of current and future practices (e.g.
European Commission 2019, IBM n.d.). The current emphasis on this area
reflects recognition that maintaining trust in AI may be critical for ensuring
acceptance and successful adoption of AI-driven services and products [81, 67].
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This has implications for the many AI-based services and products that are
increasingly entering the market. How trust is established, maintained or eroded
depends on a number of factors including an individual’s or group’s interaction
with others, data, environments, services, products and factors, which combine
to shape an individual’s perception of trustworthiness or otherwise. Perceptions
of trustworthiness impact on AI and consequently, influence a person’s decision
and behaviour associated with the service or product. In this paper, we research
the connection between trust and machine learning technologies in a systematic
manner. The aim is to identify how technologies impact and relate to trust,
and, specifically, identify trust-enabling machine learning technologies. AI and
machine learning approaches are trustworthy if they have properties that one is
justified to place trust in them (see [7] for this manner of phrasing).

In the context of the FAT* conference, it is important to highlight the differ-
ence between studying trust in AI and studying ethics of AI (and data science).
Trustworthy AI is related to normative statements on the qualities of the tech-
nology and typically necessitates ethical approaches, while trust is a response
to the technologies developed or the processes through which they were devel-
oped (and may not necessarily - or entirely - depend on ethical considerations).
Ethical considerations behind the design or deployment of an AI-based product
or service can impact perceptions of trust, for instance if trust depends on hav-
ing confidence in the service not discriminating against the trusting entity (or
in general). However, there may be cases where ethics is not a consideration
for the trusting entity when placing trust in a service, or, more frequently, if
ethics is one of the many concerns the trusting entity has in mind. In what
follows, we see that trust-enhancing machine learning technologies can be re-
lated to Principled AI frameworks (such as Asilomar AI Principles introduced
in 2017, Montréal Declaration for Responsible Development of Artificial Intel-
ligence in 2018 and IEEE Ethically Aligned Design Document), in addition, we
consider a wider set of technologies than typically follow on from considering
the technology implementation of Principled AI frameworks.

The aim of this paper is to identify the ways in which (classes of) machine
learning technologies might enhance or impact trust, based on trust frameworks
drawn from the social sciences and trust in technology literature. Figure 1
outlines our approach. At the centre of Figure 1 is the end product of this
paper, trust-enhancing technologies in machine learning and their classification
in technologies for Fairness, Explainability, Auditability and Safety (FEAS).
The downwards arrows indicate that these technologies are derived from trust
frameworks from social science literature (particularly organisational science).
The upward arrow indicates that the FEAS-classification of technologies was
also informed from the various Principled AI frameworks that shape the ethics
and policy discussion in many nations (this is discussed in Section 4.2).

As indicated in Figure 1, we base our discussion on the widely accepted ABI
(Ability, Benevolence, Integrity) principles underlying trust, as introduced by
Mayer et al.[67] and extended to include the predictability element by Dietz
and Den Hartog [29]. We add to this a temporal dimension, from initial trust
to continuous trust, as discussed by Siau et al.[59]. This gives us a base to
understand trust in general, and we augment this further by integrating Siau‘s
perspective on trust in technology, which identifies that trust is impacted by
Human, Environmental and Technological qualities (referred to as the technolo-
gies’ HET qualities in what follows). We will discuss these steps to go from the
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Trustworthy Machine Learning Technologies (this paper)

Fairness
Technologies

Explainability
Technologies

Auditability
Technologies

Safety
Technologies

Ability IntegrityBenevolence

Trust in Technology (HET technology qualities)

Humane Qualities Technological QualitiesEnvironmental Qualities

Initial Trust Continuous Trust

Trust (ABI and ABI+ frameworks)

Principled AI Frameworks (various governments and other organisations)

Predictability

Figure 1: The contribution of this paper: identification of trust-enhancing Ma-
chine Learning technologies based on social sciences literature and relating these
with Principled AI frameworks

ABI+ model to HET qualities of trustworthy technologies in Section 2.
To summarise, the contributions of this paper are as follows:

• We draw on social science literature, particularly from organisational sci-
ence, to apply established principles of trust to examine the qualities for
technologies to support trust in AI-based systems (primarily based on the
ABI and ABI+ framework and the HET qualities).

• We identify how trust can be enhanced in the various stages of an AI-based
system’s life space and through the design, development and deployment
phases of a system life-cycle. We therefore introduce the concept of an AI
Chain of Trust to discuss the various stages and their interrelations.

• We introduce a FEAS (Fairness, Explainability, Auditability, Safety) clas-
sification of machine learning technologies that support and enable trust
and establish the relation between these trust-enhancing technologies and
the HET qualities.

• We discuss how our technology classification and trustworthy machine
learning techniques relate to various Principled AI framework considered
by policy makers and researchers in ethics and associated topics.
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2 Trust

This section discusses trust frameworks we can use to classify and identify trust-
worthy machine learning technologies. It discusses the top half of the paper
contribution provided in Figure 1, the box with Trust and with Trust in Tech-
nology. In Section 2.1 we introduce the ABI+ framework to describe trust in
general, i.e., not restricted to trust in technology. Section 2.2 reflects on trust in
technology and science, recognising that AI-based services are based on science
and manifest as technologies. The final sections provide the framework devel-
oped by Siau, which includes a discussion on time-sensitivity of trust (Section
2.4) and recognises three types of qualities technologies may exhibit that impact
trust (Section 2.3).

Trust is discussed across many diverse social science literature leading to an
abundance of definitions and frameworks available through which to examine
the concept. It is a concept which in everyday conversation is routinely and in-
tuitively used and yet remains challenging to define and study. Andras et al. [5]
summarise some of the ways that trust has been approached across different
disciplines: “In the social world trust is about the expectation of cooperative,
supportive, and non-hostile behaviour. In psychological terms, trust is the re-
sult of cognitive learning from experiences of trusting behaviour with others.
Philosophically, trust is the taking of risk on the basis of a moral relationship
between individuals. In the context of economics and international relations,
trust is based on calculated incentives for alternative behaviours, conceptualised
through game theory.’ A comprehensive review of literature relating to trust is
beyond the scope of this paper. Here we focus on established models to examine
the nature of trust and discuss how this relates to technology.

2.1 The ABI Framework: Ability, Benevolence and In-
tegrity

The ABI framework introduced by Mayer et al [67] suggests that the three
main attributes which will shape an assessment of the trustworthiness of a party
are: Ability, Benevolence and Integrity. The model discusses the interactional
relationship between a trustor (the entity that trusts) and a trustee (the entity to
be trusted). Building on the work of Mayer et al [67], Dietz and Den Hartog [29]
outline three forms of trust: trust as a belief; a decision and; an action. While
many studies have focused on trust as a belief in isolation from actions, Dietz
and Den Hartog [29] regard the three forms as being the constituent parts of
trust which are most usefully examined together.

In the ABI model, ability is defined as the perception: “that group of skills,
competencies, and characteristics that enable a party to have influence within
some specific domain”. The specific domain is crucial as assessments of a party‘s
ability will vary according to particular tasks or contexts. Benevolence is defined
as “the extent to which a trustee is believed to want to do good to the trustor”.
To be considered to possess Integrity a trustee must be perceived to adhere “to
a set of principles that the trustor finds acceptable”. This requires confidence
that the trustee will act in accordance to a set of principles and that those align
with the values of the trustor.

Since its inception Mayer et al. [67]’s framework has been adapted and ex-
panded to acknowledge the importance of Predictability or Reliability in shaping
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perceived trustworthiness.Dietz and Den Hartog [29] developed the ABI+ model
suggesting that the four key characteristics on which judgements of trustwor-
thiness are based are: Ability; Benevolence; Integrity and; Predictability. Pre-
dictability will reinforce perceptions of the Ability; Benevolence and; Integrity
of the trustee. Considering the role of Predictability, draws attention to the
importance of trust being sustained overtime through ongoing relationships.

While each of the attributes are related and may reinforce one another they
are also separable [67]. One party may trust another even if they perceive one
or more of these attributes to be lacking. As such trust -and trustworthiness-
should not be thought of in binary terms but rather trust exists along a contin-
uum. Dietz and Den Hartog [29, p. 563] suggest five degrees of trust ranging
in intensity. 1. “deterrence-based trust” which they do not in fact consider
to be trust but rather an example of distrust as it means that the trustor has
confidence to take actions as the other party is limited in their own possible
actions to such an extent that they do not perceive risk (e.g. due to regulation).
2. “calculus-based trust” which is considered “low trust” and still involves con-
siderable suspicion. 3. “knowledge-based trust” considered as “confident trust”
4. “relational-based trust” considered as “strong trust” 5. “identification-based
trust” considered as “complete trust”

As such evaluating one party‘s trust in another is more complex than a
straightforward assessment of whether or not they trust that party and state-
ments such as “A trusts B” are overly-simplistic, instead trust is described in
statements reflecting the conditional nature of trust, for example: “A trusts B
to do X (or not to do Y), when Z pertains. . . ” [29, p. 564].

As well as being shaped by judgements of trustworthiness the act of trust-
ing also depends on a range of external and contextual factors, personal at-
tributes and traits of the trustor. An individual‘s predisposition or ideologi-
cal position will impact on the extent to which they trust particular individu-
als/organisations, and these positions will shape how they receive, interpret and
respond to information about the other party [29].

As the context changes, for example relating to cultural, economic, political
or personal developments, so levels of trust and perceptions of trustworthiness
also change. Therefore trust is characterised as an ongoing relationship rather
than a static concept. Moreover, trust can be strengthened – or conversely
weakened – through interactions between trustors and trustees: “outcomes of
trusting behaviours will lead to updating of prior perceptions of the ability,
benevolence, and integrity of the trustee” [67, p. 728]. See also Section 2.4 for
a discussion of the time- -sensitive nature of trust.

2.2 Trust in Science and Technology

AI-based services and products often have strong scientific element through the
use of powerful algorithms in innovative ways, and a very pronounced technol-
ogy flavour through the automated manner in which such services and products
are used. There is a significant body of literature in the field of Science and
Technology Studies (STS) examining public relationships with science and tech-
nology, and, in particular, the role of trust in these relationships. In 2000, the
UK House of Lords Science and Technology Committee published a landmark
statement (which continues to be widely cited) stating that there was a ‘crisis
of trust in science’. This reflected wider discourses suggesting that a series of
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high-profile scientific controversies and scandals (e.g. BSE, thalidomide and the
MMR triple vaccine), together with the rapid pace of scientific progress had
resulted in an erosion of public trust in science [3].

This led to considerable attention directed at ‘improving’ public trust in sci-
ence, typically through efforts to increase public understanding of science, on
the assumption that, where the public is sceptical or mistrusting, this can be
explained by ignorance or lack of understanding, and as such can be ‘corrected’
through better dissemination of scientific knowledge or facts [3]). However, such
approaches are now widely discredited as it is recognised that they overlook the
role of members of the public in actively engaging with scientific knowledge
rather than being “passive recipients of scientific knowledge” [24, p. 206]. Mem-
bers of the public critically assess, deconstruct, question and evaluate claims
to scientific knowledge in line with their own ideologies, experiences and the
contexts in which the information is received [45]. This active process shapes
people’s trust as beliefs as well as informing the trust decisions and actions that
are taken.

The public‘s relationship with science and technology is too sophisticated
to be characterised by a simple trust/distrust binary relationship. Rather,
in many cases the public adopts an ambivalent form of trust – described by
Wynne [93, 91, 92] as an: as if trust. This takes account of the public’s
“knowingly inevitable and relentlessly growing dependency upon expert insti-
tutions” [93, p. 212].

With regard to AI-based technologies, the dependence on knowledge and be-
haviours of experts is clear, and trust is increasingly conditional. This implies
that people do not automatically have confidence in particular innovations, sci-
entists or scientific institutions (but equally lack of absolute trust does not mean
that innovations will be met with public opposition). There can be dissonance
between the trust beliefs held and the decisions and actions taken based on
contextual, personal or organisational factors. In particular, even where people
do not fully trust the technology they may use a service driven by AI if they
feel there is no alternative option.

2.3 Trust Technology Qualities: Humane, Environmental
and Technological

To further understand how technology interfaces with trust, Siau et al. [81]
identify qualities of technologies that relate to trust and the concepts in the
ABI+ framework of Section 2.1. The authors recognise three types of conditions
to demonstrate the potential for a technology to be perceived as trustworthy:
humane, environmental and technological qualities.

Humane Qualities. Humane qualities refer to the actions that attract in-
dividuals possessing a risk–taking attitude. The effectiveness of this quality
depends on the personality type, past experiences and cultural backgrounds
of the individuals. This is linked to the ability of the trustee to satisfy the
curiosity of the trustor in testing a desired task. In other words, if cultural
background resonates and if testing a product or service is feasible, this will
typically enhance trust.
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Environmental Qualities. Environmental qualities consider elements that
are enforced by the qualities of the technology provider. First, it heavily relies
on the nature of the task that the technology handles. The sophistication of the
task has a potential to attract trustworthiness or cause distraction. The pat-
tern of the establishment of trustworthiness differs in various places depending
on the education system, level of their accessibility to novel modern advance-
ments and subtle inherent cultural backgrounds. Yuki et al. [95] discussed such
cultural impact on the trust establishment pattern. Institutional factors are
another environmental parameter for trust. Siau et al. [81] defined it as “the
impersonal structures that enable one to act in anticipation of a successful fu-
ture endeavor”. They collected two aspects for this concept: the institutional
normality and structural assurance. The first deals with efficiency of the organ-
isational structure and the later refers to the ability of an institution to fulfil
the promises and its commitments.

Technological Qualities. Finally, technological qualities determine the ca-
pacity of the technology itself to deliver the outcome as promised. This com-
mitment is multi-dimensional. First, the technology needs to yield the results
efficiently. Thus, it needs to establish an agreed performance metric and assure
its outcome yields into the desirable range of the metric. Second, the technol-
ogy should define concrete boundaries for their solution. The user (as potential
trustors) of the technology should be provided with enough information to infer
the purpose of the technology and set their expectations sensibly based on such
understanding. Lastly, The process of the technology outcome is another factor
in trustworthiness. The technology should be able to reply to potential queries
about how they concluded such outcome and why it led to the such performance.
This aspect outlines the relation between the performance and purpose aspects.

2.4 Time-domain: Initial and Continuous Trust

A final element to support our understanding of trustworthy technologies is
understanding trust as it develops over time, as also discussed in [59]. High-
lighting the importance of predictability in the ABI+ model, the dynamics of
relationship between trustor and trustee is an ongoing process. Usually, it re-
quires initial preconditions to be satisfied, provided through first impressions,
which is referred to as initial trust. After the initial phase, trust levels may
change, for a variety of reasons, and this is referred to as continuous trust in
the literature [81]. Typical examples that may impact continuous trust in AI-
based services and products are data breaches, privacy leaks or news items on
(unethical) business or other practices.

In what follows we will consider an additional time-sensitive element for
trustworthy AI-based technologies, namely that of the service and product life
cycle, both in terms of moving between the stages of design, development and
deployment, as well as in terms of the machine learning pipeline, which includes
data input, algorithm selection and output presentation. See the next section,
and particularly Section 3.3.
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3 Machine Learning and the Chain of Trust

In this section we introduce the concept of a Chain of Trust, which connects
trust considerations in the stages of the machine learning pipeline and, when
considered over time, the AI-based service or product may iterate through these
stages (effectively expending the chain into a cycle, as illustrated in Figure 2).
Before introducing the Chain of Trust in Section 3.3, we briefly review the basics
of machine learning, as well as the notion of a machine learning pipeline.

3.1 Basics of Machine Learning

A machine learning algorithm is basically a function as y = fθ(x) (with excep-
tion of a few algorithms such as nearest–neighbour [4]). In this equation, fθ
represents the function that maps input to the output, i.e. the machine learn-
ing model. In this function, θ ∈ Θ denotes a set of values that is tuned for
the optimal operation of f . θ is calculated based on a pre-defined loss function
that measures the similarity or dissimilarity between samples. The input of a
model, x, correspond to a set of features which is a vector of values that repre-
sents to data, a.k.a. dataset. Finally, y represents the output of the algorithm
to fulfil the task that it meant to undergo, i.e. supervised, unsupervised and
reinforcement learning.

In supervised learning, the output y is meant to be an assignment of the
input x to a pre-defined label set. Supervised Learning algorithms are mainly
used in object recognition [54], machine translation [83], filtering spams [32],
etc. For example, a fraud detection classifier would assign two labels (fraud or
benign) to an input feature which is derived from a transaction.

Unsupervised Learning methods are used when the input x and output y
are both unlabelled. In these methods, the task is to determine a function fθ
that takes x as input and detects a hidden pattern representation as output,
y. The problems that unsupervised learning tackles include grouped a dataset
based on a similarity metric (a.k.a clustering [48]), projecting data to a reduced
dimension space (e.g. PCA methods [53]) and pre–training algorithms for the
other tasks (i.e. pre–processing methods) [36].

Reinforcement Learning [84] methods maps x to a set of policies as y. In
these techniques, fθ determines an action, an observation or a reward (y) that
should be taken into account when situation x is observed. Reinforcement learn-
ing techniques are concerned with how an agent, suppose a rescue robot, should
behave under certain circumstances to maximise the chances of fulfilling a pur-
pose.

3.2 Machine Learning Pipeline

Regardless of the task, the use of any machine learning algorithm implies activ-
ities in various stages, called the pipeline. This is depicted in Figure 2 through
the chain of circles. First, one collects the data from a source and store the
digital representation in a database (‘Data Collection’ in Figure 2) . Then, such
data undergoes pre-processing methods to extract certain features, as x in the
machine learning equation, labelled ‘Data Preparation’ and ‘Feature Extrac-
tion’, respectively.
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When x is ready to be processed for the supposed task, the features are
divided into at least two groups to attain two purposes. The first group of
features (‘Training’ in Figure 2) are used to tune θ to optimise the output (y)
of the function f . The group of features for this purpose is called the training
data. The training process can be offline or online, depending on how static the
training data is with respect to the life-cycle of a model. The online fashion
deals with dynamic training in which the model re-tunes θ when new training
data arrives. In contrast, in offline mode, the training stage only operates once
on a static training dataset.

The second group of features is used for the purpose of verifying the general-
isation of the fθ parameters when the model faces an unknown parameters when
new training data appears in the process (‘Testing’ in Figure 2). Verification is
done by assessing the efficiency of the performance through some chosen met-
ric. For example, in classification, a typical accuracy metric is the proportion
of the test data that has been mapped to their original label correctly by fθ.
The features and data used at the testing stage are called test data. When the
model passes the verification stage with a sufficiently good performance, then
they are applied in the wild. This stage is known as ‘Inference’, in which the
trained model is deployed to face unseen data. In this context, θ is fixed and y
is computed for fθ(x) when x is unknown (i.e. not contained in either test and
training datasets).

In what follows we group some of the stages in the machine learning pipeline.
The first group of stages concerns data-centric aspects, involving data collec-
tion methods, pre-processing techniques and extraction of useful features for the
analysis. The second group of stages is model-centric, the stages in Figure 2 that
deal with the tuning the model to the best performance (‘Training’ stage), evalu-
ating the trained model for confirmation of the desirable performance (‘Testing’
stage) and deployment of the model for the real-world application (‘Inference’
stage).

3.3 Chain of Trust

We are now in a position to introduce the notion of Chain of Trust. Based
on the machine learning pipeline depicted in Figure 2 it becomes clear that
technologies may impact trust in the resulting service or product in various
stages of the pipeline. For instance, better methods to clean the data during
‘Data Preparation’ may avoid bias in the output of algorithms, which in turn
helps to enhance trust once it becomes visible to users or the public. There
are a number of important dimensions to the Chain of Trust, each of which
demonstrates the importance of continuous trust as discussed in Section 2.4.

First, stages may impact on each other in terms of the level of trust they
are able to propagate. Romei et al. [77] reviewed various cases studies that
led to biased decisions and analysed the causes. There is an important specific
case of this, namely that trust impact may only manifest itself in later stages
or at a later time. For instance, in the above example of improving the ‘Data
Preparation’, this enhancement will only impact trust by users if it is made
visible to these users. This may for instance be through better results when
using the services, but, possibly more likely, may also only become visible if news
article or long-term statistics are presented to users that explain that results
are, say, less biased and that therefore can be trusted. However, where trust is
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Trustwor-
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Data
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ration

Feature

Extraction

Training Testing

Inference

Figure 2: Various stages in the machine learning pipeline, motivating the notion
of a Chain of Trust.

established or damaged based on visible outcomes at later stages the resulting
levels of trust will have implications for trust in all stages of the development
of future technologies.

The second dimension present in the Chain of Trust results from the fact that
a service or product may iterate through the stages during its lifecycle, possibly
multiple times. This occurs, for instance, when new data is being introduced to
improve the ‘Training’, and through this, the ‘Inference’. In this case, effectively
the service cycles through the chain depicted in Figure 2.

A third dimension within the notion of Chain of Trust is the development of
trust through the stages of design, development and deployment of the AI-based
service or product. Trust will be impacted by technology decisions in all stages of
the lifecycle. In the above examples, we mainly consider the deployment stage,
in which trust is considered from the perspective of a running service or existing
product. Even simply making an AI-based service available may run the risk
of introducing new biases, or exacerbating existing ones, because changing the
way a service is offered may imply it is less useful or effective for certain groups.
For instance, a recent study demonstrates inherent discrimination in automated
mortgage advising in the FinTech industry [9]. Therefore, to establish trusted
AI-based solutions it will be critical to consider trust from the initial stages,
starting from the design of a new service or product. In so doing, trust is
considered a priori, before it is being deployed, and does not come as a surprise
once the service is running.

A final dimension to consider in the context of the Chain of Trust is that
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of accidents, sudden breakdowns of trust or failures. Typical examples of such
trust failures are security breaches that impact trust, (reports about) data loss
of the service or similar services, or the discovery of bias in the machine learning
results that drive a service. Such accidents can take place through all pipeline
and life cycle stages discussed above and may have severe impact on the level
of trust users place in AI-based systems. However, the ways in which an or-
ganisation responds to such accidents can be equally, or more, important for
determining the impact on trust. Dietz and Gillespie [30] have shown that
scandals or crises which risk damaging the reputation of an organisation can
also act as catalysts for culture change bringing about and reinforcing new eth-
ical/trustworthy practice. They are opportunities to forge new relationships
with stakeholders (positive or negative) [40]. Technology solutions that con-
tinuously monitor and possibly transparently share data about service bias are
trustworthy technologies that may assist in avoiding or mitigating the impact
of trust failures.

4 Trust in AI-Based Systems

We now aim to establish the connection between trust in the AI-based solution
and trustworthiness of the underlying technologies. We first discuss in Section
4.1 various trust related issues one may encounter in AI-based services and
products. We then discuss in Section 4.2 a variety of existing Principled AI
policy and technology frameworks that have emerged in recent years. Based on
these frameworks, we will propose in Section 4.3 a technology-inspired Princi-
pled AI variant, namely FEAS Technologies, that is, technologies for Fairness,
Explainability, Auditability and Safety.

4.1 Trust Considerations in Stages of the Chain of Trust

In this section we discuss trustworthiness aspects in the various stages identified
in the Chain of Trust. We divide the discussion in data-related concerns (with
the focus on data collection, data pre–processing and feature selection, Sec-
tion 4.1.1) and model-related concerns (with the focus on the stages of model
training, testing, and inference, Section 4.1.2).

4.1.1 Data Related Trust Concerns: Data Collection and Pre-Processing
Stages.

Data collection involves reading data from various sources reliably (e.g. sensors
to collect environmental data, a smart speaker listening to audio commands
or website that stores session-related data from the user’s browser, or etc.);
secure transmission of the data from the collection point to a machine for the
purpose of storage or online analysis; storing data in server. The pre–processing
stage includes mechanisms to clean the dataset by removing null, duplicate or
noisy data. Usually, pre–processing solutions combines with the other ones in
data–related stages.

One of the main trust concerns in data is in protection against privacy
violations and other forms of illegitimate use of one’s data. Legislative support
(e.g, in Europe via GDPR regulation) has an important role to play. GDPR
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is a perfect illustration of several data-related trust issues. For instance, the
collection process should be transparent and requires explicit consent from users
for many data uses. Moreover, the subject keeps the right to challenge the ability
to collect data, has control over their collected data and maintains the “right to
be forgotten”. GDPR-type concerns and solutions provides a basis to identify
technologies that enhance trust.

In general, the perceived intrusive nature of instances of data collection has
convinced common users to be more cautious in the situations that their data
is being collected [22]. This is a threat to trustworthiness of a service that
functions based on collected data, particularly AI-based services and products.

Technological solutions for trustworthy data collection, pre-processing as
well as storage have been well established. Trustworthiness usually relies on
factual declaration of the good faith (benevolence) and abiding to it in action
(integrity). The current trust challenges are therefore less in the development
of technology solutions than in identifying ways of interacting, working and
regulating aspects that impact trust.

4.1.2 Model-Related Trust Concerns: Feature Extraction, Training,
Testing and Inference Stages

Model-related trust concerns trust in the working of the models and algorithms.
This set of concerns gets to the heart of trust challenges we phase in a world
in which AI becomes omni-present, fundamentally changing the way people live
their lives. Many of the trust concerns relate to FAT, a fear that algorithms
may harm society, or individuals, because they are unfair, non-transparent and
without accountability. As for data (Section 4.1.1) GDPR is useful as an il-
lustration of the issues important for society. GDPR enforces a requirement
to “explain” results of AI-based solutions to end users, which implies a desire
for more transparent machine learning. GDPR also contains substantial ac-
countability measures to implement a mechanism to “challenge” the outcome
of AI–based technology.

The question is what the role of technologies in dealing with model-related
trust concerns. At their core, machine learning models and algorithms are op-
timised for accuracy of results and efficiency in obtaining these. While the
accuracy and speed of results might be considered to demonstrate basic func-
tionality (ability in ABI+ terminology, Section 2.1), they do not necessarily
satisfy or align with other trust qualities. In most cases, algorithms are con-
sidered as a “black-box” [68], which implies algorithms can be assessed only
in relation to the outcomes they produce. Assessments of the benevolence or
integrity (again using ABI+ terms) can therefore only be done in indirect man-
ners, through that of the entity that develops or applies the AI-based solution.
Of course, justifying such trust is problematic, especially in the time of high
profile data breaches and scandals relating to mishandling or misuse of personal
data (e.g. Facebook, Cambridge Analytica).

In Section 5 we will introduce a number of technologies to enhance or impact
trust, of two types. The first type is to establish a mechanism to verify the
outcomes of the model. In this case, an agent would be responsible to function
in parallel to the model and the model outcome are not accessible until the agent
and the model are both satisfied in a pre–defined criteria. In the second type one
endeavours to (re)design a model or choice of algorithms into something that
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is inherently more trustworthy. For example, the design of a fair SVM model
refers to embedding a fairness constraints into its definition so that the model
functions with the built-in consideration of that notion. This set of approaches
we will discuss in detail in Section 5.

4.2 Principled AI Policy Frameworks

The trust concerns discussed in the previous section are related to concerns that
have been raised widely about the impact on society of the proliferation of AI.
This has resulted in the emergence of a large amount of policy frameworks that
relate to Principled AI frameworks, that is, policy frameworks to enhance and
regulate Fairness, Accountability and Transparency of, particularly, AI-based
services and products. Principled AI frameworks are particularly relevant to
trust as well. Therefore, as depicted in Figure 1, the bottom box, it is opportune
to relate Principled AI frameworks to the trustworthy technology classification
we introduce in Section 4.3. It is important to note that in this paper we
use FEAS to classify technologies, while many of the Principled AI frameworks
inform policy and do not provide much detail in terms of specifying or restricting
technology implementations to achieve the policy objectives.

Principled AI frameworks have been introduced by various stakeholders (tech-
nology companies, professional, standardisation, governmental and legislator
bodies, academic researchers), as illustrated by Table 1. These Principled AI
frameworks present varying sets of qualities that AI-based systems should follow
to be considered trustworthy (some Principled AI frameworks (also) apply to
technologies other than AI). In general, these documents present high–level def-
initions for the objectives and qualities of the involved science and technology,
but do not go into the specifics of technical implementation guidelines.

There is emerging literature reviewing Principled AI frameworks. Whittle-
stone et al. [88] provide a critical analysis of frameworks for ethical machine
learning and highlights a number of challenges, some of which require atten-
tion from a technical perspective. For instance, frameworks may confuse the
interpretation of qualities, present conflicting definitions and/or qualities may
be different across different documents. Particularly relevant also for the un-
derlying technologies is that the frameworks often fail to realise dependencies
between policy objectives (e.g. addressing discrimination issues might lead to
unexpected privacy leakages). Current frameworks are focused on privacy, trans-
parency and fairness issues but this needs to be shifted toward understanding
such tensions and re-framing core research questions.

In yet unpublished work, Fjeld et al. [38] analyse currently available Princi-
pled AI frameworks, from industry, governments, general public, civil societies
and academic bodies. Table 1 contains many of the Principled AI frameworks
considered by [38] (see Section 4.3 for an explanation of how we compiled Ta-
ble 1). Interestingly, they recognised 47 qualities, categorised them into eight
groups, which are a combination of the qualities identified by Siau [59], i.e., hu-
mane (promotion of human values, professional responsibility, human control of
technology) and technological qualities (fairness and non–discrimination, trans-
parency and explainability, safety and security, accountability, privacy). The
authors have available a graphical demonstration of their findings 1.

1https://ai-hr.cyber.harvard.edu/primp-viz.html
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We note again that most of the frameworks do not focus on trust, but on
ethics, privacy and related concerns. Moreover, the terms ethical and trustwor-
thy machine learning are at times used interchangeably in these frameworks
[52]. This would effectively imply that trustworthiness is achieved through
abiding with the ethical concepts such as human rights or non-discrimination
approaches. However, while ethical considerations are inevitably related to per-
ceptions of trust, ethical machine learning and trustworthy machine learning are
not necessarily the same thing. Specifically, in terms of ABI+, ethical machine
learning would necessarily emphasise the benevolence aspects of trust, while
the other two aspects critical for trust (ability and integrity) are insufficiently
represented.
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4.3 FEAS: Fair, Explainable, Auditable and Safe Tech-
nologies

We propose to classify trustworthiness technologies in Fair, Explainable, Au-
ditable and Safe Technologies (FEAS). This is in part motivated by a desire to
align our discussion of trustworthy technologies with the Principled AI frame-
works that are available in the literature, as discussed in Section 4.2. We con-
verged on FEAS based on our knowledge and understanding of the technologies
involved, classified in manner we believe will be comprehensible, illustrative
and natural for technologists. Note that the FEAS technological qualities are in
addition to the essential technological qualities of accuracy and efficiency and
performance of the algorithm(s), without which trustworthiness is not possible.

• Fairness Technologies: technologies focused on detection or prevention
of discrimination and bias in different demographics [98, 63, 77, 97, 55,
23, 49, 37, 46, 25, 50, 96, 35].

• Explainability Technologies: technologies focused on explaining and
interpreting the outcome to the stakeholders (including end-users) in a
humane manner [6, 60, 17, 41, 86, 33, 19, 42, 76, 62, 89, 69].

• Auditability Technologies: technologies focused on enabling third-
parties and regulators to supervise, challenge or monitor the operation of
the model(s) [18, 20, 21, 74, 94, 27, 90, 2, 28, 66, 8, 10].

• Safety Technologies: technologies focused on ensuring the operation
of the model as intended in presence of active or passive malicious at-
tacker [14, 73, 16, 15, 78, 56, 79, 71].

4.3.1 FEAS Related to Principled AI.

Table 1 provides the relationship between the FEAS technology classes and the
Principled AI frameworks identified in [38]. We reviewed each of the frameworks
with respect to the FEAS technology classes required to establish the qualities
mentioned in the framework. We mark frameworks that refer to fairness, ex-
plainability, safety and auditability qualities using the symbols explained in the
caption of Table 1.

As one sees immediately from Table 1 all frameworks are related to FEAS
technologies, and would be able to make use, or even require, FEAS technologies
to be available. Note that there is a considerable difference in the granularity
of the discussions in the Principled AI frameworks compared to that of the
computing literature. Hence, the precise technology needs for each framework
would need deeper investigations, and may not be completely specified within
the existing framework documents. For instance, the policy frameworks refer
to the general existence of discrimination caused by bias in machine learning
algorithms, but in the technological literature there are at least 21 mathematical
definitions for fairness and a wide range of solutions to prevent/detect bias in
the algorithm. The technology discussion in Section 5 is therefore at a much
deeper level of detail than that of the Principled AI frameworks of Table 1.
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Table 2: Trustworthy technology classes versus trust qualities [59]. 7= less
important, 3= important, 44very important

Fair Explainable Auditable Safe

Humane Qualities 44 44 3 7

Technological Qualities 3 3 7 44

Environmental Qualities 44 44 3 3

4.3.2 FEAS Related to Trust Qualities.

Table 2 provides the relationship between trust qualities (humane, environmen-
tal and technological, see Section 2.3) and FEAS technologies. Table 2 is based
on the authors’ understanding of the qualities and technologies, the latter to be
discussed deeper in Section 5. Fairness strongly requires technologies that are
strong in humane and environmental qualities, as does explainability, since their
effectiveness strongly depends on individuals and the culture or setting. Safety
is dominated by technological quality associated with security and reliability of
the systems.

5 Trustworthy Machine Learning Technologies

This section discuss technologies for trustworthy machine learning using the
FEAS grouping introduced in the previous section. We introduce the FEAS
classes, discuss challenges and provide some examples of existing approaches. A
full review of technologies is beyond the scope of this paper.

5.1 Fairness Technologies

This group of technologies is concerned about achieving fair, non-discriminating
outcomes. The ethical aspects of fairness constitute a structural assurance in
the service or product that enhances (or at least impacts) trust.

Fair machine learning is a difficult challenge. A first challenge is to iden-
tify if how to measure unfairness, typically in terms of bias or related notions.
Narayanan [70] has identified at least 21 definitions of fairness in the literature,
which cannot necessarily all be obtained at the same time. To enhance trust,
the metrics used by machine learning experts needs to relate to how it impacts
trust by individuals and the public, posing an additional challenge.

Various solutions has been proposed to establish a subset of fairness no-
tions. One approach is to reduce the bias in the dataset, known as debiasing
data. However, it is not sufficient (or even helpful) to simply ignore or remove
features associated with unfairness, e.g. gender, ethnics [63]. Luong et al. [65]
assigned a decision value to each data sample and adjusted this value to elimi-
nate discrimination. Kamishima et al. [50] proposed a model–specific approach
by adding a regulating term for a logistic regression classifier, which eventually
leads to unbiased classification. Other fairness mitigation solutions focus on the
inference stage. They enforce the output of the model to generate an specific
notion of fairness [46].
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Žliobaitė et al. [98] identify two conditions for non-discriminating machine
learning: data with the same non-protected attributes should give the same
outcomes, and the ability to distinguish outcomes should be of the same order
as the difference in the non-protected attribute values. This provides a more
generic understanding helpful to design fairness technologies. This paper does
not aim to review all techniques but it is clear that many challenges remain in
achieving fair machine learning technologies.

5.2 Explainability Technologies

Explainability refers to relating the operation and outcomes of the model into
understandable terms to a human [51]. In the machine learning literature, no-
tions of explainability, transparency, intelligibility,comprehensibility and inter-
pretability are often used interchangeably [43]. Lipton [60] provides a thorough
discussion on these terms and the differences. He also concludes that explainabil-
ity increases trust. Doshi-Velez et al. [31] suggested two types of explainability,
namely explainability of an application (e.g. a physician being able to under-
stand the reasons for a classifier’s medical diagnostic [75]) and explainability to
understand the way in which a classifier is coming up with its outputs, mainly
by using intelligible models.

There are two main approaches in explainable solutions. The first one,
known as ex-ante, refers to the use of highly intelligible models to obtain the
desired predictions. The second one, known as ex-post, refers to the use of a sec-
ond model to understand the learned model’s behaviour. In ex–ante approach,
an explicit prediction function analyses feature coefficients to understand their
impact over a decision, decision trees or decision lists [76]).

Ex-post explanations are categorised into local and global explainers. The
ex-post approach uses explain. There is a fast growing body of literature, includ-
ing local explainers (e.g., [75, 80] and the unified framework for local explain-
ers which generalises these and other existing methods [64]), global explainers
(e.g., [57]). There are many challenges left with respect to explainable machine
learning technologies, including trading off fidelity to the original model and
explainability [69].

5.3 Auditability Technologies

Auditability technologies refer to methods that enable third parties to challenge
the operation and outcome of a model. This provides more transparency to
black–box characteristics of machine learning algorithms. Enabling machine
learning lineage provides insights into how they have operate, which gives a
greater degree of transparency compared to explainability of current processes
or outcomes.

More specifically, auditability in machine learning may involve assessing the
influence of input data in the output of the model. This ensures predictability,
a process that is also referred as “decision provenance” in the literature [82].
Singh et al. [82] argue that decision provenance have two objectives, it should
provide the history of particular data and it should provide a viewpoint on the
system‘s behaviour and its interactions with its inner components or outside
entities.
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Much of the literature around auditability relates to data provenance re-
search in database and cloud concepts [44] and model provenance approaches [39].
It involves proposals on how to store provenance data [18, 20, 21, 74, 94],
summarisation of provenance data [2, 28, 66], specific query language for the
provenance data [28], query explainability [8, 10], Natural language process-
ing for provenance data [27, 90] and cryptographic solutions to verify model’s
behaviours without exposing user privacy [72] or revealing model‘s intellectual
properties [87].

5.4 Safety Technologies

Data and the machine learning model could both be the target to adversarial
operations. The extent of attacker’s access to the data and model depends on
the intention of the attack and the weaknesses in the system‘s architecture. The
attacker can execute a targeted attack to harm an individual or perform a indis-
criminate attack. Moreover, the attacker can perform the attack stealthily for
the intention of information gathering or intelligence (a.k.a exploratory attack)
or he/she can actively engage into the functioning of the system for the purpose
of manipulation (a.k.a causative attack).

The security and privacy foundations of a ML model is not different from
classical security model of Confidentiality, Integrity and Availability (CIA model [73]).
We omit availability, since its relevance is general, not just or specifically for AI-
based services. Careless preparation of the stored data would leak information to
an attacker [61] but confidentiality can be enhanced in many ways, for instance
through approaches for differential privacy [1, 34], homomorphic encryption [47]
or cryptography integrated in machine learning algorithms [79]. Integrity can
be enhanced by either preventing tampering, such as in pre-processing [73], or
by discovering and possibly repairing tampered data [14, 12, 58]. These meth-
ods deal only with data, but it is also relevant to consider integrity during the
execution of the algorithm, e.g., in the training stage [26, 13, 11, 61, 85].

6 Conclusion

This paper established the connection between trust as a notion within the social
sciences, and the set of technologies that are available for trustworthy machine
learning. More specifically, we related the ABI framework and HET technology
qualities for trust with categories of machine learning technologies that enhance
trustworthiness. We identified four categories of technologies that need to be
considered: Fair, Explainable, Auditable and Safe (FEAS) technologies. These
need to be considered in various interrelated stages of a system life cycle, each
stage forming part of a Chain of Trust. The paper shows a close relationship
between technologies to improve the trustworthiness of AI-based systems and
those that are being pursued in ethical AI and related endeavours. We illustrated
this by mapping of FEAS technologies on concerns in a large set of international
Principled AI policy and technology frameworks.
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