
OAuthGuard: Protecting User Security and Privacy with OAuth
2.0 and OpenID Connect

Wanpeng Li
School of Computing and

Mathematics
Manchester Metropolitan University

Manchester, UK
W.Li@mmu.ac.uk

Chris J. Mitchell
Information Security Group

Royal Holloway, University of London
London, UK

me@chrismitchell.net

Thomas Chen
Department of Electrical & Electronic

Engineering
City, University of London

London, UK
Tom.Chen.1@city.ac.uk

ABSTRACT
Millions of users routinely use Google to log in to websites support-
ing the standardised protocols OAuth 2.0 or OpenID Connect; the
security of OAuth 2.0 and OpenID Connect is therefore of critical
importance. As revealed in previous studies, in practice RPs often
implement OAuth 2.0 incorrectly, and so many real-world OAuth
2.0 and OpenID Connect systems are vulnerable to attack. However,
users of such flawed systems are typically unaware of these issues,
and so are at risk of attacks which could result in unauthorised
access to the victim user’s account at an RP. In order to address this
threat, we have developed OAuthGuard, an OAuth 2.0 and OpenID
Connect vulnerability scanner and protector, that works with RPs
using Google OAuth 2.0 and OpenID Connect services. It protects
user security and privacy even when RPs do not implement OAuth
2.0 or OpenID Connect correctly. We used OAuthGuard to survey
the 1000 top-ranked websites supporting Google sign-in for the
possible presence of five OAuth 2.0 or OpenID Connect security
and privacy vulnerabilities, of which one has not previously been
described in the literature. Of the 137 sites in our study that employ
Google Sign-in, 69 were found to suffer from at least one serious
vulnerability. OAuthGuard was able to protect user security and
privacy for 56 of these 69 RPs, and for the other 13 was able to warn
users that they were using an insecure implementation.

CCS CONCEPTS
• Security and privacy→ Authorization; Security protocols;Web
protocol security; Privacy protections.

KEYWORDS
OAuth 2.0, OpenID Connect, Identity Management
ACM Reference Format:
Wanpeng Li, Chris J. Mitchell, and Thomas Chen. 2019. OAuthGuard: Pro-
tecting User Security and Privacy with OAuth 2.0 and OpenID Connect.
In 5th Security Standardisation Research Workshop (SSR’19), November 11,
2019, London, United Kingdom. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3338500.3360331

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SSR’19, November 11, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6832-2/19/11. . . $15.00
https://doi.org/10.1145/3338500.3360331

1 INTRODUCTION
Since the OAuth 2.0 authorisation framework was published as
a draft standard by the IETF at the end of 2012 [12], it has been
adopted by a many websites worldwide as a means of providing
single sign-on (SSO) services. By using OAuth 2.0, websites can
reduce the burden of password management for their users, as well
as saving users the inconvenience of re-entering attributes that
are instead stored by identity providers and provided to relying
parties as required. There is a correspondingly rich infrastructure of
identity providers (IdPs) providing identity services usingOAuth 2.0.
Indeed, some relying parties (RPs), such as thewebsite USATODAY1,
support as many as six different IdPs.

The security of OAuth 2.0 and OpenID Connect is therefore of
critical importance, and it has been widely examined both in theory
and in practice. Previous studies show that, in practice, RPs do
not always implement OAuth 2.0 correctly; as a result, many real-
world OAuth 2.0 and OpenID Connect systems are vulnerable to
attack. This is yet another example of an apparently well-designed
standard protocol being vulnerable to attack because of incorrect
implementations; encouraging developers to be more careful is
obviously not sufficient to ensure end user security, motivating the
work described here that is designed to reduce the threat posed by
such vulnerable implementations.

Researchers have developed a range of mitigations for RP de-
velopers, designed to help secure OAuth 2.0 and OpenID connect
systems. However, none of this prior art (with one exception, dis-
cussed below) is aimed at protecting users who are (unwittingly)
employing an insecure OAuth 2.0 or OpenID Connect implemen-
tation. To help close this gap, we have developed OAuthGuard, an
OAuth 2.0 and OpenID Connect vulnerability scanner and protec-
tor, for use with RPs using Google OAuth 2.0 and OpenID Connect
services. While we have focussed only on Google sign-in in the
work described here, we believe that the same approach can be
used to protect user security and privacy when working with other
identity providers.

The main contributions of this paper are as follows.
(1) A new vulnerability. We identify a new privacy vulnera-

bility which is present in a number of real-world websites.
(2) OAuthGuard. We describe the design and implementation

of OAuthGuard (see Section 5), which provides real-time
protection for users against vulnerabilities arising from poor
implementations of OAuth 2.0 and OpenID Connect by web

1https://login.usatoday.com/USAT-GUP/authenticate/?

https://doi.org/10.1145/3338500.3360331
https://doi.org/10.1145/3338500.3360331
https://doi.org/10.1145/3338500.3360331
https://login.usatoday.com/USAT-GUP/authenticate/?

SSR’19, November 11, 2019, London, United Kingdom Li et al.

sites (RPs) using the Google SSO service. Despite the ubiq-
uity of these implementation vulnerabilities, this is the first
practical help that has been offered to end users. We also
outline how we addressed the challenges we faced in making
the system work, including the trade-offs we made to ensure
that OAuthGuard is compatible with all the RPs in our study.

(3) A large-scale study. We ran OAuthGuard on the top 1,000
websites from majestic.com2 (Section 6). Key results from
the study include finding at least one vulnerability in 69 of
the 137 RPs that use Google Sign-in (Section 6). We further
manually analysed the 109 RPs in the top 1,000 for which
OAuthGuard did not detect a CSRF attack threat, and found
that 25 of them are nevertheless vulnerable to a CSRF at-
tack. Of the 69 RPs it found to be vulnerable, OAuthGuard is
able to protect users against CSRF attacks for 48 of the 53
RPs (91%) which are vulnerable to such an attack; OAuth-
Guard was also able to upgrade the protocol from HTTP to
HTTPS for 8 of the 13 RPs (62%) that erroneously use HTTP
to transfer their OAuth 2.0 response. OAuthGuard identified
nine RPs that leak user tokens to third party websites, ei-
ther unintentionally or intentionally, and in total blocked 75
http requests leaking user tokens for these nine RPs. Finally,
OAuthGuard generated a warning to users for 13 RPs that
are vulnerable to an impersonation attack.

The remainder of this paper is structured as follows. Section 2
provides background on OAuth 2.0 and OpenID Connect. Section
3 describes related work. In Section 4, we describe the five vulner-
abilities that OAuthGuard can detect and mitigate, one of which
was not previously known. Section 5 specifies the infrastructure of
OAuthGuard. In Section 6, we describe a case study on the Google
sign-in security of 137 RPs, performed using OAuthGuard. Section
7 discusses the limitations and deployment of OAuthGuard. Section
8 concludes the paper.

2 BACKGROUND
2.1 OAuth 2.0
The OAuth 2.0 specification [12] describes a system that allows an
application to access resources (typically personal information) pro-
tected by a resource server on behalf of the resource owner, through
the consumption of an access token issued by an authorization server.
In support of this system, the OAuth 2.0 architecture involves the
following four roles (see Fig. 1).

(1) The Resource Owner is typically an end user.
(2) The Client is a server which makes requests on behalf of the

resource owner (the Client is the RP when OAuth 2.0 is used
for SSO).

(3) The Authorization Server generates access tokens for the
client, after authenticating the resource owner and obtaining
its authorization.

(4) The Resource Server stores the protected resources and con-
sumes access tokens provided by an authorization server
(this entity and the Authorization Server jointly constitute
the IdP when OAuth 2.0 is used for SSO).

2https://majestic.com/reports/majestic-million

Fig. 1 summarises the OAuth 2.0 protocol. The client (1) sends
an authorization request to the resource owner. In response, the
resource owner generates an authorization grant (or authorization
response) in the form of a code, and (2) sends it to the client. After
receiving the authorization grant, the client initiates an access
token request by authenticating itself to the authorization server
and presenting the authorization grant, i.e. the code issued by the
resource owner (3). The authorization server issues (4) an access
token to the client after successfully authenticating the client and
validating the authorization grant. The client makes a protected
source request by presenting the access token to the resource server
(5). Finally, the resource server sends (6) the protected resources to
the client after validating the access token.

Figure 1: OAuth 2.0 Protocol Flow

The OAuth 2.0 framework defines four ways for RPs to obtain
access tokens, namely Authorization Code Grant, Implicit Grant,
Resource Owner Password, and Client Credentials Grant. In this paper
we are only concerned with the Authorization Code Grant and
Implicit Grant protocol flows. Note that, in the descriptions below,
protocol parameters given in bold font are defined as required (i.e.
mandatory) in the OAuth 2.0 Authorization Framework [12].

2.2 OpenID Connect
OpenID Connect 1.0 [21] builds an identity layer on top of the
OAuth 2.0 protocol. The added functionality enables RPs to verify an
end user identity by relying on an authentication process performed
by an OpenID Provider (OP). In order to enable an RP to verify the
identity of an end user, OpenID Connect adds a new type of token
to OAuth 2.0, namely the id_token. This complements the access
token and code, which are already part of OAuth 2.0. An id_token
contains claims about the authentication of an end user by an
OP, together with any other claims requested by the RP. OpenID
Connect supports three authentication flows [21], i.e. ways in which
the system can operate, namely Hybrid Flow, Authorization Code
Flow and Implicit Flow.

2.3 OAuth 2.0 used for SSO
In order to use OAuth 2.0 as the basis of an SSO system: the resource
server and authorization server together play the IdP role; the client
plays the role of the RP; and the resource owner corresponds to the

majestic.com
https://majestic.com/reports/majestic-million

OAuthGuard: Protecting User Security and Privacy with OAuth 2.0 and OpenID Connect SSR’19, November 11, 2019, London, United Kingdom

user. OAuth 2.0 and OpenID Connect SSO systems build on user
agent (UA) redirections, where a user (U) wishes to access services
protected by the RP which consumes the access token generated by
the IdP. The UA is typically a web browser. The IdP provides ways
to authenticate the user, asks the user to grant permission for the
RP to access the user’s attributes, and generates an access token
on behalf of the user. After receiving the access token, the RP can
access the user’s attributes using the API provided by the IdP.

2.3.1 RP Registration. The RP must register with the IdP before it
can use OAuth 2.0, during which the IdP gathers security-critical in-
formation about the RP, including the RP’s redirect URI (redirect_uri),
i.e. the URI to which the UA is redirected after the IdP has gener-
ated the authorization response and sent it to the RP via the UA
(for convenience, we also refer to the redirect URI as the Google
sign-in endpoint). During registration, the IdP issues the RP with a
unique identifier (client_id) and, optionally, a secret (client_secret).
If defined, client_secret is used by the IdP to authenticate the RP in
the Authorization Code Grant flow.

2.3.2 Authorization Code Grant. The OAuth 2.0 Authorization
Code Grant is very similar to the OpenID Connect Authorization
Code Flow; for simplicity, we only give the description of the OAuth
2.0 Authorization Code Grant. It relies on information established
during the registration process, as described in Section 2.3.1. The
protocol proceeds as follows.

(1) U→ RP: The user clicks a login button on the RP website, as
displayed by the UA, which causes the UA to send an HTTP
request to the RP.

(2) RP→ UA: The RP produces an OAuth 2.0 authorization re-
quest and sends it back to the UA. The authorization request
includes client_id, the identifier for the client which the
RP registered with the IdP previously; response_type=code,
indicating that the Authorization Code Grant method is re-
quested; redirect_uri, the URI to which the IdP will redirect
the UA after access has been granted; state, an opaque value
used by the RP to maintain state between the request and the
callback (step 6 below); and scope, the scope of the requested
permission.

(3) UA→ IdP: The UA redirects the request received in step 2
to the IdP.

(4) IdP→ UA: The IdP first compares the value of redirect_uri
it received in step 3 (embedded in the authorization request)
with the registered value; if the comparison fails, the process
terminates. If the user has already been authenticated by the
IdP, then the next step is skipped. If not, the IdP returns a
login form which is used to collect the user authentication
information.

(5) U → UA → IdP: The user completes the login form and
grants permission for the RP to access the attributes stored
by the IdP.

(6) IdP → UA → RP: After (if necessary) using the information
provided in the login form to authenticate the user, the IdP
generates an authorization response and redirects the UA
back to the RP. The authorization response contains code,
the authorization code (representing the authorization grant)
generated by the IdP; and state, the value sent in step 2.

(7) RP → IdP: The RP produces an access token request and
sends it to the IdP token endpoint directly (i.e. not via the UA).
The request includes grant_type=authorization_code, client_id,
client_secret (if the RP has been issued one), code (generated
in step 6), and the redirect_uri.

(8) IdP→ RP: The IdP checks client_id, client_secret (if present),
code and redirect_uri and, if the checks succeed, responds
to the RP with access_token.

(9) RP→ IdP: The RP passes access_token to the IdP via a defined
API to request the user attributes.

(10) IdP→ RP: The IdP checks access_token (how this works is
not specified in the OAuth 2.0 specification) and, if satisfied,
sends the requested user attributes to the RP.

2.3.3 Implicit Grant. The OAuth 2.0 Implicit Grant is very similar
to the OpenID Connect Implicit Flow and Hybrid Flow; for simplic-
ity, we only give the description of the OAuth 2.0 Implicit Grant.
This flow has a similar sequence of steps to Authorization Code
Grant. We specify below only those steps where the Implicit Grant
flow differs from the Authorization Code Grant flow.

2. RP→ UA: The RP produces an OAuth 2.0 authorization re-
quest and sends it back to the UA. The authorization request
includes client_id, the identifier for the client which the RP
registered with the IdP previously; response_type=token,
indicating that the Implicit Grant is requested; redirect_uri,
the URI to which the IdP will redirect the UA after access
has been granted; state, an opaque value used by the RP to
maintain state between the request and the callback (step 6
below); and scope, the scope of the requested permission.

6. IdP → UA → RP: After (if necessary) using the information
provided in the login form to authenticate the user, the IdP
generates an access token and redirects the UA back to the
RP using the value of redirect_uri provided in step 2. The
access token is appended to redirect_uri as a URI fragment
(i.e. as a suffix to the URI following a # symbol).

As URI fragments are not sent in HTTP requests, the access
token is not immediately transferred when the UA is redirected
to the RP. Instead, the RP returns a web page (typically an HTML
document with an embedded script) capable of accessing the full
redirection URI, including the fragment retained by the UA, and
extracting the access token (and other parameters) contained in the
fragment; the retrieved access token is returned to the RP. The RP
can now use this access token to retrieve data stored at the IdP.

3 ANALYSING THE SECURITY OF OAUTH 2.0
OAuth 2.0 has been analysed using formal methods. Pai et al. [20]
confirmed a security issue described in the OAuth 2.0 Threat Model
[19] using the Alloy Framework [13]. Chari et al. analysed OAuth
2.0 in the Universal Composability Security framework [6] and
showed that OAuth 2.0 is secure if all the communications links
are SSL-protected. Frostig and Slack [23] discovered a cross-site
request forgery attack in the Implicit Grant flow of OAuth 2.0, using
the Murphi framework [8]. Bansal et al. [1] analysed the security
of OAuth 2.0 using the WebSpi [2] and ProVerif models [4]. Fett et
al. [10] performed a formal security analysis of OpenID Connect.
However, all this work is based on abstract models, and so delicate
implementation details are ignored.

SSR’19, November 11, 2019, London, United Kingdom Li et al.

The security properties of real-world OAuth 2.0 implementations
have also been examined. Wang et al. [25] examined deployed SSO
systems, focusing on a logic flaw present in many such systems,
including OpenID. In parallel, Sun and Beznosov [24] also studied
deployed OAuth 2.0 systems. Later, Li and Mitchell [14] examined
the security of deployed OAuth 2.0 systems providing services in
Chinese. In parallel, Zhou and Evans [28] conducted a large scale
study of the security of Facebook’s OAuth 2.0 implementation. Chen
et al. [7], and Shehab and Mohsen [22] have looked at the security
of OAuth 2.0 implementations on mobile platforms. Li and Mitchell
[15] conducted an empirical study of the security of the OpenID
Connect-based SSO service provided by Google.

Fett et al. [9] proposed an IdP Mix-Up attack against RPs that
support multiple IdPs. In their attack, a network attack is needed
to modify the http or https messages generated by the RP in step 1
(see Section 2.3.2). Li and Mitchell [16] argued that the IdP Mix-Up
attack would not be a genuine threat to the security of OAuth 2.0 if
IdP implementations were strictly following the standard. Li and
Mitchell [18] proposed a Partial Redirection URI Manipulation at-
tack against RPs that support multiple IdPs. A 2016 study conducted
by Yang et al. [27] revealed that 61% of 405 websites using OAuth
2.0 (chosen from the 500 top-ranked US and Chinese websites) did
not implement CSRF countermeasures; even worse, for those RPs
which support the state parameter, 55% of them are still vulnerable
to CSRF attacks because of misuse/mishandling of the state param-
eter. They also disclosed four scenarios where the state parameter
can be misused by RP developers. Most recently, Yang, Lau and
Shi [26] conducted a large scale study of Android OAuth 2.0-based
SSO systems. They found three previously unknown security flaws
among first-tier identity providers and a large number of popular
third party apps.

These practical studies suggest that in practice many real-world
OAuth 2.0 and OpenID Connect systems contain security vulner-
abilities, often because of implementation errors made by RP de-
velopers. In some cases these errors result from a lack of clear
guidance from IdPs. Regardless of the causes, these vulnerabilities
pose a significant threat to end users, and addressing this threat
has motivated the work described in this paper.

In recent work conducted in parallel to that described here3,
Calzavara et al. [5] proposedWPSE, a web browser security monitor
for OAuth 2.0. OAuthGuard and WPSE have some similar function-
alities, e.g. being able to detect some common OAuth 2.0 attacks and
provide mitigations for the user (see Table 1). One major advantage
of OAuthGuard is that it is able to detect and provide protections
for five common vulnerabilities for users, whereas WPSE can only
detect three. A more detailed comparison of OAuthGuard with
WPSE is provided in Section 7.

4 VULNERABILITIES
The design of OAuthGuard was motivated by the work of Li and
Mitchell [15] and Yang et al. [27]. They examined the security of
real-world OAuth 2.0 and OpenID Connect implementations and
identified a range of vulnerabilities; they also proposed mitigations
designed to enable RPs tomake their OAuth 2.0 andOpenID connect

3The source code of OAuthGuard4 was first made available at github.com in February
2018.

systems secure. However, none of these mitigations help protect
users who are employing an insecure OAuth 2.0 or OpenID Connect
implementation. OAuthGuard is intended to help meet this need.

OAuthGuard can detect five classes of OAuth 2.0 or OpenID Con-
nect vulnerabilities — four of these vulnerabilities have previously
been discussed (see, for example, Li and Mitchell, [15]) — the only
vulnerability not previously discussed is the ‘privacy leak’ issue,
i.e. the fifth in the list below. Impersonation attacks only apply to
the Implicit Grant flow, as described in Section 2.3.3; the other four
attacks affect both flows, as defined in Section 2.3.

• CSRF Attack Threat Detection. CSRF attacks against the
OAuth 2.0 redirect_uri [19] can allow an attacker to obtain
authorization to access OAuth-protected resources without
the consent of the user. Such an attack is possible for both
the Authorization Code Grant Flow and the Implicit Grant
Flow.
One possible CSRF attack involves an attacker engaging with
the target RP using its own device, and acquiring a code, ac-
cess_token or id_token for the attacker’s own resources. The
attacker then aborts the redirect flow back to the RP, and, by
means of a CSRF, instead causes the victim user to send the
(attacker’s) redirect flow back to the target RP. The target RP
receives the redirect, fetches the (attacker’s) attributes from
the IdP, and associates the victim user’s RP session with the
attacker’s resources accessed using the tokens. The victim
user then accesses resources on behalf of the attacker. The
impact of such an attack depends on the resources accessed.
For example, the user might upload private data to the RP,
thinking it is uploading information to its own profile, and
this data will subsequently be available to the attacker. Al-
ternatively, as described by Li and Mitchell [14], an attacker
can use a CSRF attack to control a victim user’s RP account
without knowing the user’s username and password.
A 2016 study conducted by Yang et al. [27] revealed that
61% of 405 websites using OAuth 2.0 (chosen from the 500
top-ranked US and Chinese websites) did not implement the
‘standard’ CSRF countermeasures, notably including use of
the state parameter; even worse, of those RPs which did sup-
port the state parameter, 55% were still vulnerable to CSRF
attacks because of incorrect use of this parameter. They also
described four scenarios in which the state parameter can
be misused by RP developers. Given these variations in in-
correct implementations, it is difficult to devise a universally
applicable method to automatically detect a CSRF attack
threat. As discussed in greater detail in the next section, the
technique OAuthGuard uses to detect this threat is simply
to check whether a state parameter is present in an OAuth
2.0 response. If no such parameter is present, then OAuth-
Guard reports that the RP is vulnerable to a CSRF attack.
Thus OAuthGuard is not able to detect all RPs that are vul-
nerable to CSRF attacks, e.g. arising from incorrect use of
the parameter.

• Impersonation attacks. This vulnerability stems from con-
fusion about authentication and authorization. In OAuth 2.0,
an access_token is intended for authorization purposes, and it
is not tied to any specific RP. As the access_token is a bearer

github.com

OAuthGuard: Protecting User Security and Privacy with OAuth 2.0 and OpenID Connect SSR’19, November 11, 2019, London, United Kingdom

token, it can be used by any RP that gains access to it. If an
RP submits only an access_token to their Google sign-in end-
point, a malicious RP can submit a victim user’s access_token,
issued to the malicious RP by Google, to the RP’s Google
sign-in endpoint. The RP can use this access_token to get
victim user information from Google, and then get full access
to the victim user’s account at the RP.

• Authorization Flow Misuse. As described in Section 2,
OAuth 2.0 has four authorization flows and OpenID Connect
has three authentication flows. RP developers must choose
an appropriate flow and implement the OAuth 2.0 or OpenID
Connect protocol correctly. According to the OAuth 2.0 and
OpenID Connect standards, only a code should be submitted
back to the RP’s Google sign-in endpoint as evidence that
the user has been authenticated. However, in reality, many
RPs submit a combination of code, access_token and id_token
back to their Google sign-in endpoint. As discussed by Li
and Mitchell [15], this can lead to serious vulnerabilities.

• Unsafe Token Transfers. The main purpose of OAuth 2.0
and OpenID Connect is to allow an RP to access user infor-
mation stored at an IdP without giving the RP the user’s
credentials for the IdP. This is achieved using a code, ac-
cess_token or id_token. These tokens are vitally important,
and hence they need to be protected when transferred be-
tween the RP and Google (e.g. using HTTPS). However, as
has been discussed by Li and Mitchell [15], many RPs do not
use HTTPS to protect the Google sign-in data transfers.

• Privacy Leaks. When a user uses the Google service to
authenticate to an RP website, the user’s code, access_token
or id_token, retrieved by the RP from Google, should not be
revealed to any other parties. We consider two cases where
such a token may be revealed to a third party, which we
refer to as a privacy leak; we further distinguish between
intentional privacy leaks and referer (unintentional) privacy
leaks, depending on whether the RP is aware of the leak or
not. An unintentional privacy leak might occur when an RP
includes third party content in its Google sign-in endpoint;
an intentional privacy leak occurs when an RP deliberately
sends user tokens to a third party.

5 OAUTHGUARD
OAuthGuard, a JavaScript Chrome browser extension, which is
freely available via the Chrome web store5, contains three main
components: the OAuth 2.0 Detector, the Vulnerability Analyser,
and the Vulnerability Protector (see Fig. 2). The OAuth 2.0 Detector
monitors every HTTP request and extracts the OAuth 2.0 request
or response metadata (see Listing 1 in Appendix) if the request
is an OAuth 2.0 request or response. The Vulnerability Analyser
analyses the OAuth 2.0 request and response reported by the OAuth
2.0 Detector, with the goal of identifying the possible vulnerabilities
described in Section 4. Once a vulnerability has been detected by
the Vulnerability Analyser, the Vulnerability Protector is triggered
and appropriate mitigations are executed.

5https://chrome.google.com/webstore/detail/oauthguard/
phamalogfapdjegegmghgcihhpabocfn

5.1 Vulnerability Mitigation
OAuthGuard protects against all five of the vulnerabilities in Section
4. We next describe how OAuthGuard mitigates these vulnerabili-
ties.

• CSRF Attack Protection. OAuthGuard is designed to mit-
igate CSRF attacks even if the RP does not implement any
countermeasures against such attacks (e.g. if it does not in-
clude a state parameter in the authorization response). To
achieve this, OAuthGuard uses the CSRF countermeasures
recently proposed by Li and Mitchell [17]. The idea is that,
when used correctly, the referer header of the OAuth 2.0
response should point to either the RP domain or the IdP
domain; this can be used to detect CSRF attacks. However,
one limitation of this approach is that, if the redirect_uri of
the RP uses HTTP, the referer header will be suppressed by
the user agent [11] (i.e. the necessary domain information
will be removed). Thus, OAuthGuard can only be used to
mitigate CSRF attacks for RPs that use HTTPS to transfer
their OAuth 2.0 response.
To implement this mitigation, OAuthGuard first checks to
see whether HTTPS has been used to transfer the OAuth 2.0
response; if not, it simply ignores the OAuth 2.0 response for
compatibility reasons (so as not to block RPs using HTTP to
transfer their OAuth 2.0 response). That is, OAuthGuard ac-
cepts all requests for RPs that use HTTP to deliver their
OAuth 2.0 response. Otherwise, i.e. if HTTPS is used, it
checks whether the HTTP referer header of the OAuth 2.0
response points to either the Google domain or the RP’s
domain; if not then OAuthGuard knows it is a CSRF attack
against the RP’s Google sign-in endpoint, drops the mes-
sage, and notifies the user that it has blocked a CSRF attack
attempt.
This technique works with most RPs, although a few RPs use
a proxy service (e.g. gigya) to implement support for Google
sign-in, or use a domain other than the domain registered
with Google as their Google sign-in endpoint. We whitelisted
these RP domains so that, in such cases, OAuthGuard will
not block the OAuth 2.0 response. In summary, OAuthGuard
implements strict Referer validation [3] to protect against
CSRF attacks for RPs that use HTTPS to deliver their OAuth
2.0 response; that is, OAuthGuard blocks all HTTPS requests
whose Referer header has an incorrect value (e.g. an empty
referer header).

• Impersonation Attack Warning. OAuthGuard is able to
discover the RP’s Google sign-in endpoint, and can also
extract all three types of token from an OAuth 2.0 Response
HTTP message. If only an access_token is submitted to the
PR’s Google sign-in endpoint, then OAuthGuard notifies
the user that the RP’s website might be vulnerable to an
impersonation attack, and that the user is recommended to
stop using Google sign-in with that RP.

• Authorization FlowMisuseWarning. OAuthGuard is able
to detect an Authorization Flow Misuse vulnerability, as de-
scribed in Section 4. However, it cannot determine which
token is used by the RP to authenticate the user. As a result,

https://chrome.google.com/webstore/detail/oauthguard/phamalogfapdjegegmghgcihhpabocfn
https://chrome.google.com/webstore/detail/oauthguard/phamalogfapdjegegmghgcihhpabocfn

SSR’19, November 11, 2019, London, United Kingdom Li et al.

OAuthGuard does not implement any active mitigations, but
simply generates a warning message to the user.

• Unsafe Token Transfer Protection. OAuthGuard is able
to extract the protocol message used to transfer an OAuth 2.0
response. If HTTP is used, OAuthGuard attempts to redirect
the response using HTTPS before the response leaves the
user’s browser. Of course, this measure only works if HTTPS
is available at the RP.

• Privacy Leak Protection. As discussed in Section 4, if ei-
ther of the two types of privacy leak is detected, OAuth-
Guard blocks the transfers and notifies the users that it has
blocked an attempted privacy leak. Another possible mitiga-
tion would be to remove the tokens from the referer header
instead of blocking the entire request. We chose to block the
request because we want to discourage users from using the
Google sign-in service for an RP that leaks user data to a
third party.

Figure 2: OAuthGuard Components

5.2 OAuth 2.0 Detector
Figure 3 shows the workflow of the OAuth 2.0 Detector. The OAuth
Detector first examines every received HTTP request to check
whether it is an OAuth 2.0 request; this involves scanning the url
of the request for the keywords oauth and redirect_uri. If both key-
words are present, the HTTP request is deemed to be an OAuth
2.0 request; the OAuth 2.0 Detector then extracts the OAuth 2.0
request metadata (see Listing 1 in Appendix) from the HTTP re-
quest and saves this metadata to the extension’s localStorage6 using
RPDomain as key.

Otherwise, i.e. if these keywords are not both present, the OAuth
2.0 Detector scans the HTTP request for a code, access_token or
id_token; if one of these tokens is identified, the HTTP request is
deemed to be an OAuth 2.0 response. In this case the OAuth 2.0
Detector extracts the OAuth 2.0 response metadata from the HTTP
request and saves it to localStorage using RPDomain as key.

5.3 Vulnerability Analyser
Figure 4 shows the workflow of the Vulnerability Analyser. When-
ever an OAuth 2.0 response it reported by the OAuth 2.0 Detector,
the Vulnerability Analyser is triggered. It first retrieves the OAuth
2.0 request (if any) using the RPDomain from the OAuth 2.0 re-
sponse.
6https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API#localStorage

Figure 3: OAuthGuard OAuth 2.0 Detector Overview

• If no OAuth 2.0 request is retrieved, then the OAuth 2.0
response might be from an RP that is either using a proxy
service (e.g. gigya) to implement Google sign-in, or a domain
other than the domain registered with Google as its Google
sign-in endpoint. Such RPs and proxy services arewhitelisted
in OAuthGuard. If neither of these two cases applies, i.e. the
domain is not in the whitelist, the OAuth 2.0 response is
deemed to be an intentional privacy leak.

• If an OAuth 2.0 request is retrieved, the Vulnerability Anal-
yser uses the OAuth 2.0 request and response to identify
possible vulnerabilities as follows.

(1) Detection of CSRF Threats. If a state parameter is not
present in an OAuth 2.0 response, then OAuthGuard re-
ports that the RP is vulnerable to a CSRF attack.

(2) Detection of an Impersonation attack. If only an ac-
cess_token is detected in the OAuth 2.0 response, OAuth-
Gard reports a possible Impersonation attack.

(3) Detection of Authorization Flow Misuse. If a combi-
nation of code, access_token and id_token is detected in the
OAuth 2.0 response, OAuthGuard reports an Authoriza-
tion Flow Misuse.

(4) Detection ofUnsafeTokenTransfer. OAuthGuard checks
whether the RP is using HTTP or HTTPS to transfer the
OAuth 2.0 response. If HTTP is detected, it reports an
Unsafe Token Transfer threat.

(5) Detection of Privacy Leaks. OAuthGuard uses a specific
Referer Leakage Detection module to detect Unintentional
Privacy Leak vulnerabilities. This module first looks for a
code, access_token or id_token in a referer header (if present
in an HTTP request). If any of these tokens are identified,
the module extracts the domains of the referer header
and the HTTP request, and checks whether they are the
same. If not, it reports that an Unintentional Privacy Leak
vulnerability has been detected.

Figure 4: OAuthGuard Vulnerability Analyser Overview

https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API#localStorage

OAuthGuard: Protecting User Security and Privacy with OAuth 2.0 and OpenID Connect SSR’19, November 11, 2019, London, United Kingdom

5.4 Vulnerability Protector
Depending on which type of vulnerability has been reported by
the Vulnerability Analyser, the Vulnerability Protector executes the
following actions:

• it blocks an HTTP request if a Privacy Leak vulnerability is
detected;

• it tries to redirect an OAuth 2.0 response using HTTPS if an
Unsafe Token Transfer vulnerability is detected;

• it warns the user if the RP is vulnerable to an Impersonation
attack;

• it blocks an OAuth 2.0 response if a CSRF attack is detected.

6 A CASE STUDY
We used OAuthGuard to help understand the degree to which
RPs using the Google OAuth service are vulnerable to known
threats. This involved manually running OAuthGuard against the
top-ranked 1,000 websites from majestic.com7 as of 12 December
2017. 137 of these 1,000 websites support Google sign-in. We used
a Macbook Pro (late 2013) running macOS High Sierra 10.13.1 and
Chrome browser version 63.0.3239.132.

As discussed earlier, OAuthGuard detects CSRF attack threats
by checking whether a state parameter is present in an OAuth 2.0
response. To supplement the automated threat detection, we also
manually looked through all the RPs for which a CSRF threat was
not reported by OAuthGuard to discover whether these RPs are
actually vulnerable to a CSRF attack. While OAuthGuard reported
CSRF attack threats for 28 of the 137 RPs, we manually identified a
further 25 that are vulnerable to CSRF attacks.

Figure 5 divides the 1,000 sites we examined into groups of
100 (starting with those ranked highest), and for each group of 100
indicates (a) the percentage supporting Google SSO, and (b) of those
that do support Google SSO which were found to possess at least
one vulnerability. The graph suggests that the more popular sites
are a little more likely to support Google sign-in and also slightly
more likely to possess implementation vulnerabilities. Whilst the
former result is not surprising, the latter is somewhat alarming,
since one might expect popular sites to have more resources to
devote to ensuring site security.

Unsurprisingly, we got similar results to those of the 2016 Yang
et al. study [27]. We can summarise our findings as follows (noting
that in each case they apply to the 137 RPs that support Google
SSO).

• 53 RPs (39%) are vulnerable to a CSRF attack against their
OAuth 2.0 redirect_uri endpoint;

• 21 RPs (15%) misuse authorization flows, of which 13 are
vulnerable to an impersonation attack;

• 9 RPs leak tokens though referer headers; of these, two ex-
plicitly send user tokens to third party websites;

• 13 RPs did not implement https to protect the transfer of
user tokens.

• A total of 69 RPs (50%) possessed at least one vulnerability
of the types discussed in Section 4.

To illustrate the potential risks in real-world websites, we next
give an example of vulnerabilities detected by OAuthGuard. Ranked

7https://majestic.com/reports/majestic-million

Figure 5: Google Sign-in integration results by site rank

61st on the list, issuu.com is theworld’s largest electronic publishing
platform. OAuthGuard detected that issuu.com is vulnerable to
Referer token leaks, CSRF attacks, as well as Impersonation attacks.
After the user has used Google sign-in to log in to issuu.com, it sends
an access_token directly to its Google sign-in endpoint without
implementing any CSRF countermeasures. Moreover, its Google
sign-in endpoint contains content (e.g. gif and JavaScript files) from
third-party websites, including optimizely.com, bing.com, licdn.
com, and quantserver.com.When the browser retrieves this content,
it sends the access_token in the Referer header to these third-party
sites. The permissions issuu.com requests from Google include
access to the user’s profile information and email address, so that
possession of the access_token gives access to this information
without user consent.

7 DISCUSSION
7.1 Implementation challenges
The main design goal of OAuthGuard is to protect user security
and privacy when using Google sign-in. Since each RP implements
its own Google sign-in endpoint, it is hard to devise a solution that
will work for all RPs. We next describe some of the difficulties we
encountered in designing OAuthGuard, and the trade-offs we made
to enable it to operate.

CSRF Protection As discussed in Section 5.1, OAuthGuard imple-
ments strict referer validation [3] to protect users against CSRF
attacks for RPs using HTTPS to deliver an OAuth 2.0 response.
This works as in this case the referer header domain should be
either the IdP’s domain or the RP’s domain. However, some RPs
use a proxy service (e.g. gigya) to implement Google sign-in, or
use a domain other than the domain registered with Google as
their Google sign-in endpoint. For example, chicagotribune.com
registers https://signin.chicagotribune.com/GS/GSLogin.aspx? as
its Google sign-in redirect_uri, but uses the domain https://ssor.
tribdss.com/assets/sso_popup.html to display its Google sign-in
button. If no other checks were implemented, OAuthGuard would
incorrectly report a CSRF attack on chicagotribune.com, as the ref-
erer header domain tribdss.com does not equal either google.com
or chicagotribune.com. In order to make OAuthGuard compatible

https://majestic.com/reports/majestic-million
issuu.com
issuu.com
issuu.com
optimizely.com
bing.com
licdn.com
licdn.com
quantserver.com
issuu.com
chicagotribune.com
https://signin.chicagotribune.com/GS/GSLogin.aspx?
https://ssor.tribdss.com/assets/sso_popup.html
https://ssor.tribdss.com/assets/sso_popup.html
chicagotribune.com
tribdss.com
google.com
chicagotribune.com

SSR’19, November 11, 2019, London, United Kingdom Li et al.

with such RPs, we chose to whitelist all such domain names in the
OAuthGuard source code. In total we whitelisted 11 domains (8%)
from the set of 137 RPs. Even given these difficulties, OAuthGuard
can protect user security for 48 of the 53 RPs (91%) which we found
to be vulnerable to CSRF attacks. The other five RPs use HTTP to
deliver the OAuth 2.0 response, and as a result the OAuthGuard
CSRF countermeasure does not work.

Privacy Protection As described in Section 6, OAuthGuard identi-
fied nine RPs that leak user tokens to third party websites, either
intentionally or unintentionally. OAuthGuard blocked all the token-
leaking HTTP requests for these nine RPs. In total, OAuthGuard
blocked 75 HTTP requests that leak user tokens for these nine RPs.
Blocking third party requests that leak tokens might prevent users
from using Google sign-in to log in to the relevant RPs. However,
we decided to block these requests as it will discourage users from
using insecure Google sign-in implementations; most importantly it
prevents unauthorised token disclosure, which could have a serious
negative impact on user privacy.

Impersonation Attack Warnings It is up to the RP to decide which
types of tokens it should submit back to its Google sign-in endpoint.
If tokens are used inappropriately, the only thing OAuthGuard can
do is to warn users that an RP is vulnerable to an impersonation
attack, and suggest that users should not employ Google sign-in at
these RPs.

HTTPS Upgrade If OAuthGuard detects an OAuth 2.0 response
transferred using HTTP, it attempts to redirect it using HTTPS. Of
course, this protection only works with RPs that implement HTTPS
on their website. In our study, OAuthGuard was able to upgrade the
protocol to HTTPS for 8 of the 13 RPs (62%) that use HTTP to trans-
fer an OAuth 2.0 response (in each case the HTTPS upgrade resulted
in a successful login). For RPs not supporting HTTPS, OAuthGuard
will by default make the Google sign-in service unavailable; to give
the user flexibility in which sites they are able to use, OAuthGuard
enables users to turn off the HTTPS upgrade function.

7.2 Comparison with WPSE
The OAuthGuard approach to protecting against CSRF attacks is
more efficient than that employed by WPSE, because WPSE blocks
any OAuth 2.0 response which does not contain a state parame-
ter (see [5], Section 4.1.1); Yang et al. [27] found that 61% of 405
websites using OAuth 2.0 (chosen from the 500 top-ranked US and
Chinese websites) did not implement CSRF countermeasures; this
means that WPSE would block the OAuth 2.0 response for all these
websites. Our approach to mitigating CSRF attacks is to use the
CSRF countermeasures recently proposed by Li and Mitchell [17].
These build on the observation that, when used correctly, the ref-
erer header of the OAuth 2.0 response should point to either the RP
domain or the IdP domain; this can be used to detect CSRF attacks.
Using this approach, OAuthGuard can protect users against CSRF at-
tacks even when RPs do not implement any CSRF countermeasures
(including the 61% of RPs in Yang’s study [27]).

7.3 Limitations
OAuthGuard detects vulnerabilities by analysing HTTP messages.
However, this approach cannot be used to detect vulnerabilities
that can only be found by deep server-side application scanning.

OAuthGuard WPSE
CSRF Attacks x x
Impersonation Attacks x
Privacy Leaks x x
Authorization Flow Misuse x
Unsafe Token Transfers x x
Mix-IdP Attack x

Table 1: Comparison between OAuthGuard and WPSE

For example, the IdP Mix-Up attack revealed by Fett et al. [9] could
be detected by RP developers using program analysis techniques,
but cannot be detected by an external tool with no awareness
of the site’s implementation details or internal state. Also, since
OAuthGuard blocks HTTP messages that leak user tokens to third-
party websites, it could make the Google sign-in service unavailable
for some RPs.

7.4 Disclosure
We reported our findings to seven RPs that are vulnerable to the
impersonation attacks described in Section 4. We contacted them
either by email or by submitting a website form. The responses were
disappointing. The lack of response is perhaps explained by the fact
that the vulnerabilities we identified are primarily in consumer-
oriented RP sites, who may not have dedicated security teams or
ways of effectively addressing security issues. So far we have only
received responses from two RPs in which they acknowledge our
reports and are working on fixing the vulnerability; of course, we
may receive more responses in the future — we certainly hope so.

7.5 Testing and Deployment
OAuthGuard has been informally tested by the authors and their
colleagues; no significant usability issues have so far been detected.
Of course, this is hardly a thorough test, consistent with the fact
that OAuthGuard is primarily intended as a prototype and proof-
of-concept. If it is to be very widely deployed, then further develop-
ment work will be required to ensure that the whitelist is expanded
to cover all well-used sites that would otherwise fail the checks.
Nonetheless, our informal tests reveal that OAuthGuard as it is
offers an enhanced level of user security and privacy protection.

OAuthGuard is freely available via the Chrome web store8, and
the source code is available at github9. We hope that researchers
and developers can help to further develop the tool, as well as
enabling support for other OAuth 2.0 systems, such as those of
Facebook and Microsoft.

Apart from end user deployment, OAuthGuard can also be used
by RP developers to check Google sign-in implementations. After
the usual development testing, and before launching support for
Google sign in, developers could usefully run OAuthGuard to detect
any residual vulnerabilities.

8https://chrome.google.com/webstore/detail/oauthguard/
phamalogfapdjegegmghgcihhpabocfn
9https://github.com/oauthguard/OAuthGuard

https://chrome.google.com/webstore/detail/oauthguard/phamalogfapdjegegmghgcihhpabocfn
https://chrome.google.com/webstore/detail/oauthguard/phamalogfapdjegegmghgcihhpabocfn
https://github.com/oauthguard/OAuthGuard

OAuthGuard: Protecting User Security and Privacy with OAuth 2.0 and OpenID Connect SSR’19, November 11, 2019, London, United Kingdom

8 CONCLUSION
We have described OAuthGuard, an OAuth 2.0 and OpenID Connect
vulnerability scanner and protector for RPs using Google OAuth
2.0 and OpenID Connect. It can be used to protect user security and
privacy even if RPs have not implemented OAuth 2.0 or OpenID
Connect correctly. We used OAuthGuard to check the security and
privacy properties of the 1,000 top-ranked websites supporting
Google sign-in; in particular OAuthGuard checked for five OAuth
2.0 or OpenID Connect vulnerabilities. Of the 137 sites (from the
1000) that employ Google Sign-in, 69 were found to suffer from at
least one serious vulnerability in their implementation of OAuth
2.0 or OpenID Connect. OAuthGuard is able to protect user security
and privacy for 56 of these 69 vulnerable RPs, and provide a warning
to users of the other 13.

REFERENCES
[1] Chetan Bansal, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Sergio

Maffeis. 2014. Discovering concrete attacks on website authorization by formal
analysis. Journal of Computer Security 22, 4 (2014), 601–657. https://doi.org/10.
3233/JCS-140503

[2] Chetan Bansal, Karthikeyan Bhargavan, and S. Maffeis. 2011. WebSpi and web
application models. (2011). http://prosecco.gforge.inria.fr/webspi/CSF/.

[3] Adam Barth, Collin Jackson, and John C Mitchell. 2008. Robust defenses for
cross-site request forgery. In Proceedings of the 2008 ACM Conference on Computer
and Communications Security, CCS 2008, Alexandria, Virginia, USA, October 27-31,
2008, Peng Ning, Paul F. Syverson, and Somesh Jha (Eds.). ACM, 75–88.

[4] Bruno Blanchet and Ben Smyth. [n.d.]. ProVerif: Cryptographic protocol verifier
in the formal model. ([n. d.]). http://prosecco.gforge.inria.fr/personal/bblanche/
proverif/.

[5] Stefano Calzavara, Riccardo Focardi, Matteo Maffei, Clara Schneidewind, Marco
Squarcina, and Mauro Tempesta. 2018. WPSE: Fortifying Web Protocols via
Browser-Side Security Monitoring. In 27th USENIX Security Symposium (USENIX
Security 18). 1493–1510.

[6] Suresh Chari, Charanjit S Jutla, and Arnab Roy. 2011. Universally Composable
Security Analysis of OAuth v2.0. IACR Cryptology ePrint Archive 2011 (2011),
526.

[7] Eric Y. Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick
Tague. 2014. OAuth Demystified for Mobile Application Developers. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, Scottsdale, AZ, USA, November 3-7, 2014, Gail-Joon Ahn, Moti Yung, and
Ninghui Li (Eds.). ACM, 892–903. https://doi.org/10.1145/2660267.2660323

[8] David L Dill. 1996. The Murphi Verification System. In Computer Aided Verifi-
cation, 8th International Conference, CAV ’96, New Brunswick, NJ, USA, July 31 –
August 3, 1996, Proceedings (Lecture Notes in Computer Science), Rajeev Alur and
Thomas A. Henzinger (Eds.), Vol. 1102. Springer, 390–393.

[9] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2016. A Comprehensive Formal
Security Analysis of OAuth 2.0. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October 24-28, 2016,
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi (Eds.). ACM, 1204–1215. https://doi.org/10.1145/2976749.2978385

[10] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2017. The Web SSO Standard
OpenID Connect: In-Depth Formal Security Analysis and Security Guidelines.
arXiv preprint arXiv:1704.08539 (2017).

[11] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul
Leach, and Tim Berners-Lee. 1999. RFC 2616: Hypertext transfer protocol–
HTTP/1.1. https://tools.ietf.org/html/rfc2616.

[12] Dick Hardt (editor). 2012. RFC 6749: The OAuth 2.0 Authorization Framework.
(October 2012). http://tools.ietf.org/html/rfc6749.

[13] Daniel Jackson. 2010. Alloy 4.1. (2010). http://alloy.mit.edu/community/.
[14] Wanpeng Li and Chris J. Mitchell. 2014. Security Issues in OAuth 2.0 SSO

Implementations. In Information Security — 17th International Conference, ISC 2014,
Hong Kong, China, October 12-14, 2014. Proceedings (Lecture Notes in Computer
Science), Sherman S. M. Chow, Jan Camenisch, Lucas Chi Kwong Hui, and Siu-
Ming Yiu (Eds.), Vol. 8783. Springer, 529–541. https://doi.org/10.1007/978-3-319-
13257-0_34

[15] Wanpeng Li and Chris J. Mitchell. 2016. Analysing the Security of Google’s
Implementation of OpenID Connect. In Detection of Intrusions and Malware,
and Vulnerability Assessment — 13th International Conference, DIMVA 2016, San
Sebastián, Spain, July 7-8, 2016, Proceedings (Lecture Notes in Computer Science),
Juan Caballero, Urko Zurutuza, and Ricardo J. Rodríguez (Eds.), Vol. 9721. Springer,
357–376. https://doi.org/10.1007/978-3-319-40667-1_18

[16] Wanpeng Li and Chris J. Mitchell. 2016. Does the IdP Mix-Up attack really work?
(2016). https://infsec.uni-trier.de/download/oauth-workshop-2016/OSW2016_
paper_1.pdf.

[17] Wanpeng Li, Chris J. Mitchell, and Thomas Chen. 2018. Mitigating CSRF attacks
on OAuth 2.0 Systems. In 16th Annual Conference on Privacy, Security and Trust,
PST 2018, Belfast, Northern Ireland, Uk, August 28-30, 2018, Kieran McLaughlin,
Ali A. Ghorbani, Sakir Sezer, Rongxing Lu, Liqun Chen, Robert H. Deng, Paul
Miller, Stephen Marsh, and Jason Nurse (Eds.). IEEE, 1–5. https://doi.org/10.
1109/PST.2018.8514180

[18] Wanpeng Li, Chris J. Mitchell, and Thomas Chen. 2018. Your Code Is My Code: Ex-
ploiting a CommonWeakness in OAuth 2.0 Implementations. In Security Protocols
XXVI - 26th International Workshop, Cambridge, UK, March 19-21, 2018, Revised
Selected Papers (Lecture Notes in Computer Science), Vashek Matyás, Petr Svenda,
Frank Stajano, Bruce Christianson, and Jonathan Anderson (Eds.), Vol. 11286.
Springer, 24–41. https://doi.org/10.1007/978-3-030-03251-7_3

[19] Torsten Lodderstedt, Mark McGloin, and Phil Hunt. 2013. RFC 6819: OAuth 2.0
Threat Model and Security Considerations. (2013). http://tools.ietf.org/html/
rfc6819.

[20] Suhas Pai, Yash Sharma, Sunil Kumar, Radhika M Pai, and Sanjay Singh. 2011.
Formal Verification of OAuth 2.0 Using Alloy Framework. In Proceedings of the
International Conference on Communication Systems and Network Technologies
(CSNT), 2011. IEEE, 655–659.

[21] Nat Sakimura, John Bradley, Michael Jones, Breno de Medeiros, and Mortimore
Chuck. 2014. OpenID Connect Core 1.0. (2014). http://openid.net/specs/openid-
connect-core-1_0.html.

[22] Mohamed Shehab and Fadi Mohsen. 2014. Securing OAuth implementations in
smart phones. In Fourth ACM Conference on Data and Application Security and
Privacy, CODASPY’14, San Antonio, TX, USA — March 03 - 05, 2014, Elisa Bertino,
Ravi S. Sandhu, and Jaehong Park (Eds.). ACM, 167–170. https://doi.org/10.1145/
2557547.2557588

[23] Quinn Slack and Roy Frostig. 2011. Murphi Analysis of OAuth 2.0 Implicit Grant
Flow. (2011). http://www.stanford.edu/class/cs259/WWW11/.

[24] San-Tsai Sun and Konstantin Beznosov. 2012. The Devil is in the (Implementation)
details: An Empirical Analysis of OAuth SSO Systems. In the ACM Conference
on Computer and Communications Security, CCS ’12, Raleigh, NC, USA, October
16-18, 2012, Ting Yu, George Danezis, and Virgil D. Gligor (Eds.). ACM, 378–390.

[25] RuiWang, Shuo Chen, and XiaoFengWang. 2012. SigningMe onto Your Accounts
through Facebook and Google: A Traffic-Guided Security Study of Commercially
Deployed Single-Sign-On Web Services. In IEEE Symposium on Security and
Privacy, SP 2012, 21-23 May 2012, San Francisco, California, USA. IEEE Computer
Society, 365–379.

[26] Ronghai Yang, Wing Cheong Lau, and Shangcheng Shi. 2017. Breaking and
Fixing Mobile App Authentication with OAuth2.0-based Protocols. In Applied
Cryptography and Network Security - 15th International Conference, ACNS 2017,
Kanazawa, Japan, July 10-12, 2017, Proceedings (Lecture Notes in Computer Science),
Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi (Eds.), Vol. 10355. Springer,
313–335. https://doi.org/10.1007/978-3-319-61204-1_16

[27] Ronghai Yang, Guanchen Li, Wing Cheong Lau, Kehuan Zhang, and Pili Hu.
2016. Model-based Security Testing: An Empirical Study on OAuth 2.0 Imple-
mentations. In Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, AsiaCCS 2016, Xi’an, China, May 30 – June 3,
2016, Xiaofeng Chen, XiaoFeng Wang, and Xinyi Huang (Eds.). ACM, 651–662.
https://doi.org/10.1145/2897845.2897874

[28] Yuchen Zhou and David Evans. 2014. SSOScan: Automated Testing of Web
Applications for Single Sign-On Vulnerabilities. In Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August 20-22, 2014, Kevin Fu and Jaeyeon
Jung (Eds.). USENIX Association, 495–510. https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/zhou

THE APPENDIX
1 // An OAuth 2.0 request metadata
2 // the requestURL and state in the request are trimmed

for readability
3 IdP: "https://accounts.google.com"
4 IdPProtocol: "https:"
5 RP: "www.dropbox.com"
6 RPDomain: "dropbox.com"
7 RPProtocol: "https:"
8 clientID: "801668726815.apps.googleusercontent.com"
9 origin: null
10 redirectURI: "https://www.dropbox.com/google/authcallback

"
11 referer: "https://www.dropbox.com/"
12 requestURL: "https://accounts.google.com/o/oauth2/auth"
13 responseType: "code"
14 scope: "https://www.google.com/m8/feeds email profile"

https://doi.org/10.3233/JCS-140503
https://doi.org/10.3233/JCS-140503
http://prosecco.gforge.inria.fr/webspi/CSF/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://doi.org/10.1145/2660267.2660323
https://doi.org/10.1145/2976749.2978385
https://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc6749
http://alloy.mit.edu/community/
https://doi.org/10.1007/978-3-319-13257-0_34
https://doi.org/10.1007/978-3-319-13257-0_34
https://doi.org/10.1007/978-3-319-40667-1_18
https://infsec.uni-trier.de/download/oauth-workshop-2016/OSW2016_paper_1.pdf
https://infsec.uni-trier.de/download/oauth-workshop-2016/OSW2016_paper_1.pdf
https://doi.org/10.1109/PST.2018.8514180
https://doi.org/10.1109/PST.2018.8514180
https://doi.org/10.1007/978-3-030-03251-7_3
http://tools.ietf.org/html/rfc6819
http://tools.ietf.org/html/rfc6819
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.1145/2557547.2557588
https://doi.org/10.1145/2557547.2557588
http://www.stanford.edu/class/cs259/WWW11/
https://doi.org/10.1007/978-3-319-61204-1_16
https://doi.org/10.1145/2897845.2897874
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/zhou
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/zhou

SSR’19, November 11, 2019, London, United Kingdom Li et al.

15 state: "ABAm_Lg53XmdhkeMTOmFKH5RULv2egJHsRXl9KHhp6Tazub"
16
17 // an OAuth 2.0 response metadata
18 // the referer, responseURL and state in the response are

trimmed for readability
19 IdP: "google.com"
20 RPDomain: "dropbox.com"
21 RPHost: "www.dropbox.com"
22 RPProtocol: "https:"
23 access_token: ""
24 code: "4/gKfVUfaN5n−9tmo3RYnYActwrYWIXAwnsXRA7fcUl6E"

25 cookie: ""
26 data: ""
27 id_token: ""
28 method: "GET"
29 referer: "https://accounts.google.com/signin/oauth/

oauthchooseaccount?"
30 responseURL: "https://www.dropbox.com/google/authcallback

?"
31 state: "ABAm_Lg53XmdhkeMTOmFKH5RULv2egJHsRXl9KHhp6Tazub"

Listing 1: The OAuth 2.0 Request and Response metadata

	Abstract
	1 Introduction
	2 Background
	2.1 OAuth 2.0
	2.2 OpenID Connect
	2.3 OAuth 2.0 used for SSO

	3 Analysing the security of OAuth 2.0
	4 Vulnerabilities
	5 OAuthGuard
	5.1 Vulnerability Mitigation
	5.2 OAuth 2.0 Detector
	5.3 Vulnerability Analyser
	5.4 Vulnerability Protector

	6 A Case Study
	7 Discussion
	7.1 Implementation challenges
	7.2 Comparison with WPSE
	7.3 Limitations
	7.4 Disclosure
	7.5 Testing and Deployment

	8 Conclusion
	References

