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We study the vulnerability of two implementations of the Data Encryption Standard (DES)
cryptosystem under a timing attack. A timing attack is a method, recently proposed by Paul
Kocher, that is designed to break cryptographic systems. It exploits the engineering aspects
involved in the implementation of cryptosystems and might succeed even against cryptosys-
tems that remain impervious to sophisticated cryptanalytic techniques. A timing attack is,
essentially, a way of obtaining some user’s private information by carefully measuring the
time it takes the user to carry out cryptographic operations.

In this work, we analyze two implementations of DES. We show that a timing attack yields
the Hamming weight of the key used by both DES implementations. Moreover, the attack is
computationally inexpensive. We also show that all the design characteristics of the target
system, necessary to carry out the timing attack, can be inferred from timing measurements.

Categories and Subject Descriptors: E.3 [Data]: Data Encryption—Data Encryption Standard
(DES); C.3 [Computer Systems Organization]: Special-Purpose and Application-Based
Systems

General Terms: Security

Additional Key Words and Phrases: Cryptanalysis, cryptography, Data Encryption Standard,
timing attack

1. INTRODUCTION
An ingenious new type of cryptanalytic attack was introduced by Kocher
[1996]. This new attack is called a timing attack. It exploits the fact that
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cryptosystems often take slightly different amounts of time on different
inputs. Kocher gave several possible explanations for this behavior, among
these: branching and conditional statements, RAM cache hits, processor
instructions that run in non-fixed time, etc. Kocher’s most significant
contribution was to show that running time differentials can be exploited in
order to find some of a target system’s private information. Indeed, Kocher
[1996] showed how to cryptanalyze a simple modular exponentiator. Modu-
lar exponentiation is a key operation in Diffie-Hellman’s key exchange
protocol [Diffie and Hellman 1976] and the RSA cryptosystem [Rivest et al.
1978]. A modular exponentiator is a procedure that on inputs k, n [ N,
n Þ 0, and y [ Z computes ~ yk mod n!. In the cryptographic protocols
mentioned above, n is public and k is private. Kocher reports that if a
passive eavesdropper can measure the time it takes a target system to
compute ~ yk mod n! for several inputs y, then he can recover the secret
exponent k. Moreover, the overall computational effort involved in the
attack is proportional to the amount of work done by the victim. For
concreteness sake and clarity of exposition, we now describe the essence of
Kocher’s method for recovering the secret exponent of the fixed-exponent
modular exponentiator shown in Figure 1.

The attack allows someone who knows kl· · ·kt to recover kt21. (To obtain
the entire exponent, the attacker starts with t 5 l 1 1 and repeats the
attack until t 5 1.) The attacker first computes l 2 t 1 1 iterations of the
for loop. The next iteration requires the first unknown bit kt21. If the bit is
set, then the operation ~z 5 z z y mod n! is performed; otherwise, it is
skipped. Assume that each timing observation corresponds to an observa-
tion of a random variable T 5 e 1 T0 1 . . . 1 Tl, where Ti is the time
required for the multiplication and squaring steps corresponding to the bit
ki and e is a random variable representing measurement error, loop
overhead, etc. An attacker that correctly guesses kt21 may factor out of T
the effect of Tl, . . . , Tt21 and obtain an adjusted random variable of
known variance (provided the times needed to perform modular multiplica-
tions are independent from each other and from the measurement error).
Incorrect guesses will produce an adjusted random variable with a higher
variance than the one expected. Computing the variance is easy, provided
the attacker collects enough timing measurements. The correct guess will
be identified successfully if its adjusted values have the smaller variance.

Fig. 1. Modular exponentiator.
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In theory, timing attacks can yield some of a target system’s private
information. In practice, in order to successfully mount a timing attack on a
remote cryptosystem, a prohibitively large number of timing measurements
may be required in order to compensate for the increased uncertainty
caused by random network delays. Nevertheless, there are situations
where we feel it is realistic to mount a timing attack. We now describe one
of them. Challenge-response protocols are used to establish whether two
entities involved in communication are indeed genuine entities and can
thus be allowed to continue communication with each other. In these
protocols, one entity challenges the other with a random number on which
a predetermined calculation must be performed, often including a secret
key. In order to generate the correct result for the computation, the other
device must posses the correct secret key and therefore can be assumed to
be authentic. Many smart cards, in particular dynamic password genera-
tors (tokens) and electronic wallet cards, implement challenge-response
protocols (e.g., the message authentication code generated according to the
ANSI X9.26 standard [Menezes et al. 1997, p. 651]). It is expected that
extensive use will be made of smart cards based in general-purpose,
programmable, integrated circuit chips. Thus, the specific functionality of
each smart card will be achieved through programming. The security of
these smart cards will be provided using tamper-proof technology and
cryptographic techniques. The scenario described above is an ideal setting
in which to carry out a timing attack. The widespread availability of a
particular type of card will make it easy and inexpensive to determine the
timing characteristics of the system on which to mount the attack. Later,
the obtaining of precise timing measurements (e.g., by monitoring or
altering a card reader or by gaining possession of a card) could be used to
retrieve some of the secret information stored in the card by means of a
timing attack. Thus, cards that implement challenge-response protocols
where master keys are involved could give rise to a security problem. (See
Dhem et al. [1998] for a discussion of a practical implementation of a
timing attack against an earlier version of the CASCADE smart card.)

New unanticipated strains of timing attacks might arise. Hence, timing
attacks should be given some serious consideration. This work contributes,
ultimately, in furthering our understanding of the strengths of this new
cryptanalytic technique, the weaknesses it exploits, and the ways of elimi-
nating the possibility of it becoming practical.

Kocher implemented the attack against the Diffie-Hellman key exchange
protocol. He also observed that timing attacks could potentially be used
against other cryptosystems, in particular against the Data Encryption
Standard (DES). This claim is the motivation for this work.

2. SUMMARY OF RESULTS AND ORGANIZATION

We study the vulnerability of one of the most widely used cryptosystems in
the world, DES, against a timing attack. The starting point of this work is
the observation of Kocher [1996] that, in DES’s key schedule generation

418 • A. Hevia and M. Kiwi

ACM Transactions on Information and System Security, Vol. 2, No. 4, November 1999.



process, moving nonzero 28-bit C and D values by using a conditional
statement which tests whether a one-bit must be wrapped around could be
a source of nonconstant encryption running times. Hence, he conjectured
that a timing attack against DES could reveal the Hamming weight of the
key.1 We show that although Kocher’s observation is incorrect (for the DES
implementations that we analyzed), his conjecture is true. But we do more.

In Section 3, we give a brief description of DES.
In Section 4.1, we describe a timing attack against DES that assumes the

attacker knows the target system’s design characteristics. We first discuss
experimental results that show that a computationally inexpensive timing
attack against two implementations of DES could yield enough information
to recover the Hamming weight of the DES key being used. Hence,
assuming the DES keys are randomly chosen, an attacker can recover
approximately 3.95 bits of key information. To the best of our knowledge,
this is the first implementation of a timing attack against a symmetric
cryptosystem. (Since the preliminary version of this work appeared, two
timing attacks against RC5 have been reported [Heys 1998; Handschuh
1998].) In Section 4.1.1, we describe computational experiments that mea-
sure the threat implied by an actual implementation of a timing attack
against DES.

Recovering 3.95 bits of a DES key is a modest improvement over brute
force key search. But, recovering the Hamming weight of the key is,
potentially, more threatening. In particular, an adversary can restrict
attention to keys determined to have either a significantly low or high
Hamming weight. Although such keys may be rare once the adversary
determines that one such key is being used, the ensuing key search may be
significantly sped up. Thus, the adversary can balance the time to find such
rare keys with the time needed for key recovery. In some systems, even the
recovery of a single (although rare) key may be of serious concern.

In Section 4.1.2, we identify the sources of the dependencies between the
encryption time and the key’s Hamming weight in the implementations of
DES that we studied. The most relevant are conditional statements.

In both DES implementations that we analyzed the encryption time T is
roughly equal to a linear function of the key’s Hamming weight X plus
some normally distributed noise e. Since a DES key is a 56–bit-long string
and keys are chosen uniformly at random in the key space, we have that
X z Binom~56, 1/ 2!.2 Thus, for some a, b, and s,

T 5 aX 1 b 1 e, X z Binom~56, 1/2!, e z Norm~0, s2!.

1Recall that the Hamming weight of a bit-string equals the number of its bits that are
nonzero.
2Recall that the distribution Binom~N, p! corresponds to the distribution of the sum of N
independent identically distributed $0,1%-random variables with expectation p.
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In Section 4.2, we show that it is not necessary, in order to perform a
timing attack against DES, to assume that the design characteristics of the
target system are known. Indeed, we propose two statistical methods
whereby a passive eavesdropper can infer from timing measurements all
the target system’s design information required to successfully mount a
timing attack against DES. To the best of our knowledge, this is the first
proof that it is possible to infer a target system’s design characteristics
through timing measurements.

We would like to stress that all of the timing attacks described in this
work only require precise measurements of encryption times but no knowl-
edge of the encrypted plaintexts or produced ciphertexts.

In Section 5, we propose a “blinding technique” that can be used to
eliminate almost all of the execution time differentials in the analyzed DES
implementations. This blinding technique makes both DES implementa-
tions that we study impervious to the sort of timing attack we describe in
this work. Finally, we discuss under which conditions all of, and not only
the Hamming weight of, a DES key might be recovered through a timing
attack.

2.1 Related Work

Modern cryptography advocates the design of cryptosystems based on
sound mathematical principles. Thus, many of the cryptosystems designed
over the last two decades can be proved to resist many sophisticated,
mathematically based, cryptanalytic techniques (provided one is willing to
accept some reasonable assumptions). Traditionally, the techniques used to
attack such cryptosystems exploit the algorithmic design weaknesses of the
cryptosystem. On the other hand, timing attacks take advantage of the
decisions made when implementing the cryptosystems (specially those that
produce non-fixed running times). But, timing attacks are not the only type
of attacks that exploit the engineering aspects involved in the implementa-
tion of cryptosystems. Indeed, recently, Boneh et al. [1997] introduced the
concept of fault-tolerant attacks. These attacks take advantage of (possibly
induced) hardware faults. Boneh et al. point out that their attacks show the
danger that hardware faults pose to various cryptographic protocols. They
conclude that even sophisticated cryptographic schemes sealed inside
tamper-resistant devices might leak secret information.

A new strain of fault-tolerant attacks, differential fault analysis (DFA),
was proposed by Biham and Shamir [1997]. Their attack is applicable to
almost any secret key cryptosystem proposed so far in the open literature.
DFA works under various fault models and uses cryptanalytic techniques
to recover the secret information stored in tamper-resistant devices. In
particular, Biham and Shamir show that, under the same hardware fault
model considered by Boneh et al., the full DES key can be extracted from a
sealed tamper-resistant DES encryptor by analyzing between 40 and 200
ciphertexts generated from unknown but related plaintexts. Furthermore,
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in Biham and Shamir [1997] techniques are developed to identify the keys
of completely unknown ciphers sealed in tamper-resistant devices.

The new type of attacks described above have received widespread
attention (see, e.g., English and Hamilton [1996] and Markoff [1996]).

3. THE DATA ENCRYPTION STANDARD

DES is the most widely used cryptosystem in the world, especially among
financial institutions. It was developed at IBM and adopted as a standard
in 1977 [National Bureau of Standards 1977]. It has been reviewed every
five years since its adoption.

DES has held up remarkably well against years of cryptanalysis. But,
faster and cheaper processors allow, using current technology, to build a
reasonably priced special-purpose machine that can recover a DES key
within hours [Stinson 1995, pp. 82–83]. For concreteness sake, we provide
below a brief description of DES. For a detailed description, see National
Bureau of Standards [1977]. More easily accessible descriptions of DES can
be found in Schneier [1996] and Stinson [1995].

DES is a symmetric or private-key cryptosystem, that is, a cryptosystem
in which the parties that wish to use it must agree in advance on a common
secret key that must be kept private. DES encrypts a message (plaintext)
bitstring of length 64 using a bitstring key of length 56 and obtains a
ciphertext bitstring of length 64. It has three main stages. In the first
stage, the bits of the plaintext are permuted according to a fixed initial
permutation. In the second stage, 16 iterations of a certain function are
successively applied to the bitstring resulting from the first stage. In the
final stage, the inverse of the initial permutation is applied to the bitstring
obtained in the second stage.

The strength of DES resides on the function that is iterated during the
encryption process. We now give a brief description of this iteration
process. The input to iteration i is the output bitstring of iteration i 2 1
and a 48–bit-long string, Ki. Actually, each Ki is a permuted selection of
bits from the DES key. The strings K1, . . . , K16 comprise what is called
the key schedule. During each iteration, a 64–bit-long output string is
computed by applying a fixed rule to the two input strings. The encryption
process is depicted in Figure 2.

Fig. 2. DES encryption process.
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Decryption is done with the same encryption algorithm but using the key
schedule in reverse order K16, . . . , K1.

The best traditional cryptanalytic attacks known against DES are due to
Biham and Shamir [1991; 1993] and Matsui [1994a; 1994b]. However, they
are not considered a threat to DES in practical environments (see Menezes
et al. [1997, pp. 258–259]).

4. TIMING ATTACK OF DES

We now consider the problem of recovering the Hamming weight of the
DES key of a target system by means of a timing attack. We first address
the problem, in Section 4.1, assuming the attacker knows the design of the
target system. We then show, in Section 4.2, that this assumption can be
removed.

4.1 Timing Characteristics of Two Implementations of DES

We studied the timing characteristics of two implementations of DES. The
first one was obtained from the RSAEuro cryptographic toolkit [Kapp
1996], henceforth referred to as RSA-DES. The other implementation of
DES that we looked at was one due to Louko [1992], henceforth referred to
as L-DES. We studied both implementations on a 120-MHz Pentiumy
computer running MSDOSy. The advantage of working on an MSDOS
environment is that it is a single-process operating system. This facilitates
carrying out timing measurements since there are no other interfering
processes running and there are less operating system maintenance tasks
being performed. We measured time in microseconds ~ms!.

In our first experiment, we fixed the input message to be the bitstring of
length 64 all of whose bits are set to 0. For each i [ $0, . . . , 56%, we
randomly chose 32 keys of Hamming weight i. For each selected key, we
encrypted the message a total of 16 times. During each encryption, we
measured the time it took to generate the key schedule and the total time it
took to encrypt the message. The plots, for each of the implementations
that we looked at, of the average (for each key) encryption and key schedule
generation times are shown in Figure 3 and Figure 4.

Only obvious outliers were eliminated. In fact, the only outliers that we
noticed appeared at fixed intervals of 216 clock ticks. These outliers were
caused by system maintenance tasks.

A randomly chosen DES key has a Hamming weight between 23 and 33
with probability approximately 0.86. Thus, the most relevant data points
shown in Figure 3 and Figure 4 are those close to the middle of the plots.

For various keys chosen at random, we performed 216 time measure-
ments (for each key) of the encryption and key schedule generation times.
After discarding obvious outliers, we graphed the empirical frequency
distributions of the collected data. The empirical distributions we observed
were roughly symmetric and concentrated in a few contiguous values
(usually three or four). This concentration of values is due to the fact that
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we were only able to perform time measurements with an accuracy of
0.8381ms and that time differentials among encryptions performed under
the same key were rarely larger than 3.0ms. (For an explanation of how to
measure time with this precision on an MSDOS environment, see the
Appendix). The above suggests, as one would expect, that the variations on
the running time observed when the same process is executed many times
over the same input are due to the effect of normally distributed random
noise.

For different values of i [ $8, . . . , 48%, we randomly chose 28 keys of
Hamming weight i. After throwing away outliers, we graphed the empirical
frequency distributions of the collected data. The empirical frequencies
observed looked like normal distributions with small deviations (typically

Fig. 3. RSA-DES.

Fig. 4. L-DES.
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1.2ms for L-DES and 1.8ms for RSA-DES). We conclude that the variations
on the encryption and key schedule generations times observed among keys
of same Hamming weight are mostly due to the total number of bits of the
key that are set and not by the position where these set bits occur. Thus,
the effect of which bits are set among keys of same Hamming weight is
negligible.

We repeated all the experiments described so far but instead of leaving
the input message fixed we chose a new randomly selected message at the
start of each encryption process. All the results reported above remained
(essentially) unchanged. There was only a negligible increase in the mea-
sured deviations.

Assuming that the attacker knows the design of the target system, he can
build on his own a table of the average encryption time versus the
Hamming weight of the key. The clear monotonically increasing relation
between the encryption time and the Hamming weight of the key elicited by
our experiments is a significant implementation flaw. It allows an attacker
to determine the Hamming weight of the DES key. Indeed, the attacker has
to obtain a few encryption time measurements and look in the table he has
built to determine the key’s Hamming weight from which such time
measurements could have come. Thus, the attacker can recover H~wt~K!!

' 3.95 bits of key information (H denotes the binary entropy function).

Remark 1. A precise estimation of the Hamming weight of the DES key
can be achieved by means of a timing attack if two situations hold. First,
accurate time measurements can be obtained. Second, the variations in the
encryption and key-schedule generation time produced by different keys
with identical Hamming weight is small compared to the time variations
produced by keys with one more or one less set bit. We have noticed that
the latter situation approximately holds. An exact estimation of the Ham-
ming weight of the DES key can be achieved if the attacker can accurately
perform time measurements of several encryptions of the same plaintext.
But, this requires a more powerful attacker, one that should be capable of
fixing the input message fed into the encryption process.

More remarkable than the established monotonically increasing relation
between the encryption times and the Hamming weight of the key is the
linear dependency that exists between the two measured quantities. The
correlation factors for the data shown in Figure 3 and Figure 4 are 0.9760
and 0.9999, respectively. The sharp linear dependency between encryption
times and Hamming weight allows an attacker to infer the target system’s
information which is required to carry out the attack described above. This
topic is discussed in the next section.

4.1.1 Experimental Results. In this section, we describe a computa-
tional experiment that shows the expected reduction in the size of the key
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space search that would be achieved by the implementation of the timing
attack described in the previous section..

Assume that, for every i [ $0, . . . , 56%, we have a Ti [ R correspond-
ing to the expected time it takes the target DES implementation to encrypt
a message with a key of Hamming weight i. Furthermore, assume that
Ti , Ti11 (as supported by our experimental observations). Consider the
procedure of Figure 5 for recovering the DES encryption key through a
timing attack that exploits the facts reported in Section 4. Note that it is
possible to experimentally determine the expected number of keys that this
procedure would try without having to actually execute it. Indeed, if the
DES encryption of plaintext M under key K generates the ciphertext C in
t-ms, then the expected size of the key space searched by the given
procedure is

?$K9 [ $0,1%56 : ?Twt~K9! 2 t? , ?Twt~K! 2 t?%?

1
1

2
?$K9 [ $0,1%56 : Twt~K9! 5 Twt~K!%?.

For both DES implementations we studied, we randomly chose DES
message/key pairs, measured the encryption time, and computed the ex-
pected number of keys that the procedure of Figure 5 would have tried
before finding the correct encryption key. From our discussion of Section
4.1, it follows that the best that one can hope for is to have to try half of the
keys whose Hamming weight equals that of the correct encryption key.
This corresponds to 3.24 percent of all the key space. We found that, for
RSA-DES, 5.30 percent of the key space would have been searched, in
average, before finding the correct encryption key. For L-DES, the percent-
age goes down to 3.84 percent.

Table I shows in more detail some of the data collected in our experi-
ments. Columns are labeled according to the weight of the DES key. We
denote the weight of a key by k. The second row represents the percentage

3In the (unlikely) event that l is not uniquely defined, perturb t by a value uniformly chosen in
the interval @2f, f#, where f is tiny compared to the precision of the timing measurements.

Fig. 5. Key recovery procedure based on a timing attack that reveals the Hamming weight of
the key
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of the total key space corresponding to DES keys of Hamming weight k
(with a precision of 0.0005). We denote this value by pk. For each DES key
of weight k, we estimated (16000 z pk times) the expected percentage of
the key space that would have been searched before finding the encryption
key. Each of these estimates was based on 16000 z pk measurements in
order to ensure that at least 16 measurements were considered for every
estimate associated to nonzero pk’s. The last two rows of Table I show, for
each DES implementation and some key weights, the average of the values
obtained.

Recovering 3.95 bits of a DES key gives a modest improvement in the
time needed to recover the key. But, Table I implies that a timing attack
that reveals the Hamming weight of the key is potentially more threaten-
ing. In particular, an adversary can restrict attention to keys determined to
have either a significantly low or high Hamming weight. The adversary can
do this by performing timing measurements until one is found to be either
significantly low or high. Once the adversary detects such a rare key, the
subsequent key search can be much less than the usual amount. Thus, the
adversary can balance the time to find such rare keys with the time needed
for key recovery. In some systems, the recovery of even a single key may
cause total disruption and/or forward vulnerability.

4.1.2 Sources of the dependency between DES encryption time and key’s
Hamming weight. The key schedule generation in L-DES is carried out by
a procedure called des_set_key . This procedure computes the resulting
key schedule bitstring by performing a bitwise OR with some precomputed
constants. For each bit of the key, such bitwise ORs are computed if and
only if the key bit is set. For that purpose, it uses a piece of code of the
following form: If ~condit! then instr1;. . . ;instr32; else instr. The
number of times condit is true turns out to be exactly the Hamming
weight of the DES key. This is the main source of running time differen-
tials in L-DES.

In RSA-DES’s key schedule generation code there is also a procedure that
contains two conditional statements. These conditional statements are used
in the computation of the subkeys. More precisely, they implement a fixed

Table I. Results of Computational Experiment

k 14 16 18 20 22 24 26 28

pk 0.008 0.058 0.295 1.090 2.973 6.044 9.224 10.615
RSA 0.004 0.131 0.387 1.155 2.221 4.274 6.943 9.865

Louko 0.004 0.029 0.425 0.646 1.654 3.362 5.366 6.472

k 30 32 34 36 38 40 42 44

pk 9.224 6.044 2.973 1.090 0.295 0.058 0.008 0.001
RSA 8.744 6.054 2.088 1.098 0.459 0.074 0.004 0.001

Louko 5.337 3.768 1.770 0.571 0.172 0.043 0.004 0.001
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permutation PC2 of some bits of the key. Their code is of the following
form: If ~condit! then instr. The total number of times condit is true is
equal to the sum of the Hamming weight of all subkeys. Thus, the number
of times instr is executed is directly proportional to the Hamming weight
of the DES key.

As mentioned in Section 2, Kocher [1996] conjectured that, in DES’s key
schedule, the rotation of nonzero bits using conditional statements could
give rise to running time differentials. In the implementations of DES we
analyzed, we found no evidence to support this conjecture.

Finally, note that it is clear from Figure 4 that, in L-DES, there is a
source of nonfixed running times that does not depend on the key schedule
generation process. This is evidenced by the nonconstant distance between
the two curves shown in Figure 4. The source of these time differentials is
not due to conditional statements. We were not able to identify the cause of
this dependency nor able to exploit it in order to recover all of the DES key.

4.2 Derivation of the Timing Characteristics of the Target System

As discussed in Section 4.1, in both DES implementations that we studied,
the encryption time was roughly equal to a linear function of the key’s
Hamming weight plus some normally distributed random noise. In this
section, we exploit this fact in order to derive all the necessary information
needed to perform a timing attack that reveals the Hamming weight of the
target system’s DES key.

First, we need to introduce some notation. Assume we have m measure-
ments on the time it takes the target system to perform a DES encryption.
The time measurements might correspond to encryptions performed under
different DES keys. For i [ $1, . . . , k%, denote by Ki the ith key that is used
by the target system during the period that timing measurements are per-
formed. We make the (realistic) assumption that K1, . . . , Kk are chosen at
random in $0,1%56 and independent of each other. Let X ~i! denote the Ham-
ming weight of key Ki. Thus, the distribution of X ~i! is a Binom~56, 1/ 2!.
Since we are assuming that the Ki’s are chosen independently, we have that
X ~1!, . . . , X ~k! are independent random variables. Note that successive time
measurements can correspond to encryptions of the message under the same
key. For i [ $1, . . . , k%, let t i [ $1, . . . , m% be the index of the last
measurement corresponding to an encryption performed with key Ki. For
convenience’s sake, let t0 5 0. Hence, 0 5 t0 , t1 , · · · , tk21 , tk 5 m.
Denote by Ii the set of indices that correspond to time measurements under
key Ki, that is, for i [ $1, . . . , k%, let Ii 5 $n [ N : t i21 , n # t i%. For
i [ $1, . . . , k% and j [ Ii, let Tj

~i! be the random variable representing the
time it takes the target system to perform the jth encryption of the
message with key Ki. Finally, for j [ Ii, let ej

~i! be a random variable
representing the effect of random noise on the jth encryption with key Ki.
Thus, the ej

~i!’s represent measurement inaccuracies and the target system’s
running time fluctuations.
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We now have all the notation necessary to formally state the problem we
want to address. Indeed, the linear dependency between the encryption
time and the Hamming weight of the key in both DES implementations
that we studied implies that there exists a, b, and s, such that for all
i [ $1, . . . , k% and j [ Ii

Tj
~i! 5 aX~i! 1 b 1 ej

~i!, X~i! z Binom~56, 1/2!, ej
~i! z Norm~0, s2! (1)

Our problem is to infer from timing measurements the parameters a, b,
and s for which (1) holds. We address two variations of this problem. In
Section 4.2.1, we show how to deal with the case where the t i’s are known.
In Section 4.2.2, we show how to handle the case where the t i’s are
unknown. The former case is the most realistic one. Indeed, a standard
cryptanalytic assumption is that the attacker knows the key management
procedure of the target system.

4.2.1 Known t i’s. We propose two alternative statistical methods for
deducing the parameters a, b, and s for which (1) holds. One method is
based on maximum likelihood estimators and the other one on asymptoti-
cally unbiased estimators. Since the following discussion heavily relies on
standard concepts and results from probability and statistics, we refer the
reader unfamiliar with these subjects to Feller [1966], Ross [1988], and
Zacks [1971] for background material and terminology.

Maximum Likelihood Estimators: Let X 5 ~X ~i!! i51
k , T ~i! 5 ~Tj

~i!! j[Ii,
and T 5 ~T ~i!! i51

k . Thus, X, T ~1!, . . . , T ~k!, and T denote random variables.
Furthermore, let x 5 ~xi! i51

k , t ~i! 5 ~tj
~i!! j[Ii, and t 5 ~t ~i!! i51

k be the actual
values taken by X, T ~i!, and T, respectively.

Let fT~ta, b, s! be the marginal distribution of T given a, b, and s. For
a fixed collection of time measurements t, the values of a, b, and s that
maximize fT~ta, b, s! are the maximum likelihood estimators we are
looking for. The maximum likelihood estimators are the values most likely
to have produced the observed time measurements. They can also be
regarded as the values minimizing the loss function 2log fT~ta, b, s!.
This explains why maximum likelihood estimators are thought to be good
predictors. Thus, in order to determine good estimators for a, b, and s, we
first compute fT~ta, b, s!.

PROPOSITION 1. The marginal distribution of T given a, b, and s is

fT~ta, b, s! 5 S 1

2ps2D
m
2 P

i51

k

EX~i!FexpS2
1

2s 2O
j[Ii

~tj
~i!2~aX~i!1b!!2DG.

PROOF. Let fX, T~ z a, b, s!, fT/X5x~ z a, b, s!, and fX~ z a, b, s! denote
the joint density function of X and T, the density function of T given X 5 x,
and the probability distribution of X, respectively. For convenience’s sake,
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we henceforth omit a, b, and s from the expressions for fX, T, fT/X5x, and fX.
Observe that the independence of the X ~i!’s and ej

~i!’s imply that the T ~i!’s
are independent. Thus, the joint density function of X and T given a, b,
and s is

fX, T~x, t! 5 fX~x!fT/X5x~t! 5 P
i51

k

fX~i!~xi!fT~i!/X~i!5xi~t
~i!!,

where the last equality follows since the X ~i!’s are independent and the
T ~i!’s are independent. From (1), we get that Tj

~i! given X ~i! 5 xi distributes
like a Norm~axi 1 b, s2!. Moreover, for fixed i, the Tj

~i!’s are independent
random variables. Hence,

fT~i!/X~i!5xi~t
~i!! 5 P

j[Ii

S 1

2ps2D
1
2

expS2
1

2s2
~tj

~i!2~axi1b!!2D
5 S 1

2ps2D
?Ii?

2

expS2
1

2s 2 O
j[Ii

~tj
~i!2~axi1b!!2D.

Since X ~i! z Binom~56, 1/ 2!, we know that fX ~i!~xi! 5 ~56
xi ! / 256. Thus,

fX, T~x, t! 5 S 1

2ps2D
m
2 P

i51

k 1

256 S56
xi
DexpS2

1

2s2O
j[Ii

~tj
~i!2~axi1b!!2D.

The marginal distribution of T given a, b, and s equals the sum, over all
values taken by x, of fX, T~x, t!. Hence,

fT~ta, b, s! 5 S 1

2ps2D
m
2 P

i51

k O
xi50

56 1

256 S56
xi
DexpS2

1

2s2O
j[Ii

~tj
~i!2~axi1b!!2D.

The conclusion follows directly from the previous equality and the fact that
X ~i! z Binom~56, 1/ 2!. e

For a given t, the values of a, b, and s that maximize the right-hand side
of the expression in Proposition 1 are the maximum likelihood estimators
sought. As is often the case when dealing with maximum likelihood
estimators, it is difficult to solve explicitly for them. (See Zacks [1971, Ch.
5, Sect. 2] for a discussion of computational routines that can be used to
calculate maximum likelihood estimators.)

The advantage of the approach described above for determining the
parameters relevant for carrying out the timing attack is that it uses all
the available timing measurements. But, it does not allow us to determine
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how many measurements are sufficient in order to obtain accurate estima-
tions of the parameters sought. The alternative approach described below
solves this problem.

Asymptotic Estimators: Our goal is to find good estimators â, b̂, and ŝ

for a, b, and s. Moreover, we are interested in determining the asymptotic
(on the number of timing measurements) behavior of such estimators. In
particular, their asymptotic distributions, their limiting values, and their
rate of convergence.

We will now derive good predictors for a, b, and s. We start with a key
observation. Since the expectation and variance of a Binom~56, 1/ 2! are
28 and 14, respectively, taking the expectation and variance in (1) yields
that for all i [ $1, . . . , k% and j [ Ii

mT 5 E@Tj
~i!# 5 28a 1 b, sT

2 5 V@Tj
~i!# 5 14a2 1 s2. (2)

Hence, if we knew mT, sT
2 , and s2 we could solve for a and b in (2). This

suggests that, if we can find good estimators for mT, sT
2 , and s2, then we can

derive good estimators for a and b. We now provide candidates for m̂T, ŝT
2 ,

and ŝ2, the estimators for mT, sT
2 , and s2, respectively. But we first need to

introduce additional notation. Let

T~i! 5
1

?Ii?
O
j[Ii

Tj
~i!, T 5

1

k O
i51

k

T~i!, e~i! 5
1

?Ii?
O
j[Ii

ej
~i!.

Define

m̂T 5 T, ŝT
2 5

1

k O
i51

k 1

?Ii?
O
j[Ii

~Tj
~i! 2 T!2, ŝ2 5

1

k O
i51

k 1

?Ii?
O
j[Ii

~Tj
~i! 2 T~i!!2.

Solving for a and b in (2) yields that the two natural candidates for â

and b̂, the estimators for a and b, are

â 5
1

Î14
~ŝT

2 2 ŝ2!1/ 2, b̂ 5 m̂T 2 28â.

We now prove that â is well defined.

PROPOSITION 2.

ŝT
2 2 ŝ2 5

1

k O
i51

k

~T~i! 2 T!2 $ 0.

PROOF. Just note that
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ŝT
2 5

1

k O
i51

k 1

?Ii?
O
j[Ii

~Tj
~i! 2 T~i! 1 T~i! 2 T!2 5 ŝ2 1

1

k O
i51

k

~T~i! 2 T!2. e

We henceforth denote a chi-square distribution with l degrees of freedom
by x l

2.

PROPOSITION 3. If ?I1? 5 . . . 5 ?Ik? 5 n, then the distribution of ŝT
2 2

s2ˆ is (approximately) ~14a2 1 s2/n!xk21
2 / k.

PROOF. Since Tj
~i! 5 aX ~i! 1 b 1 ej

~i!, we have that T ~i! 5 aX ~i! 1 b 1
e ~i!. Since e ~i! is the average of n independent Norm~0, s2! random
variables, e ~i! z Norm~0, s2/n!. In addition, the de Moivre-Laplace Theo-
rem [Hazewinkel 1988, p. 397] states that the Binom~m, p! distribution
can be expressed in terms of the standard normal distribution. Moreover, if
m 3 `, then such an expression is exact, and if mp~1 2 p! $ 10, then the
expression provides a good approximation of the Binomial distribution
[Ross 1988, pp. 170–171]. Thus, since X ~i! z Binom~56, 1/ 2!, the distri-
bution of X ~i! is well approximated by a Norm~28, 14!. Hence, since X ~i! is
independent of e ~i! and the sum of independent normal distributions is a
normal distribution, it follows that T ~i! is approximately distributed as a
Norm~mT, 14a2 1 s2/n!. The desired conclusion follows from a classical
statistics result [Hogg and Tanis 1997, Th. 5.3.4] and Proposition 2. e

PROPOSITION 4. If ?I1? 5 . . . 5 ?Ik? 5 n and s2/n is negligible, then
Îk~â2 2 a2! converges (in distribution)4 to a Norm~0, 3a4! plus some
small constant error term when k 3 `.

PROOF. First, note that if we neglect s2/n, then Proposition 3 and our
definition of â imply that the distribution of â2 5 ~ŝT

2 2 ŝ2!/k is (approxi-
mately) a2xk21

2 / k. Second, recall that the sum of the squares of l indepen-
dent identically distributed normal random variables with zero mean and
variance equal to 1 is distributed according to a x l

2. Equivalently, the sum
of l independently distributed x1

2 random variables is distributed according
to a x l

2. Hence, since the expectation and variance of a x1
2 random vari-

able are 1 and 3, respectively, the Central Limit Theorem implies that
Îk 2 1~~k 2 1!21xk21

2 2 1! converges (in distribution) to a Norm~0,3!.
Putting the two observations together shows that Îk 2 1~â2 2 a2!

converges (in distribution) to a Norm~0,3a4! plus some small constant
term when k 3 `. The stated result follows immediately. e

4Recall that, when X1, X2, . . . , X are random variables on some probability space ~V, ^,
P!, it is said that Xn converges in distribution to X as n 3 `, if P@Xn # x# 3 P@X # x# , as

n 3 ` for all points x at which FX~x! 5 P@X # x# is continuous.
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THEOREM 1. If ?I1? 5 . . . 5 ?Ik? 5 n, s2/n is negligible and k is
sufficiently large, then the distribution of â is (approximately) a
Norm~a, 3a2/4k!.

PROOF. The Law of Large Numbers implies that ŝT
2 and ŝ2 converge

(almost surely)5 to sT
2 and s2, respectively. Hence, by continuity, â 5

~ŝT
2 2 ŝ2!1/ 2/ Î14 converges (almost surely) to a 5 ~sT

2 2 s2!1/ 2/ Î14 when
k 3 `. This fact and Proposition 4 yield that, if k 3 `, then Îk~â 2 a! 5

Îk~â2 2 a2! / ~â 1 a! converges (in distribution) to a Norm~0, 3a2/4!
plus some small error term. The desired conclusion follows
immediately. e

Remark 2. Theorem 1 provides an approximation to the distribution of
â. The approximation error arises from three sources. The first one is the
use of the de Moivre-Laplace Theorem to express a Binom~56, 1/ 2! in
terms of a Norm~28, 14!. The second one is due to the use of the Central
Limit Theorem to approximate the distribution of an estimator by its limit
distribution. The final source of error is due to the use of the Law of Large
Numbers to approximate an estimator by its asymptotic value. These three
sources of approximation error can be bounded through the de Moivre-
Laplace Theorem, Berry-Essen’s inequality [Hazewinkel 1988, p. 369], and
Chebyshev’s inequality [Ross 1988, p. 337], respectively. A bound on the
accumulated approximation error shows that Theorem 1 is fairly accurate.

Corollary 1. If ?I1? 5 . . . 5 ?Ik? 5 n, s2/n is negligible and k is suffi-
ciently large, then

P@?â 2 a? $ e?a?#, P@?b̂ 2 b? $ e?b?# #
1

ke2
O~1!.

PROOF. The bound concerning â follows from Theorem 1 and Cheby-
shev’s inequality [Ross 1988, p. 337]. In order to prove the other bound,

recall that b̂ 5 m̂T 2 28â and b 5 mT 2 28a; thus,

P@?b̂ 2 b? $ e?b?# 5 P@?m̂T 2 mT 2 28~â 2 a!? $ e?mT 2 28 z a?#

# P@?m̂T 2 mT? $ e?mT?# 1 P@?â 2 a? $ e?a?#

#
1

e2 S 1

mT
2 V@m̂T# 1

1

a2
V@â#D,

where the last inequality is a consequence of applying Chebyshev’s inequal-
ity twice. Note that, from Theorem 1, we have that V@â# 5 3a2/4k.
Moreover, V@m̂T# 5 V@T ~i!#/k 5 ~14a2 1 s2/n!/k. The result follows. e
5Recall that, when X1, X2, . . . , X are random variables on some probability space ~V, ^,
P!, it is said that Xn converges almost surely to X as n 3 `, if $v [ V : Xn~v! 3 X~v!,
as n 3 `% is an event whose probability is 1.
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Corollary 1 tells us that with probability at least 1 2 d, it suffices to take
n time measurements for each of O~1/e2!/d different keys to approximate a

and b to within a multiplicative factor of ~1 6e!.

4.2.2 Unknown t i’s. The assumption that the t i’s are known made in
the previous section is not strictly necessary since an attacker may alter-
nate between performing several timing measurements over a short period
of time and resting for an appropriately long period of time. Hence, the
problem of deducing the target system’s design characteristics reduces to
the case in which the t i’s are known provided that the keys are not changed
too often and the attacker’s resting period is longer than a key’s lifetime.
(Changing keys too often creates a key management problem for the
cryptosystem’s user. Thus, it is reasonable to assume that a key’s lifetime
is not excessively short.)

We now discuss another approach for handling the case of unknown t i’s
under the assumption that the attacker has access to several identical
copies of the target system, for example, several copies of a smart card
supporting a DES based challenge-response protocol. Let’s make the rea-
sonable assumption that the target system’s keys are independently gener-
ated. In this case, the attacker may perform, over a short period of time,
several timing measurements for each copy of the target system. If the
key’s are not changed too often, the attacker can deduce the target system’s
relevant timing characteristics as in Section 4.2.1. Indeed, the attacker can
assume that all the timing measurements arising from the same copy of the
system come from encryptions performed under the same key. Since keys
corresponding to different copies of the target system are independently
generated and the copies of the system are identical, the problem of
deducing the target system’s design characteristics reduces to the case in
which the t i’s are known.

Tests of statistical hypothesis give rise to another alternative for han-
dling the case of unknown t i’s. Indeed, consider the situation in which an
attacker determines m timing measurements t1, . . . , tm arising from
random variables satisfying (1). Assume keys are not changed too often, that
is, at least n ,, m timing measurements come from encryptions performed
under the same key. Thus, for each j such that n # j # m 2 n, the
attacker can perform a test of equality of two normal distributions [Hogg
and Tanis 1997, pp. 372–385] on the samples of tj2n11, . . . , tj and
tj11, . . . , tj1n. The significance level of such tests allows the attacker to
determine the measurements around where a change of key occurs. Dis-
carding the measurements around where the attacker suspects a change of
key occurs yields a sequence of timing measurements from which the target
system’s design characteristics can be deduced as in the case of known t i’s.

5. FINAL COMMENTS

In Kocher [1996], a “blinding technique” similar to that used for blind
signatures [Chaum 1983] is proposed in order to prevent a timing attack
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against a modular exponentiator. For both implementations of DES we
studied, blinding techniques can be adapted to produce (almost) fixed
running time for the key schedule generation processes. Indeed, let K be
the DES key of Hamming weight wt~K! whose key schedule we want to
generate. Let K9 be a bit-string of length 56 generated as follows: randomly
choose wt~K!/ 2 (respectively, ~56 2 wt~K!!/ 2) of the bits of K which
are set to 1 (respectively, 0) and set the corresponding bits of K9 to 0
(respectively, 1). Denote the bitwise XOR of K and K9 by K Q K9. Note that
wt~K9! 5 wt~K Q K9! 5 28 when the Hamming weight of K is even, and
wt~K9! 5 28 and wt~K Q K9! 5 29 when the Hamming weight of K is
odd. Modify the key schedule generation processes so key schedules for
keys K9 and K Q K9 are generated. Note that the work required for this is
independent of the Hamming weight of K. Hence, no sources of nonfixed
running time are introduced during this step. Let K91, . . . , K916 and
K1, . . . , K16 be the key schedules obtained. Recall that Ki (respectively,
K9i) is a permuted selection of bits from the key K Q K9 (respectively, K9).
Thus, the key schedule of K is K1 Q K91, . . . , K16 Q K916. Figure 6 plots the
encryption times of RSA-DES as previously explained. Note the very clear
reduction in time differentials. The reduction is achieved at the expense of
increasing the encryption time by a factor of approximately 1.6. Unfortu-
nately, this blinding technique still leaks the parity of the weight of the
original DES key, that is, 1 bit of information. (A careful look at Figure 6
confirms this fact.) This can be fixed using the idea developed above.
Indeed, for a given DES key K, one can generate three DES keys K1, K2,
and K3, two of them with Hamming weight 28 and one with Hamming
weight 27. Of the three keys, one will be spurious, meaning that its key
schedule should be generated and the results discarded. The XOR of the
key schedules generated by the two nonspurious keys will give rise to the
key schedule sought. When the Hamming weight of the original DES key is
even (respectively, odd), the spurious key will be the one of Hamming
weight 27 (respectively, one of the keys of Hamming weight 28).

We have seen that the main source of nonfixed running times were
caused by the key schedule generation procedure. In many fast software
implementations, key setup is an operation that is separated from encryp-
tion. This would thwart a timing attack if encryption time is constant. But,
in several systems, it is impractical to precompute the key schedule. For
example, in smart cards, precomputations are undesirable due to memory
constraints.

Overall, both DES implementations we studied are fairly resistant to a
timing attack. This leads us to the question of whether a timing attack can
find all of the DES key and not only its Hamming weight. Although we did
not succeed in tuning the timing attack technique in order to recover all the
bits of a DES key, we identified in L-DES a source of nonfixed running time
that is not due to the key generation process. Indeed, the difference in the
slopes of the curves plotted in Figure 4 shows that the encryption time, not
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counting the key generation process, depends on the key used. This fact is a
weakness that could (potentially) be exploited in order to recover all of the
DES key. It opens the possibility that the time it takes to encrypt a
message M with a key K is a nonlinear function of both M and K, for
example, it is a monotonically increasing function in the Hamming weight
of M Q K. This would allow a timing attack to recover a DES key by
carefully choosing the messages to be encrypted. We were not able to
identify clear sources of nonlinear dependencies between time differentials
and the inputs to the DES encryption process in either of the DES
implementations that we studied. Nevertheless, we feel that the partial
information leaked by both implementations of DES that we analyzed
suggests that care must be taken in the implementation of DES; otherwise,
all of the key could be compromised through a timing attack.

APPENDIX

Standard C routines allow to measure time events in an MSDOS environ-
ment with an accuracy of 54.9254ms [Heidenstrom 1995]. In order to
measure with a time precision of 0.8381ms on a Pentium computer
running MSDOS, we followed Kocher’s advice (personal communication,
1997). He suggested reading the value of a high-precision timer by access-
ing port 64. Whenever this timer overflows to 65536, it generates one
interrupt. Interrupts occur once every 54925.4ms. Hence, one can measure
time intervals with a precision of 54925.4ms/65536 ' 0.8381ms. It is
also a good idea to run from a RAM disk. For more information on how to
perform accurate time measurements on the PC family under DOS, the
reader is referred to Heidenstrom [1995]. Performing the timing measure-
ments in a Windows or Unix environment is clearly a bad idea since both of
them are multiprocess operating systems.

Fig. 6. RSA-DES and modified RSA-DES encryption times.
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