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Much of the work on conceptual modeling involves the use of an entity-relationship model in
which binary relationships appear as associations between two entities. Relationships involv-
ing more than two entities are considered rare and, therefore, have not received adequate
attention. This research provides a general framework for the analysis of relationships in
which binary relationships simply become a special case. The framework helps a designer to
identify ternary and other higher-degree relationships that are commonly represented, often
inappropriately, as either entities or binary relationships. Generalized rules are also provided
for representing higher-degree relationships in the relational model. This uniform treatment
of relationships should significantly ease the burden on a designer by enabling him or her to
extract more information from a real-world situation and represent it properly in a conceptual
design.

Categories and Subject Descriptors: H.1.0 [Models and Principles]: General; H.2.1 [Data-
base Management]: Logical Design—Data models; H.2.7 [Database Management]: Data-
base Administration—Security, integrity, and protection
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1. INTRODUCTION
Conceptual design has long been recognized as the most crucial phase of
the database design process, with further development of database technology
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not likely to change that situation Batini et al. [1992, p. 11]; Ramesh and
Browne [1999]. During conceptual design the information requirements of
different end-users are elicited and represented in a conceptual model; this
enables the designer to obtain a system-independent global view of a given
application. At this stage the task of a database designer is to understand,
structure, and represent the meaning of relevant real-world objects. Hence,
models are needed that naturally and directly reflect the user’s conception
of the real world [Mattos et al. 1992-93].

The entity-relationship (ER) model, originally proposed by Chen [1976],
has been used widely for conceptual design Lenzerini and Nobili [1990].1 In
the ER model, real-world objects are represented as entities, and associa-
tions among entities are captured by relationships. Properties of entities
and relationships are represented as attributes. The number of entities
participating in a relationship is usually referred to as the degree of the
relationship. Since its inception, the ER model has undergone many
additions and enhancements that increase its expressive power and obtain
better conceptual designs [Batini et al. 1992; Biskup 1995; Hull and King
1987].

In conceptual modeling, entities are usually considered to be the most
important component. This is partially evident from the existence of many
special constructs for entities, such as a weak entity, composite, or aggre-
gate entity, and generalization hierarchy. Relationships have not received
the same amount of attention in the database design literature [Batra and
Zanakis 1994; Siau et al. 1995]. Ternary and other higher-degree relation-
ships, in particular, have received very little rigorous analysis; the primary
focus has been on binary relationships [Batra and Zanakis 1994; McAllister
and Sharpe 1998]. Supporters of the binary models advocate that higher-
degree relationships are rare in real-world applications and, when they
occur, can be represented by multiple binary relationships [Batini et al.
1992, p. 45]. However, there is ample evidence that these higher-degree
relationships may occur frequently in some real-world situations, and many
database designers, in the absence of a general framework for representing
higher-degree relationships, tend to represent them, often inappropriately,
as binary relationships [Batra and Antony 1994; Batra and Zanakis 1994].
Furthermore, the semantics of a higher-degree relationship is not always
the same as multiple binary relationships or a gerund [Song et al. 1995].
Finally, even if a higher-degree relationship can be represented by multiple
binary relationships, the former often provides a more “natural” represen-
tation of the real world [Batini et al. 1992, p. 45].

The “naturalness” of a representation depends upon the application being
modeled and the users’ perceptions of it. Consequently, naturalness is a
relative and context-dependent concept. However, irrespective of what is
perceived to be “natural,” a conceptual model should have sufficient rich-

1The NIAM model Nijssen and Halpin [1989], although not as widely used as the ER model,
has received some attention as a conceptual model; Laender and Flynn [1993] provide a useful
overview and comparison of the two.
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ness so that all possible user perceptions can be modeled. Moreover, there
must be a systematic process for translating a conceptual design into a
logical database design. Thus, a generalized framework for representing
relationships is needed.

Empirical evidence [Batra and Antony 1994; Batra et al. 1990; Goldstein
and Storey 1989; Ramesh and Browne 1999], as well as our own practical
experience, suggests that the misrepresentation of relationships is a com-
mon error in the design process; such mistakes in the representations of
entities and attributes are less frequent. According to Batra and Antony
[1994], part of the problem may be that, given a set of entities, there are
many different possible configurations of relationships. We believe that the
lack of a generalized framework for the representation and analysis of
relationships is also partially responsible for these design errors. It should
be possible to reduce these errors significantly by developing a uniform
treatment for all types of relationships. Furthermore, this framework is
useful in developing database design systems where the conceptual model-
ing is done by a machine, without the benefit of the intervention of a
human designer [Lloyd-Williams 1993; Storey and Goldstein 1988; Storey
and Goldstein 1993; Storey et al. 1997].

In developing a design framework based on relationships, the issue of
completeness is a critical one. There are four important aspects to consider
when analyzing relationships: (1) cardinalities or mapping ratios; (2) the
degree of a relationship; (3) the recursive nature of a relationship (i.e., an
entity participating more than once in a relationship); and (4) interrelation-
ship constraints. Most real-world situations can be modeled by analyzing
these four aspects [Batini et al. 1992; Rochfeld and Negros 1992-93].
Semantic relationships such as generalization/specialization (is-a) are also
captured by this framework. For example, a specialization hierarchy can be
represented by binary relationships between the generic and the specific
entity types having mapping ratios of (1,1) on the specialization side and
(0,1) on the generalization side, together with interrelationship constraints
that specify the overlapping-disjoint/partial-total features of the hierarchy.
The objective of this research is to provide a uniform analysis of all the four
aspects mentioned above. We note that the completeness of a database
design approach is ultimately an empirical issue. By applying this ap-
proach in real-world situations, one could address the necessity, complete-
ness, and usability of different constructs for conceptual modeling. The
specific contributions of our research are as follows:

● A generalized analysis of relationships is presented, in which common
binary relationships become a special case (Section 2). This should
eliminate the usual bias, as observed by Batra and Antony [1994],
towards binary relationships.

● Guidelines are provided for identifying ternary and higher-degree rela-
tionships that are commonly misrepresented as binary relationships
(Section 3).
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● The existence dependence of a relationship on other relationships is
analyzed and rules are provided for identifying derived relationships
(Section 4). In this context, a special relationship construct, called the
weak relationship, is introduced and its semantics analyzed.

● The alternative representation of a higher-degree relationship as several
binary relationships is analyzed (Section 5).

● Generalized notations are developed for recursive relationships so that
they can be treated in a uniform manner under our framework (Section
6). In doing so, we also identify a particular class of recursive relation-
ships called symmetric recursive relationships.

● Basic design implications obtained from our analysis are stated so that
they can be useful to a designer. They are explicit enough to be incorpo-
rated into an automated database design tool.

● Rules are provided for representing higher-degree relationships in the
relational model (Section 7).

The results of our research have been implemented as a prototype database
design system, called the Database Designer; it is implemented using
Microsoft Visual Basic and runs on the Microsoft Windows platform. The
system implements most of the important results discussed in this paper.
Currently, the system acquires an ER model, checks it for consistency and
appropriateness, makes suggestions for improvement, and generates the
SQL code for the creation of the relational structure. Minor improvements
to user interfaces, and implementation of other results from previous work
(not explicitly discussed here), would yield a fully working database design
system.

2. BASIC NOTATION FOR RELATIONSHIPS

An entity instance is a “thing” or an object that has a separate identity in
the real world. Each entity instance possesses certain properties; these are
usually referred to as attributes. An entity type is a set of entity instances
with a similar set of properties. For brevity, here we refer to an entity type
as an entity; an entity instance is specifically distinguished from an entity
type. A relationship instance is an association among several entity in-
stances. A relationship type (or a relationship in short) is a set of similar
relationship instances. Consider, for example, the relationship shown in
Figure 1. There are four entities (DOCTOR, PRESCRIPTION, PATIENT, and
DRUG) connected by this relationship; it therefore has a degree of four
[Elmasri and Navathe 1994]. Each relationship instance can be viewed as a
tuple, {dr,pt,rx,dg}, where “dr” is an instance of DOCTOR, “pt” is an instance
of PATIENT, “rx” is an instance of PRESCRIPTION, and “dg” is an instance of
DRUG. Table I shows some sample instances of the relationship and the
participating entities. In Figure 1, the numbers next to the line joining an
entity with the relationship are the min-max cardinalities representing the
participation constraints of an entity in the relationship [Batini et al. 1992,
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p. 23]. For example, the numbers ~0,*! next to DOCTOR indicate that a
particular doctor may not participate in the relationship at all (such as
Dickert), or may do so many (*) times (such as Davis). So given an instance
of DOCTOR, there may be no relationship instance for that doctor, or there
may be several. Similarly, the numbers (1,1) next to PRESCRIPTION indicate
that, for each prescription instance, there is exactly one instance of the
relationship.

Formally, given entities E1, E2, . . . , En, a relationship R among them is
a set of ordered n-tuples ^e1, e2, . . . , en& such that ei [ Ei; i.e., R , E1

3 E2 3 . . . 3 En. The degree of a relationship is the number of entities
connected to it. Figure 2 shows a relationship R of degree n. If % , $E1,
E2, . . . , En%, then the restriction of R on %, written R@%#, is the set
$r@%#r [ R%, where r@%# is a subtuple containing only instances of
entities in % (in the appropriate order).

Fig. 1. A relationship of degree four.

Table I. Example Instances of Relationship in Figure 1 and Participating Entities

DOCTOR PATIENT PRESCRIPTION DRUG

Davis Perry prx01 Drefludan
Dickert Peters prx02 Drisperdol
Deng Porter prx03 Drenova
Dougan Phang prx04

Phang prx04
prx05
prx06

issues

Davis Porter prx01 Drisperdol
Davis Phang prx02 Drefludan
Dougan Peters prx03 Drefludan
Davis Porter prx04 Drefludan
Dougan Peters prx05 Drefludan
Deng Phang prx06 Drisperdol
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Let Ei be an entity participating in a relationship R. Not all instances of
Ei need to participate in R. Given an instance e [ Ei, we define R ~Ei, e! ,

R as the set of all ordered tuples containing e in the appropriate position of
Ei. By E9 i~R! , Ei, we define the set of all instances of Ei that participate
in R at least once. In other words, E9 i~R! 5 $eR ~Ei, e! Þ À%. When there is
no room for confusion, we write E9 i in place of E9 i~R!. The minimum (lower)
and maximum (upper) cardinalities of Ei with respect to R are given by
(respectively):

mL~Ei, R! 5 min
e[Ei

?R~Ei, e!? and mU~Ei, R! 5 max
e[Ei

?R~Ei, e!?,

where ?X? stands for the number of elements in set X. For example,
mL~Ei, R! 5 ci and mU~Ei, R! 5 di in Figure 2. The min-max cardinali-
ties can be any nonnegative integer; however, three values are generally
accepted as the most useful: zero (0), one (1), and “many” (*, an unrestricted
value of more than one). Based on the min-max cardinalities of the
participating entities, a relationship can be classified into one of three
categories:

● Functional relationship: If a relationship involves an entity with (1,1)
min-max cardinalities, it is a functional relationship. In Figure 1, the
min-max cardinalities of PRESCRIPTION are (1,1). This implies that, given
an instance of PRESCRIPTION, we can find exactly one instance of the
relationship “issues,” and hence, exactly one instance of each of DOCTOR,
PATIENT, and DRUG. Therefore, the relationship can be viewed as a
function, issues: PRESCRIPTION3DOCTOR3PATIENT3DRUG.

● Partial functional relationship: A partial functional relationship is one in
which no entity has (1,1) min-max cardinalities, but at least one entity
has min-max cardinalities of (0,1). An example is shown in Figure 3,
where a student must choose a faculty advisor at the time of selecting
his/her major area. A student is not allowed to have more than one
major, and some students may not have chosen their area yet. Denoting

Fig. 2. A relationship of degree n.
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by S9 the set of students who have already chosen their major area, we
can express the relationship as a function, advises:3FACULTY3MAJOR

AREA.

● General relationship: All other relationships fall into this category; i.e., a
general relationship is one in which the min-max cardinalities of a
participating entity is neither (1,1) nor (0,1), as shown in Figure 4.

A relationship may have attributes [Elmasri and Navathe 1994;
Tsichritzis and Lochovsky 1982]; these are the properties of the combina-
tion of all the participating entities, and not just of a few of them. In other
words, an attribute A is a function from the participating entity instances
to the value-set V of the attribute, A : E91~R! 3 E92~R! 3 . . . 3 E9n~R!
3 V. For example, the relationship in Figure 1 may have an attribute
“date,” which specifies the date on which a prescription is issued.

In the ER model, a relationship and its participating entities are some-
times aggregated into a single concept called an aggregate or composite
entity [Elmasri and Navathe 1994, p. 636; Smith and Smith 1977]. The
composite entity can then participate in other relationships. The attributes
of the relationship are also the attributes of the composite entity. Consider
the relationship “offers” in Figure 5. This relationship is also represented
as a composite entity SECTION. Relationship attributes such as “final-exam-
date” could be considered as attributes of SECTION. In addition, SECTION

participates in two separate relationships with STUDENT and TEXTBOOK.
Note that STUDENT and TEXTBOOK must be related to the composite entity

Fig. 3. A partial functional relationship.

Fig. 4. A general relationship.
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SECTION only, and not to just one of its constituents. This is because a
textbook is used for (or a student decides to enroll in) a specific course
taught by a specific instructor during a specific semester. The same course
taught by two different instructors (or during two different semesters) may
use different textbooks.

3. ASSESSING THE DEGREE OF A RELATIONSHIP

The designer’s lack of familiarity with higher-degree relationships might
result in inappropriate representations. Batra and Antony [1994] found
that design errors pertaining to the degree of a relationship occur more
frequently than connectivity errors. Their work suggests that there is a
greater tendency to model higher-degree relationships as lower degree
relationships than vice versa. It appears that the designer’s familiarity
with binary relationships create an “availability bias” towards these rela-
tionships over those of higher-degree.

To illustrate the types of mistakes a designer is likely to make, consider
the relationship in Figure 4, and its alternative representation in Figure 6
where this situation is modeled as two independent binary relationships.
These two representations are not equivalent [Elmasri and Navathe 1994],
so only one of them can be appropriate in a specific situation. To under-
stand why, assume that Figure 6 is the appropriate representation for a
given application. Then the representation in Figure 4 results in a violation
of 4NF in the corresponding relational representation. Alternatively, if
Figure 4 is the appropriate representation, then some spurious relationship

Fig. 5. SECTION as a composite entity.

Fig. 6. An alternative representation of the relationship in Figure 4.
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instances may be introduced when the decomposed view shown in Figure 6
is joined. As a result, the choice between an n-ary relationship and several
binary ones is often “tricky,” and the appropriateness of the conceptual
design depends heavily on the semantics of the application [Elmasri and
Navathe 1994, pp. 60-62]. Clearly, guidelines are needed to assist the
designer in identifying the correct degree of a relationship.

As shown in Figure 7, the correctness of the degree of a relationship
could be analyzed using two approaches: (i) the analysis of the constructs
that make up the relationship (schema-level analysis), and/or (ii) the
analysis of the materialized instances of the relationship (instance-level
analysis). A materialized relationship instance is a combination of several
real-world entity instances; whether these entity instances should be
combined together into a relationship instance can be answered by verify-
ing whether there exists a real-world decision/event that combines them;
Section 3.1 discusses this aspect.

Structurally (at the schema level), a relationship has two main compo-
nents: participating entities and relationship attributes. Relationship at-
tributes are properties of all the participating entities and can provide
important information about the degree of a relationship as shown in
Section 3.2. A participating entity, by itself, does not shed any light on the
degree of the relationship. However, how an entity associates with another
provides important consistency checks about the overall degree of the
relationship McAllister [1998]. This is why it is necessary to examine
pairwise look-across cardinalities for relationships; Section 3.3 discusses
this issue.

Fig. 7. A framework for assessing the degree of a relationship.
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3.1 Relationship Instances as Materialization of Real-World Decisions

The choice between a higher-degree relationship and several binary ones
depends on a real-world decision and its implementation, of which we may
view a relationship instance to be the result. Consider, for example, the
alternate representation of Figure 5 as a relationship of degree six as
shown in Figure 8. A closer examination of the relationship, and its
underlying real-world decisions, however, reveals that STUDENT and TEXT-
BOOK should not be part of this relationship. This is because the fact that
an instructor teaches a course during a particular semester is independent
of who is enrolled in the course or what text is being used. Similarly, the
choice of a specific textbook for a course is a separate decision. Hence, the
enrollment and textbook decisions are to be represented as separate
relationships, and should not be unnecessarily crowded and confused with
another independent decision. Also note that the decision of a student to
enroll in a course may depend on the instructor, the course, and the time of
the course offering, as does the choice of a textbook. As a result, STUDENT

and TEXTBOOK entities must participate in a relationship with the compos-
ite entity SECTION, and not only with its constituents. This is why Figure 5
represents the relationship of degree four as a composite entity.

In order to ascertain whether two decisions are similar, the designer may
rely on two factors: (i) the decision maker and (ii) the time-frame of the
decision. In the above example, there are three distinct decision makers. A
student decides on his or her enrollment and an instructor decides on the
textbook for the course that he or she is teaching. The assignment of an
instructor to a course may be made by some other decision-maker —
usually the chairperson of a department. Similarly, the time when a
decision is made to offer a course is different than when the textbook for
that course is selected (or when a student enrolls in it). This clearly
indicates that there is a need for three separate relationships.

DESIGN IMPLICATION 1. Real-world decisions are considered dissimilar if
they involve different decision makers or are made during different time-

Fig. 8. A relationship of degree six.
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frames. Two facts arising from two independent decisions should not be
merged into a single relationship instance.

3.2 Relationship Attributes

Relationship attributes represent properties of the combination of all the
participating entities. This fact can be used to identify whether irrelevant
entities are connected to a relationship, or whether relevant entities have
been excluded. If a relationship has an attribute that is a function of a set
of entities different from the set of entities participating in the relation-
ship, then there should be a new relationship among the former set of
entities.

Consider the ternary relationship “supplies” in Figure 4. Assume that
this relationship has an attribute “price.” If the price depends only on the
supplier and the part, and not on the project, then we should have a binary
relationship between SUPPLIER and PART. The original ternary relationship
may then be broken into two binary relationships as shown in Figure 6.
However, if the attribute “price” depends on the project as well, then the
above decomposition is not appropriate. We state this more formally as
follows:

DESIGN IMPLICATION 2. Let R be a relationship among entities in the set
%. Let A be an attribute of R, with V as the value set of A, and let %9 Þ % be
a set of entities. If A depends only on the entities in %9, i.e., if A can be
expressed as A : 3E[%9 E9~R! 3 V, then a relationship R9 should be created
among E [ %9, and A should become an attribute of R9. The appropriate-
ness of R should be reexamined in the presence of R9.

If A is a function of %9, then the entities in %9 are clearly related with one
another, and this association needs to be captured in a new relationship R9.
This is analogous to the functional dependency-based arguments provided
by Hainaut et al.[1993].

3.3 Look-Across Cardinalities for Higher-Degree Relationships

Consider a binary relationship, i.e., set n 5 2 in Figure 2. The min-max
cardinalities for E1 are ~c1, d1!; those for E2 are ~c2, d2!; they indicate the
minimum and the maximum number of times an instance of an entity can
participate in R. These numbers can also be interpreted as look-across
cardinalities (LAC) [Thalheim 1992; McAllister and Sharpe 1998]:

● R.LAmin~Ei! 5 ci is the minimum number of instances of the other
entity ~Ej, j Þ i! that an instance of Ei can “see” when it “looks across” R.

● R.LAmax~Ei! 5 di is the maximum number of instances of the other
entity ~Ej, j Þ i! that an instance of Ei can “see” when it “looks across” R.

The fundamental problem in applying this interpretation to higher-degree
relationships is that an entity participating in such a relationship “sees”
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more than one entity “looking across” the relationship. In this section, we
describe how to interpret these numbers for higher-degree relationships
and show how they can be used to identify the appropriate degree of a
relationship. Our design rule is based on considering only two entities at a
time. Consider the relationship R as shown in Figure 2. By R.LAmin~Ei,
Ej!, i Þ j, we denote the minimum number of instances of Ej that an
instance of Ei can “see” when it “looks across” R, and by R.LAmax~Ei,
Ej!, the maximum. The pairwise LACs must be consistent in the following
manner:

DESIGN IMPLICATION 3. Let R and Ei, i 5 1,2, . . . , n, be as in Figure 2.
Then, for R to be truly of degree n, R.LAmin~Ei, Ej! 5 R.LAmin~Ei, Ek!
and R.LAmax~Ei, Ej! 5 R.LAmax~Ei, Ek! must hold for all distinct i, j,
and k. If these conditions hold, then the min-max cardinalities for Ei in R,
i 5 1, 2, . . . , n, are given by (for any j Þ i):

mL~E1, R! 5 R.LAmin~Ei! 5 R.LAmin~Ei, Ej!, and

mU~E1, R! 5 R.LAmax~Ei! 5 R.LAmax~Ei, Ej!.

The above conditions require that all the minimum and the maximum
pairwise LACs for an entity must match. A mismatch in the pairwise LAC
indicates that the relationship incorrectly combines two or more isolated
real-world decisions. Consider the ternary relationship “supplies” in Figure
4, and assume that the following is true:

supplies.LAmin~PART, SUPPLIER! 5 1 and

supplies.LAmin~PART, PROJECT! 5 0

This means that, in the “supplies” relationship, an instance of PART must be
associated with at least one instance of SUPPLIER, but need not have any
association with any instance of PROJECT. Therefore, some instances of
PART may not participate in the relationship at all, and the ternary
relationship cannot represent the fact that every instance of PART is
associated with at least one instance of SUPPLIER. The relationship between
PART and SUPPLIER must then be independent of the relationship between
PART and PROJECT. Similar arguments can be used for the maximum LAC
as well.

It should be noted that a violation of the above two rules implies an error
in the degree of a relationship. However, their compliance must not be
taken as an indication that the higher-degree relationship is the appropri-
ate representation. These rules serve as another level of verification for the
consistency of the representation, and cannot be substituted for the seman-
tics of the application. Furthermore, the use of LAC need not be limited to
just verifying the consistency of a higher-degree relationship. LACs may
also be used to determine how a higher-degree relationship should be
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broken into several lower-degree relationships if the conditions in the
above design implication are not satisfied. We state this formally in the
following design implication.

DESIGN IMPLICATION 4. Let R and Ei be as above. Assume that the LACs
for E1 are inconsistent (based on Design Implication 3). Then, the set of
entities $E2, E3, . . . , En% can be partitioned into subsets %k, k 5 1,
2, . . . , n9, for some n9 , n, such that R.LAmin~E1, Ej! 5 R.LAmin~E1,
Ej9! and R.LAmax~E1, Ej! 5 R.LAmax~E1, Ej9! must hold for all distinct
Ej, Ej9 [ %k, k 5 1, 2, . . . , n9. (The possibility that the above conditions
are trivially satisfied for some k because %k is a singleton is not excluded.)
Then, R could be broken into relationships Qk involving E1 and the entities
in %k, k 5 1, 2, . . . , n9. The min-max cardinalities of E1 in Qk are given
by (for any Ej [ %k):

mL~E1, Qk! 5 R.LAmin~E1, Ej!, and

mU~E1, Qk! 5 R.LAmax~E1, Ej!

4. WEAK RELATIONSHIPS

In this section we introduce a new construct, called the weak relationship,
to model interrelationship dependence. A weak relationship is a relation-
ship, the existence of whose instances depends on the instances of (one or
more) other relationships. Consider the relationships: “CUSTOMER rents
CAR” and “CUSTOMER returns CAR,” both of which may be important for a car
rental agency. Of course, a car cannot be returned if it has not been rented.
Thus, the second relationship is a weak relationship.

As shown in Figure 9, weak relationships are represented as double-lined
diamonds. An arrow from a relationship to a weak relationship represents
the inclusion dependency of the latter on the former. Similar interrelation-
ship integrity constraints have also been identified by Laender and Flynn
[1993] and Rochfeld and Negros [1992-93]. Weak relationships may arise in
many real-world situations, such as when two relationships are connected
by a time sequence, as shown in Figure 9(a), or when one relationship

Fig. 9. Two examples of weak relationships.
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represents a possibility and another represents the actual realization, as
shown in Figure 9(b).

In conceptual design, we often use relationships to represent the fact that
one entity can “do” something with another entity. For example, the
relationships “INSTRUCTOR can-teach COURSE,” “SUPPLIER can-supply PART,”
or “SINGER can-sing ROLE” all show the mere possibility of an instance of
one entity being associated with an instance of another; they do not depict
the actual realization of the association. We call these possibility relation-
ships. When the possibilities are actually realized, they must be repre-
sented as separate relationship instances. However, a realization actually
depends on whether the possibility existed in the first place. For instance, a
singer would be assigned to sing a role only if she or he can do it.
Furthermore, there may be more than one realization of an instance of a
possibility relationship. If a singer can sing a particular role, she may do so
in more than one performance. As a result, the weak relationship may
involve additional entities that are not part of the possibility relationship.
For example, the weak relationship shown in Figure 9(b) involves an
additional entity PERFORMANCE. We state these facts in the following:

DESIGN IMPLICATION 5. Let % be a set of entities. If P represents a
possibility relationship involving entities in %, then the materialized associ-
ations among these entities (and perhaps others) should be represented as a
weak relationship, say Q, satisfying the inclusion dependency Q@%# , P.
Furthermore, d~P! # d~Q!, where d~R! represents the degree of a relation-
ship R.

As shown in Figure 10, weak relationships must satisfy one of two types
of interrelationship dependence: (i) inclusion dependency, or (ii) exclusion
dependency. These dependencies are formally described in Sections 4.1 and
4.2. An important special case of these dependencies corresponds to derived
relationships, DR in Figure 10, discussed in Section 4.3.

Although the examples in Figure 9 illustrate the dependence of only one
relationship on another, it is straightforward to extend this notion to
several relationships. In order to generalize the notion of weak relation-

Fig. 10. A classification of weak relationships.
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ships, we first define a composite relationship. Let Ri be a relationship
among entities in % i, i 5 1, 2, . . . , n. A relationship Q among entities in
ø i51

n % i is called a composite of R1, R2, . . . , Rn, written Q 5 R1 R R2 R

. . . R Rn, if and only if all q [ Q satisfies q~% i! [ Ri, for all i 5 1,
2, . . . , n. This is analogous to the natural join operation in the relational
algebra.

4.1 Inclusion Dependency

Consider the relationships in Figure 11. This figure represents a situation
where the completion of a project requires certain skills of the employees
assigned to the project. Since different employees have different skills, the
employee assignment for a project should be limited to only those employ-
ees who have the skills required by the project. In this case, the composite
“has R needed-by” captures which employees have the required skills to
contribute to a project. An inclusion dependency “assigned , has R

needed-by (EMPLOYEE,PROJECT)” ensures that an employee gets assigned to
a project only if he/she has the required skills. In Figure 11, this inclusion
dependency is shown as an arrow from the composite “has R needed-by” to
“assigned.”

It is also possible for the composite to be a weak relationship. Consider,
for example, Figure 12, which represents the situation where a supplier
fills an order containing different parts, and different suppliers can supply
different parts. In this case, the composite “fills Rcontains” captures the
list of parts a supplier would supply by filling a particular order. By having

Fig. 11. A weak relationship dependent on a composite relationship.

Fig. 12. A composite of two weak relationships.
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an inclusion dependency “fills R contains(SUPPLIER,PART) , can-supply,” it
is possible to ensure that a supplier supplies only those parts that he/she
can supply. More generally, we can say the following:

DESIGN IMPLICATION 6. Let Q and R be two relationships among entities
in $ and %, respectively; the possibility that Q or R (or both) could be a
composite relationship(s) is not excluded. Let ^ 5 $ ù %. If Q is a weak
relationship with an inclusion dependency on R, then Q must satisfy Q~^!

, R~^!, i.e., if q [ Q, then there must exist r [ R such that q~^! 5 r~^!.

4.2 Exclusion Dependency

In order to understand the concept of exclusion dependency, consider the
entities and relationships shown in Figure 13. This figure models a
situation where research papers written by different authors are assigned
to different reviewers. However, an assignment cannot be made if a
reviewer has a “conflict of interest” with one or more authors of a paper. In
this case, the composite “assigned R by” represents the reviewer who is
assigned an author’s paper, and the relationship “conflict” captures the
reviewer who has conflicts of interest with an author. An exclusion depen-
dency should be enforced to ensure that “conflict” and “assigned
R by(REVIEWER,AUTHOR)” are mutually exclusive. This is shown as a dotted
line in Figure 13. It should be noted that, unlike inclusion dependency,
there is no directionality in expressing an exclusion dependency. This is
because in the case of an inclusion dependency, one relationship is a subset
of another; the order of the relationships is important. In the case of an
exclusion dependency, a relationship instance can not be part of two
relationships at the same time; clearly, the order of these relationships
does not matter. This is why all the relationships in Figure 13 are shown as
weak relationships. We can now state this more formally as follows:

DESIGN IMPLICATION 7. Let Q, R, and ^ be as in Design Implication 6. Q
and R are weak relationships with mutual exclusion dependency if they
satisfy Q~^! ù R~^! 5 À, i.e., if for all q [ Q and r [ R, q~^! Þ r~^!.

Fig. 13. Weak relationships with exclusion dependency.
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4.3 Derived Relationships

A special type of a weak relationship is a derived or redundant relation-
ship. A derived relationship is one whose instances can be inferred from
instances of other relationships without ambiguity [Batra and Zanakis
1994; Rauh and Stickel 1993; Teorey et al. 1986]. Formally speaking:

DESIGN IMPLICATION 8. Let R1, R2, . . . Rn be relationships and let % be
the set of all entities that participate in at least one of these relationships.

Define R 5 R1 R R2 R . . . R Rn and R# 5 $r~%!r~%! [y R%. Further, let
Q be a relationship among entities in the set $, where $ , %. Q can be
derived from R1, R2, . . . Rn if either Q~$! 5 R~$! or Q~$! 5 R~$!.

Since the existence of derived relationships increases redundancy is a
database, it is important to identify them in the conceptual model. How-
ever, a derived relationship usually exists because it provides a natural
view of the context to the user. It is, therefore, necessary that these user
views are recreated from the stored data. Batra and Zanakis [1994] provide
a set of three rules for detection, and subsequent elimination, of derived
relationships. These rules rely on the participation constraints of the
entities to assess if a relationship instance can be derived from others. We
provide a generalized rule for the identification of derived relationships in
the following:

DESIGN IMPLICATION 9. Let Ei, i 5 1, 2, . . . , n be entities connected by
a relationship R. Let Di, i 5 1,2, . . . , k, k # n, be entities such that there
is a functional relationship between Ei and Di with Qi : Ei 3 Di. The
possibility that Di 5 Ei, for some i, is not excluded. Then there is a derived
relationship R9 among entities Di, i 5 1, 2, . . . , k, k # n. Furthermore,
the min-max cardinalities of this derived relationship are as

mL~Di, R9! 5 mL~Di, Qi! 3 mL~Ei, R!, @i 5 1, 2, . . . , k, and

mU~Di, R9! 5 mU~Di, Qi! 3 mU~Ei, R!, @i 5 1, 2, . . . , k.

To understand why, note that, for every entity instance ei [ Ei, i 5
1, 2, . . . , k, there is an instance di [ Di. Thus, for every relationship
instance ^e1, e2, . . . , en& [ R, we can derive a relationship instance ^d1,
d2, . . . , dk& [ R9. The min-max cardinalities follow in a straightforward
manner. Consider the minimum cardinality for Di in R9. For every di [

Di, there is at least mL~Di, Qi! instances of Ei, and each of those instances
participate in R at least mL~Ei, R! number of times. Since for every
instance of R, there is a corresponding instance of R9, it is easy to see that
there is at least mL~Di, Qi! 3 mL~Ei, R! number of instances of di in R9.
Similar arguments can be applied for the maximum cardinality as well.
Since R itself could be a derived relationship, it is clear that this rule can
be applied repeatedly for a loop involving any number of relationships.
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It must be noted that redundancy in relationships is fundamentally a
semantic issue [Rauh and Stickel 1993]. From the structural constraints,
we can only infer that a derived relationship R9 exists. We cannot identify
whether R9 is indeed the same as another relationship already represented
in the conceptual model. In other words, structural constraints can be used
as one of the necessary conditions in detecting such relationships, but they
are not sufficient. It should be verified that the relationship in question has
the same meaning as the relationship that can be derived from others.

Consider the relationships in Figure 14. In this figure, PART5PART, and
fills: ORDER 3 SUPPLIER. This indicates the existence of a derived rela-
tionship between PART and SUPPLIER. Furthermore, we can infer that the
min-max cardinalities for both PART and SUPPLIER in this derived relation-
ship should be ~0, *!. Figure 14 contains two different relationships
between PART and SUPPLIER. The min-max cardinalities of the relationship
“can-supply” do not agree with those for the derived relationship; thus,
“can-supply” cannot be redundant. However, the relationship “supplies”
does match with the derived one in terms of the cardinalities. The question
then becomes whether this relationship has the same meaning as the
derived one. If the semantics of the application dictates that a supplier
supplies parts whenever he/she fills an order (and vice versa), then the
relationship “SUPPLIER supplies PART” is redundant. On the other hand, if
“supplies” represents the orders that have arrived and been processed in
the last week, whereas “fills” pertains only to the current orders, then
these two relationships are disjoint. In that case, “SUPPLIER supplies PART”
is not redundant. The meaning of the relationship thus plays a very
important role in deciding whether or not a relationship can be derived
from others.

5. BINARY REPRESENTATION OF HIGHER-DEGREE RELATIONSHIPS

A higher-degree relationship may be expressed as several binary relation-
ships, although such a conversion may not lead to a “natural” view of the

Fig. 14. Redundant relationship.
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application. In this section we discuss appropriate binary representation
for all the three types of higher-degree relationship: (i) functional relation-
ships; (ii) partial functional relationships; and (iii) general relationships.
We show how the min-max cardinalities should the assigned to the partic-
ipating entities so that the new representation is consistent with the
original representation.

5.1 Functional Relationships

Assume, without loss of generality, that the min-max cardinalities of E1 in
R (as shown in Figure 2) are (1,1); i.e., c1 5 d1 5 1. Clearly, R can be
expressed as a vector-valued function.

R 5 f : E1 3 E2 3 E3 3 . . . 3 En,

and the individual components of f~ z! are fi : E1 3 Ei, for all i 5 2,
3, . . . , n. In other words, E9 i~R! 5 fi~E1!, for all i 5 2, 3, . . . , n. Since
a vector-valued function is completely specified by its components, we can
represent the relationship in Figure 1 as three separate binary relation-
ships, as shown in Figure 15. This leads to the following:

DESIGN IMPLICATION 10. Let R and Ei, i 5 1, 2, . . . , n, be as shown in
Figure 2. Further let c1 5 d1 5 1. Then R can also be expressed as ~n 2 1!
binary relationships Qi between E1 and Ei, i 5 2, 3, . . . , n. The min-max
cardinalities of the new relationships can be written as

mL~Ei, Qi! 5 mL~Ei, R!, @i 5 2, 3, . . . , n,

mU~Ei, Qi! 5 mU~Ei, R!, @i 5 2, 3, . . . , n,

mL~Ei, Qi! 5 mU~Ei, Qi! 5 1, @i 5 2, 3, . . . , n.

Although the above decomposition rule is straightforward, there may be
two complications arising from such a decomposition. First, a higher-degree
functional relationship may have its own attributes. When the relationship
is decomposed into several binary relationships, it is not clear which entity
the relationship attributes should be attached to. Second, the functional

Fig. 15. Alternative binary representation of a functional relationship.
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relationship may also be a composite entity in the overall conceptual model.
When the relationship is decomposed, it is not clear what transformation
should be made to the relationships connected to the composite entity. We
discuss each of these two situations below.

When a higher-degree functional relationship is decomposed into several
binary relationships, the relationship attributes can be transferred to the
entity with (1,1) cardinalities. For example, the attribute “date” of the
relationship “issues” in Figure 1 can also be considered an attribute of
PRESCRIPTION. To prove this, assume that A is an attribute of R, and c1 5
d1 5 1 in Figure 2. Since A is a function of all the participating entities,
we can write

A 5 g~E91, E92, E93, . . . , E9n!

5 g~E1, f2~E1!, f3~E1!, . . . , fn~E1!! 5 h~E1!,

where g~ z! and h~ z! are two different functions. This implies that A is an
attribute of E1. Thus, we have the following:2

DESIGN IMPLICATION 11. The attributes of a functional relationship can
all be transferred to a participating entity with (1,1) cardinalities. Such a
transfer of attributes is not necessary (but possible) if the relationship is not
decomposed.

In order to address the second concern (about the relationships of the
composite entity), we note that a functional relationship need not be
represented as a composite entity. A simpler representation is possible
where the relationships associated with the composite entity are trans-
ferred to the entity participating in the underlying functional relationship
with (1,1) cardinalities. For example, assume that the relationship in
Figure 1 is represented as a composite entity ISSUANCE, and suppose it
participates in a relationship: “PHARMACY fills ISSUANCE.” This relationship
can always be transferred to PRESCRIPTION. In other words, we can replace
this relationship by “PHARMACY fills PRESCRIPTION.” We state this formally
as follows:

DESIGN IMPLICATION 12. Let R be the underlying relationship of a com-
posite entity C. Let R be functional and let E be a participating entity with
(1,1) cardinalities. If C participates in a relationship Q, then Q could be
transferred to E so that mL~E, Q! 5 mL~C, Q! and mU~E, Q! 5 mU~C, Q!.
Such a transfer of relationships is not necessary (but possible) if R is not
decomposed.

2This generalizes the rule for binary relationship attributes proposed by Storey and Goldstein
[1988].
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5.2 Partial Functional Relationships

The decomposition scheme stated in Design Implication 10 may also work
with partial functional relationships. The only adjustment necessary is in
the minimum cardinalities for E1; we should set mL~E1, Qi! 5 0 for all
i 5 2, 3, . . . , n. However, there are two problems with such a decomposi-
tion of a partial functional relationship. First, if the relationship has
attributes, then these attributes cannot be transferred to a participating
entity. Second, if the relationship is also expressed as a composite entity,
then the relationships of the composite entity cannot be transferred to
another entity without losing useful information on participation con-
straints. In other words, Design Implications 11 and 12 cannot be applied
to partial functional relationships. Therefore, partial functional relation-
ships cannot always be directly decomposed to binary relationships. How-
ever, two options are available to the designer. The first is to introduce a
subtype of the entity with (0,1) cardinalities such that the participation of
all instances of the subtype entity is mandatory. Then, the relationship
becomes a functional relationship, which can be easily decomposed. This is
illustrated in Figure 16 (an alternative representation of the relationship
in Figure 3). In Figure 3, STUDENT has (0,1) cardinalities, whereas, in
Figure 16, we introduce a subtype entity AREA STUDENT to represent those
students who have already decided on their major area and faculty advisor.
When the original partial functional relationship is transferred to the
subtype, it becomes a functional relationship and can now be decomposed
as stated in Design Implication 10. Stated formally:

DESIGN IMPLICATION 13. Let R be a partial functional relationship in-
volving entities in %, and let E [ % be the entity with (0,1) cardinalities.
Then, R can be converted to a functional relationship by replacing E with
the entity F 5 E9~R! , E. Min-max cardinalities of F in R are (1,1).

In some situations, the subtype entity may not be a natural entity in the
application context, and the designer may not be willing to introduce the
subtype. In that case, a second alternative binary representation is possi-
ble, where the relationship is expressed as an entity; this is discussed in
the next section, where we show the representation of a general relation-
ship as an entity.

Fig. 16. A partial functional relationship represented as a functional relationship using a
subtype entity AREA STUDENT.
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5.3 General Relationships

In situations involving general relationships, an equivalent binary repre-
sentation could be obtained by converting the relationship to an entity. As
mentioned in the previous section, this approach can also be used for
converting partial functional relationships, especially if the relationship
has its own attributes or if it is represented as a composite entity partici-
pating in other relationships. Note that the entity representation approach
discussed here is different from the decomposition approach in Section 5.1
in two ways. First, in the entity representation approach, a new entity
must be created; the creation of such a new entity is not required in the
decomposition approach. Second, when a relationship is converted to an
entity, each of the participating entities should be connected to the new
entity by a binary relationship. Therefore, if the original relationship has a
degree of n, then n new binary relationships would be created, as opposed
to ~n 2 1! binary relationships in the decomposition approach. An example
of the entity representation approach is shown in Figure 17 where the
“supplies” relationship from Figure 4 is represented as an entity ORDER.
Each of the participating entities in Figure 4 is connected to ORDER using a
binary relationship. All attributes of “supplies” can be transferred to
ORDER. The formal conversion rules are stated below:

DESIGN IMPLICATION 14. Let R be a relationship among entities E1,
E2, . . . , En (see Figure 2). If R is converted to an entity ER, then Ei must
be connected to ER using a binary relationship Qi, i 5 1, 2, . . . , n. The
min-max cardinalities of the new relationships are

mL~Ei, Qi! 5 mL~Ei, R!, @i 5 1, 2, . . . , n,

mU~Ei, Qi! 5 mU~Ei, R!, @i 5 1, 2, . . . , n,

mL~ER, Qi! 5 mU~ER, Qi! 5 1, @i 5 1, 2, . . . , n.

When a relationship is converted to an entity, the transfer of attributes
and relationships is straightforward, as shown below:

Fig. 17. A general relationship represented as an entity.
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DESIGN IMPLICATION 15. Let R be a relationship which is converted to an
entity ER. Then, all the attributes of R can be transferred to ER. Further, if
C is a composite entity for R and if C participates in a relationship Q, then
Q should be moved from C to ER, so that mL~ER, Q! 5 mL~C, Q! and
mU~ER, Q! 5 mU~C, Q!.

Since a relationship can be converted to an entity, given a real-world
concept, the designer needs to decide whether to model it as a relationship
or as an entity. The designer’s objective is to develop a conceptual model
that is close to the users’ perception. In real-world situations, the users’
perception is primarily driven by the existence (or lack thereof) of a unique
identifier for the concept.

DESIGN IMPLICATION 16. If there is a unique identifier for a real-world
concept, the user is likely to view the concept as an entity.

To understand why, recall that only entities have primary keys in the ER
model; the concept of a primary key as the unique identifier of a relation-
ship does not exist. However, in many real-world applications, there may
be an attribute of the relationship that appears to be a natural unique
identifier for the relationship instances. For example, the attribute “Order
no” may be used as an identifier of “SUPPLIER supplies PART”; we call such
an attribute an enforced key of the relationship. Fundamentally, a key is a
surrogate for a real-world object [Parsons and Wand 1997]. Thus, the
existence of a key indicates the existence of an entity. Naturally, the
relationship is perceived as an entity by the user, e.g., “SUPPLIER fills
ORDER for PART.” The attribute “Order no” can be used as an identifier of
the entity “ORDER.”

There is another practical reason for representing relationships as enti-
ties. Note that, in the above situations, the participating entity instances
may not uniquely identify each relationship instance. For example, a
specific supplier may supply a part several times. Therefore, the supplier
and part identifiers together are not sufficient to identify the relationship
instances uniquely as shown in Table II. The enforced key (Order_no),
however, uniquely identifies every relationship instance. Since the ER
model cannot capture the relationship history, it is necessary to represent
the relationship as an entity ORDER, with a primary key that monotonically
increases with time and hence can be used as a surrogate for time. Dey et

Table II. A Historical Relationship Between SUPPLIER AND PART

SUPPLIER PART Date Quantity Order_no

s1 p1 01/12/93 500 o1
s1 p2 01/14/93 400 o2
s1 p1 02/17/93 500 o3
s2 p1 03/21/93 200 o5

· · · · · · · · · · · · · · ·
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al. [1995] discuss an alternative representation of these relationships
within the context of temporal databases.

6. RECURSIVE RELATIONSHIPS

The assumption thus far has been that each of the Ei’s in Figure 2
participates in the relationship R only once. However, it is possible for an
entity to participate in a relationship multiple times [Elmasri and Navathe
1994, p. 50; Teorey et al. 1986]; two such examples are shown in Figure 18.
The first relationship represents a situation where the enrollment in
certain courses requires the student to have passed the associated prereq-
uisite courses. The second relationship represents a committee where a
senior faculty, a junior faculty, a graduate student, and an undergraduate
student work together. These relationships, where an entity participates
more than once, are called recursive relationships [Batini et al. 1992, p. 31;
Hawryszkiewycz 1990, pp. 149-151]. When specifying a recursive relation-
ship, it is necessary to specify the different roles that a participating entity
plays in the relationship.3 For example, in Figure 18(a), the roles associ-
ated with COURSE are “Current ” and “Prerequisite .”

Note that binary recursive relationships are often referred to as “unary”
relationships [Batra and Zanakis 1994; Teorey et al. 1986]. The name
“unary,” however, is a misnomer, and its usage in conceptual modeling is
rather unfortunate. Fundamentally, a relationship represents an associa-
tion among entities. The purpose of a unary relationship is to capture the

3The role played by an entity instance in a relationship instance is a general concept, and can
be used with recursive as well as nonrecursive relationships. However, when an entity
participates more than once in a relationship, it is necessary to specify the different roles it can
play in order to distinguish the meaning of each participation [Elmasri and Navathe 1994, p. 52].

Fig. 18. Two recursive relationships.
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association of several entity instances of the same type, not to represent the
trivial association of an entity instance with itself.

To generalize our notation, we assume that Ei’s participate (possibly
several times) in a relationship R, i 5 1, 2, . . . , n. The multiplicity of Ei

in R, denoted m~Ei, R!, is the number of roles played by Ei in R. Suppose
these roles are denoted by lij, j 5 1, 2, . . . , m~Ei, R!. Then each partici-
pation of an entity can be expressed as a leg of a relationship given by the
pair Lij 5 ^Ei, lij&. We now redefine the degree of a relationship as the
number of legs connected to it.

DESIGN IMPLICATION 17. If R is a relationship among entities Ei, i 5 1,
2, . . . , n, then the degree of R, denoted d~R!, can be written as d~R! 5
(

i51

n
m~Ei, R!.

The relationship in Figure 18(a) can then be classified as a recursive
relationship of degree two, and the one in Figure 18(b) as a recursive
relationship of degree four. In the second relationship, both FACULTY and
STUDENT have a multiplicity of two.

The min-max cardinalities for a recursive relationship are expressed for
each leg, and not for each entity. Assume that entity Ei participates in
relationship R in role lij; then Lij 5 ^Ei, lij& is a leg of R. For an instance
e [ Ei, define R ~Lij, e! , R as the set of all ordered tuples containing e in
the appropriate role in leg Lij. Then

mL~Lij, R! 5 min
e[E

?R~Lij, e!? and mU~Lij, R! 5 max
e[E

?R~Lij, e!?.

Recursive relationships can be one of two types: symmetric and asymmet-
ric. A symmetric recursive relationship is one where the roles (two or more)
played by an entity in the relationship are indistinguishable. All other
recursive relationships are asymmetric. Symmetric recursive relationships
have several implications in database design; we discuss these in Section
6.1. In some situations, it may be more natural for the designer to view a
recursive relationship as an entity; Section 6.2 provides some examples and
discusses the associated design implications.

6.1 Symmetric Recursive Relationships

If the roles played by an entity in a recursive relationship are indistin-
guishable, the relationship is said to be symmetric with respect to that
entity. Consider the relationship shown in Figure 19. This relationship is
symmetric with respect to TEAM if we assume that a team participating in a
game is indistinguishable from its opposing team.4 In Figure 19, we
identify the symmetric relationship by joining the symmetric legs with a

4In contrast, if we can distinguish the teams as the “home” and the “visitor” teams, for
example, the relationship would not be considered symmetric.
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line labeled “S.” Symmetric recursive relationships have several important
implications for database design:

DESIGN IMPLICATION 18. If a recursive relationship is symmetric about an
entity, the min-max cardinalities associated with the different roles of that
entity are the same; in general, the converse is not true.

DESIGN IMPLICATION 19. If a recursive relationship is symmetric about an
entity, the roles of that entity must be separated in an artificial manner,
possibly by using numeric suffixes.

For example, the roles of a TEAM can be expressed as Team1 and Team2.
Now consider two instances t1 and t2, of the entity TEAM who have played a
game against each other. This association can be represented either as
^t1, t2& or as ^t2, t1&, but to avoid redundancy, only one should be stored.
We can state this more formally as follows:

DESIGN IMPLICATION 20. Let E be an entity participating in a relation-
ship R with m~E, R! 5 k; let R be symmetric about E. Then the order of the
association implied by R among distinct instances ei [ E, i 5 1, 2, . . . , k,
is not important, and can be expressed as a 5 $ee [ E% such that ?a? 5 k.

6.2 Recursive Relationship as an Entity

It may sometimes be more “natural” to represent a recursive relationship R
as an entity ER, and connect the participating entities Ei to ER with the
help of binary relationships. This can be formalized as follows:

DESIGN IMPLICATION 21. Let a relationship R be expressed as an entity
ER. For each leg Lij of R, i 5 1, 2, . . . , n, j 5 1, 2, . . . , m~Ei, R!, a
binary relationship Qij must be created between Ei and ER. The min-max
cardinalities can be expressed, as before, as follows:

mL~Ei, Qij! 5 mL~Lij, R!, @i 5 1, 2, . . . , n, @j 5 1, 2, . . . , m~Ei, R!

mU~Ei, Qij! 5 mU~Lij, R!, @i 5 1, 2, . . . , n, @j 5 1,2, . . . , m~Ei, R!, and

mL~Ei, Qij! 5 mU~Lij, R!, @i 5 1, 2, . . . , n, @j 5 1, 2, . . . , m~Ei, R!.

Fig. 19. A symmetric recursive relationship.
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There is one exception to the above rules. When a recursive relationship
is symmetric with respect to an entity, the relationships resulting from the
(indistinguishable) roles of that entity is exactly the same. In this case,
these relationships must be combined into a single one. However, when
combining these relationships, one should be careful to ensure that the
min-max cardinalities are properly adjusted. Consider the relationship in
Figure 19. The recursive relationship shown here may be represented by an
entity GAME. Since the role of a team in a game cannot be distinguished
from the role of the other team, we need only one relationship, as shown in
Figure 20. Note that the min-max cardinalities associated with GAME are
(2,2): there are exactly two teams participating in a game. This leads to the
following:

DESIGN IMPLICATION 22. Let R be a recursive relationship symmetric
about an entity E. If R is expressed as an entity ER, then there should be
only one binary relationship Q between E and ER. Further, let L be any leg
of R involving E. Then min-max cardinalities r are given by

mL~E, Q! 5 mL~L, R!,

mU~E, Q! 5 mU~L, R!,

mL~ER, Q! 5 mU~ER, Q! 5 m~E, R!.

7. CONVERSION TO THE RELATIONAL MODEL

This section presents a scheme for transforming the conceptual model
(possibly containing higher-degree relationships) into a corresponding rela-
tional structure that is natural and intuitively appealing. The associated
integrity constraints are also stated. We have verified that these represen-
tations have information capacity [Hull 1986] equivalent to representations
produced by the algorithms Crep, Norm, and Smerge developed by Markow-
itz and Shoshani [1992]. As they have shown, (i) Crep produces relational
schemes that are correct, in that consistent states in the ER model are
mapped into consistent states in the relational model and vice versa; and
(ii) Norm, followed by Smerge, produce schemes without redundant at-
tributes in Boyce-Codd normal form and preserving the information capac-
ity of the schemes created by Crep. Thus, all of the representations shown
below possess these formal properties, in addition to being natural and
intuitively appealing relational schemes.

Fig. 20. A Symmetric recursive relationship represented as an entity.
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An entity is represented in the relational model by creating a relation
with the primary key and attributes of the entity [Storey and Goldstein
1988; Teorey 1986]. Let E be an entity; then t~E! denotes the relation
representing E. It is possible that E is a composite entity. If E has its own
primary key, then that is also the primary key of t~E!; the primary keys of
the constituent entities should be added to t~E! as foreign keys. If not, then
the primary key of t~E! is the combination of the primary keys of the
constituent entities; each component of the primary key is also a foreign
key referring to the relation from the appropriate entity.

Relationships can be represented either by using foreign keys or con-
structing new relations. The exact representation depends on the type of
the relationship and its associated min-max cardinalities. In a general
sense, a functional relationship can be represented using foreign keys; a
new relation is not necessary. If the relationship is not a function, then a
new relation should be created. Note that, whenever a relationship can be
represented using foreign keys, an alternative representation of creating a
new relation is always possible [Wilmot 1984]. In general, the converse is
not true.

For the remainder of the discussion, let R be a relationship connecting
(distinct) entities E1, E2, . . . , En. The possibility that Ei participates
more than once in R is not excluded. In other words, R could be a recursive
relationship; the leg Lij of R represents the connection to entity Ei in role lij,
j 5 1, 2, . . . , m~Ei, R!. Let ki be the primary key of Ei, i 5 1, 2, . . . , n.

7.1 Functional Relationships

Assume that R is a functional relationship; i.e., there is a leg Lij with
min-max cardinalities (1,1). Let i 5 j 5 1, without loss of generality. If
there is more than one leg with cardinalities (1,1), the choice is up to the
designer, and will often depend on the type of queries being asked in the
application [Storey and Goldstein 1988]. The following steps are required to
represent this case:

(1) Create relations t~Ei!, i 5 1, 2, . . . , n, as discussed above.

(2) Make lij_ki a foreign key of t~E1!, for all i 5 1, 2, . . . , n, j 5 1,
2, . . . , m~Ei, R!, and either i Þ 1 or j Þ 1.

(3) Append all attributes of R (if present) to t~E1! as additional attributes.

Note that the role-based prefixes lij are necessary in Step 2 only when Ei

participates in R more than once, so that each role can be distinguished
from the others. If m~Ei, R! 5 1, the prefix for ki may be dropped. The
following integrity constraints should be enforced:

Existence integrity constraint: t~Ei! cannot have null or duplicate values
for ki, for all i 5 1, 2, . . . , n.
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Referential integrity constraint: For each leg Lij (except L11), there should
be a referential constraint from t~E1! to t~Ei!, with lij_ki being the
foreign key of t~E1!. Symbolically, t~E1!.lij_ki 3 ~Ei!.ki, for all i and j
and either i Þ 1 or j Þ 1.

Consider the relationship in Figure 1. Assume that the primary keys of
DOCTOR, PATIENT, DRUG, and PRESCRIPTION are “DEA#,” “PAT ID,” “NDC#,”
and “RX#,” respectively. Since the min-max cardinalities for PRESCRIPTION

are (1,1), we need to include the primary keys of all other entities as foreign
keys in the scheme that represents PRESCRIPTION. The relational structure
and the referential integrity constraints are shown in Table III. Note that
it does not matter if we use the alternative ER representation in Figure 15;
the resulting structure would be exactly the same for both the representa-
tions; this further illustrates the structural equivalence of the two repre-
sentations.

Conversion of ternary and other higher-degree relationships into the
relational model has been a consistent source of confusion. It is generally
assumed that all higher-degree relationships are automatically converted
to new relations [Batini et al. 1992; Elmasri and Navathe 1994; Teorey et
al. 1986]. If this rule is used on the two ER representations in Figures 1
and 15, two different relational representations would result. Therefore,
this is not the only, or necessarily the most appropriate, representation. If
a higher-degree relationship is a functional relationship, it can also be
represented using foreign keys. Situations where a new relation scheme is
necessary are discussed below.

7.2 Partial Functional Relationship

If R is a partial functional relationship, then there is a leg Lij with
cardinalities (0,1). As before, we can let i 5 j 5 1, without any loss of
generality. In this case the following steps are required:

(1) Create relations t~Ei!, i 5 1, 2, . . . , n.

(2) Create a relation t~R! with l11_k1 as the primary key; append all
attributes of R as attributes of t~R!.

Table III. Relational Representation of Figure 1

Relational Structure

t(DOCTOR) [DEA#, ,DOCTOR attributes]
t(PATIENT) [PAT ID, ,PATIENT attributes.]
t(DRUG) [NDC#, ,DRUG attributes .]
t(PRESCRIPTION) [RX#, ,PRESCRIPTIONattributes ., dea#, pat_id, ndc#]

Referential Integrity Constraints

t(PRESCRIPTION).dea# 3 t(DOCTOR).DEA#
t(PRESCRIPTION).patient id 3 t(PATIENT).PATIENT ID
t(PRESCRIPTION).ndc# 3 t(DRUG).NDC#
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(3) Make lij_ki a foreign key of t~R!, for all i 5 1,2, . . . , n, j 5 1,
2, . . . , m~Ei, R!, and either i Þ 1 or j Þ 1.

Again, the role-based prefixes may be omitted if they are not necessary.
The following integrity constraints should be enforced:

Existence integrity constraint: t~Ei! cannot have null or duplicate values
for ki, for all i 5 1, 2, . . . , n. t~R! cannot have null and duplicate
values for l11_k1.

Referential integrity constraint: For each leg Lij, there should be a
referential constraint from t~R! to t~Ei!, with lij_ki being the foreign key
of t~R!. Symbolically, t~R!.lij_ki 3 t~Ei!.ki, for all i 5 1, 2, . . . , n, j
5 1, 2, . . . , m~Ei, R!.

Consider the relationship in Figure 3. Assume that the primary keys of
FACULTY, STUDENT, and MAJOR AREA are “FAC ID,” “ST NO,” and “AREA
ID,” respectively. Since the min-max cardinalities for STUDENT are (0,1), we
need to create a new relation with the primary key of Student. The primary
keys of FACULTY and MAJOR AREA should be added to this new relation as
foreign keys. The resulting structure and the referential integrity con-
straints are shown in Table IV.

An important clarification is necessary. It is possible to represent a
partial functional relationship using foreign keys only, as suggested by
Elmasri and Navathe [1994] and Teorey et al. [1986], as well as several
others. However, this is not a good practice in database schema design.
Recall that a partial functional relationship implies that there must be at
least one entity with (0,1) cardinalities. Not all instances of this entity
participate in the relationship, so some of the tuples in the relation have
null values for the foreign key (and associated relationship attributes).
Although, null values cannot be completely avoided in some situations, we
discourage database design practices that primarily rely on the existence,
and promote the use, of these null values.

Table IV. Relational Representation of Figure 3

Relational Structure

t(FACULTY) [FAC_ID, ,FACULTY attributes]
t(MAJOR) [AREA_ID, ,MAJOR AREA attributes.]
t(STUDENT) [ST_NO, ,STUDENT attributes .]
t(advises) [ST_NO, ,advises attributes., fac_id, area_id]

Referential Integrity Constraints

t(advises).ST_NO 3 t(STUDENT).ST_NO
t(advises).fac_id 3 t(FACULTY).FAC_ID
t(advises).area_id 3 t(MAJOR).AREA_ID
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7.3 General Relationships

Assume that R is neither a functional nor a partial functional relationship;
i.e., there is no entity with min-max cardinalities of either (1,1) or (0,1).
The following steps are required to represent this case:

(1) Create relations t~Ei!, i 5 1, 2, . . . , n.

(2) Create a relation t~R! with the combination of all lij_ki, i 5 1, 2, . . . , n,
j 5 1, 2, . . . , m~Ei, R! as the primary key; append all attributes of R
as attributes of t~R!.

The role-based prefixes may be dropped if they are not necessary. The
following integrity constraints need to be enforced:

Existence integrity constraint: t~Ei!, i 5 1, 2, . . . , n, cannot have null
or duplicate values for ki. t~R! cannot have null and duplicate values for
any of lij_ki, i 5 1, 2, . . . , n, j 5 1, 2, . . . , m~Ei, R!.

Referential integrity constraint: For each leg Lij, there should be a
referential constraint from t~R! to t~Ei!, with lij_ki being the foreign key
of t~R!. Symbolically, t~R!.lij_ki 3 t~Ei!.ki, for all i 5 1, 2, . . . , n,
j 5 1, 2, . . . , m~Ei, R!.

As an example, consider the relationship in Figure 4. Assume the primary
keys of SUPPLIER, PROJECT, and PART are “SUP#,” “PROJ#,” and “PART#,”
respectively. Also assume that the relationship has as its attributes “quan-
tity,” “unit price,” and “date.” A new relation must be created; the resulting
structure and the referential integrity constraints are shown in Table V.

8. CONCLUSION

Conceptual modeling is the first and most crucial phase in database design.
In this phase, users’ information requirements are represented in the form
of a conceptual model. Current approaches to conceptual modeling focus
mainly on modeling the entities; not enough importance is given to rela-
tionships, especially ternary and other higher-degree relationships. In this

Table V. Relational Representation of Figure 4

Relational Structure

t(SUPPLIER) [SUP#, ,SUPPLIER attributes.]
t(PROJECT) [PROJ#, ,PROJECT attributes.]
t(PART) [PART#, ,PART attributes.]
t(supplies) [SUP#, PROJ#, PART#, quantity, unit price, date]

Referential Integrity Constraints

t(supplies).SUP# 3 t(SUPPLIER).SUP#
t(supplies).PROJ# 3 t(PROJECT).PROJ#
t(supplies).PART# 3 t(PART).PART#
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paper we present a generalized framework for analyzing relationships
during conceptual modeling of real-world applications. Four aspects of
relationship modeling are examined in this framework: (i) min-max cardi-
nalities, (ii) degree, (iii) the recursive nature of relationships, and (iv)
interrelationship constraints. Generalized notation for representing rela-
tionships is presented and guidelines provided that identify what modeling
constructs to use in different situations. Explicit rules are provided for
assessing the degree of a relationship and understanding recursive rela-
tionships. Special semantics associated with weak relationships and inter-
relationship dependence are also analyzed. Finally, design rules for trans-
forming these ER constructs into a relational model are presented, along
with the associated integrity rules that can be derived from the conceptual
design.

The results of this research have been used effectively in modeling
various real-world applications. The framework provides a natural, consis-
tent, and semantically rich conceptual design, even in situations that
cannot be easily captured in a conceptual model. Most of the design
implications were generated from the inadequacy of current modeling
practice when applied to certain real-world situations. The results of this
research are formalized as a set of design implications that are explicit
enough to be implemented in a database design tool. We developed a
prototype design system that incorporates most of these results.

There are several directions for future research. For example, the effec-
tiveness of the results of this analysis can be assessed further by conduct-
ing an experiment with different user groups; important issues related to
usability, expressiveness of the model, and correctness of the representa-
tion can be resolved. Another direction is to develop a learning database
design system that not only uses the results of this work, but also learns
from previous design sessions to develop better designs in the future. We
are currently working on developing such a system.
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