
On Euclid's Algorithm and the Computation

of Polynomial Greatest Common Divisors

W. S. BROWN

Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey

ABSTRACT. This paper examines the computation of polynomial greatest common divisors by
various generalizations of Euclid's algorithm. The phenomenon of coefficient growth is de-
scribed, and the history of successful efforts first to control it and then to eliminate it is re-

l a t e d .

The recently developed modular algorithm is presented in careful detail, with special atten-
tion to the case of multivariate polynomials.

The computing times for the classical algorithm and for the modular algorithm are analyzed,
and it is shown that the modular algorithm is markedly superior. In fact, in the multivariate
ease, the maximum computing time for the modular algorithm is strictly dominated by the
maximum computing time for the first pseudo-division in the classical algorithm.

KEY WORDS AND P H R A S E S : algebra, asymptotic bounds, Chinese remainder algorithm, co-
efficient growth, computing time analysis, Euclid's algorithm, greatest common divisors, in-
termediate expression swell, modular arithmetic, modular mappings, polynomial remainder
sequences, polynomials, subresultants

CR CATEGORIES: 5.0, 5.9

1. Introduction

1.1 ORIGIN AND SCOPE. Accord ing to K n u t h [1, p. 294], " E u c l i d ' s a lgori thm,
which is found in Book 7, P ropos i t ions 1 and 2 of his Elements (c. 300 B.C.), and which
m a n y scholars conjec ture was ac tua l ly Euc l id ' s r end i t ion of an a lgo r i thm due to
E u d o x u s (c. 375 B.C.), . . . is the o ldes t non t r iv i a l a lgo r i thm which has surv ived to

the p resen t d a y . "
T h e a lgor i thm, as p resen ted b y Eucl id , computes the pos i t ive g rea tes t common

div isor of two given pos i t ive integers . However , i t is r ead i ly genera l ized to app ly to
po lynomia l s in one va r i ab le over a field, and fu r the r to po lynomia l s in any number of
va r i ab le s over any unique fac to r i za t ion d o m a i n in which grea tes t common divisors

can be computed .
I n pa r t i cu la r , we shall focus our a t t e n t i o n on domains of univariate or multi-

variate po lynomia l s (tha t is, po lynomia l s in one or severa l var iables , respect ively)
over the in tegers or the ra t ionals , even though some of the resul ts will be s t a t ed more

genera l ly .
W e shall no t consider po lynomia l s wi th real coefficients, because the reals are

Copyright © 1971, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of this material is granted

provided that reference is made to this publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery.
This paper is a revised version of one with the same title that appears in "The Proceedings of
the Second Symposium on Symbolic and Algebraic Manipulation, March 23-25, 1971," held by
ACM-SIGSAM, which was prepared before the symposium.

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971, pp. 478--504.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321662.321664&domain=pdf&date_stamp=1971-10-01

Euclid's Algorithm and Computation of Polynomial GCD's 479

not exactly representable in a computer, and any use of finite precision approxima-
tions can make it impossible to test whether one polynomial divides another, or
even to determine the degree of a polynomial. Although there may be special
situations in which these obstacles can usefully be attacked, it is clear tha t they
cannot be overcome in any general way.

1.2 APPLICATIONS. The problem of computing G C D ' s has recently received
considerable a t tent ion because of the need to simplify rational numbers (quotients
of integers) and rational functions (quotients of polynomials) in systems for
mechanized algebra [2, 12]. However, Euclid's algorithm is also int imately connected
with continued fractions [1, pp. 316-320], Diophantine equations [1, p. 303],
bigradients [3, 4], Sturm sequences [5, Ch. 7], and elimination theory [5, Ch. 12]
(including resultants and discriminants).

1.3 BASIC CONCEPTS. Before proceeding further, let us review some basic con-
cepts [6, Ch. 3]. In an integral domain, divisors of unity are called units, and ele-
ments which divide each other are called associates; clearly, the ratio of two asso-
ciates is a unit. In a field, all nonzero elements are units; in the domain of integers,
however, the only units are 1 and - 1 .

An element of an integral domain is said to be irreducible if its only divisors are
units and associates. An integral domain in which every element can be represented
uniquely (up to associativity) as a product of irreducibles is called a unique fac-
torization domain.

The relation of ass0ciativity is an equivalence relation, and can therefore be used
to decompose an integral domain into associate classes. I t is often convenient to
single out one element of each associate class as a canonical representative, and
define it to be unit normal. In the domain of integers, all nonnegative integers are
unit normal. In a field, since all nonzero elements are units, only 0 and 1 are unit
normal. In a domain of polynomials, those with unit-normal leading coefficients
are unit normal.

Let a l , • • • , an be given nonzero elements of an integral domain. Then g is called
the greatest common divisor (GCD) of a l , • • • , an if and only if

(a) g divides a l , " • , as ,
(b) every divisor of a l , • • • , as divides g, and
(c) g is unit normal.

In a unique factorization domain, there is always a unique G C D g = gcd (al, • • • ,
an). I f g = 1, we say that a l , " " • , an are relatively prime.

1.4 THE ALGORITHM FOR INTEGERS. Let a~ and a2 be positive integers with
al _> a2, and let gcd (al, as) denote their (positive) greatest common divisor. To
compute this GCD, Euclid's algorithm constructs the integer remainder sequence
(IRS) a l , a~, • .. , ak, where ai is the positive remainder from the division of ai-~
by a~_~, for i = 3, • • • , k, and where ak divides ak_~ exactly. Tha t is,

ai = al-2 -- qiai-1, 0 < ai ~ a~-l, i = 3, . . . , k, (1)

and ak I ak-1. From this it is easy to see tha t gcd (al, a~) = g c d (as, a3)
gcd (ak-1, ak) = ak, and therefore ak is the desired GCD.

This algorithm can be extended [1, p. 302] to yield integers u~ and v~ such tha t

u l a l ~- via2 ~- al , i = 1, . . . , k. (2)

When gcd (al, a~) = 1, it follows tha t uka~ + vka2 = 1, and therefore uk is an inverse

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

480 w . s . BROWN

of al modulo a2, while vk is an inverse of a2 modulo al. If only uk is needed, as in
Step (1) of the Chinese remainder algorithm (Section 4.8), then one need not
compute v~, • • • , vk ; if al >> a2, the time saved may be substantial.

1.5 THE ALGORITHM FOR POLYNOMIALS. We shall consider two fundamentally
different generalizations of Euclid's algorithm (Section 1.4) to domains of poly-
nomials.

In the classical algorithm (Section 2), we view a multivariate polynomial as a
univariate polynomial with polynomial coefficients, and we construct a sequence of
polynomials of successively smaller degree. Unfortunately, as the polynomials de-
crease in degree, their coefficients (which may themselves be polynomials) tend to
grow, so the successive steps tend to become harder as the calculation progresses.

If the GCD's of these inflated coefficients are required, the problem is aggravated--
especially in the multivariate case, where the grov¢th may be compounded through
several levels of recursion. If the coefficient domain is a field, this same remark ap-
plies to any GCD's of numerators and denominators that are required to simplify
inflated coefficients. If coefficients in a field are not simplified, then the division steps
become harder faster, and the final result, although formally correct, may be prac-
tically useless.

In the modular algorithm (Section 4) we first project the given polynomials into
one or more simpler domains in which images of the GCD can more easily be com-
puted. The true GCD is then constructed from these images with the aid of the
Chinese remainder algorithm. Since the same method is used for the required GCD
computations in the image spaces, it is only necessary to apply Euclid's algorithm
to integers and to univariate polynomials with coefficients in a finite field.

1.6 RECENT HISTORY. During the past decade these algorithms have been
studied intensively by G. E. Collins, and (mostly in response to Collins' work) by
the author.

The first major advance was the discovery by Collins [7] of the subresultant PRS
algorithm (Section 3.6), which effectively controls coefficient growth without any
GCD computations in the coefficient domain or any subdomain thereof. Then, after
several years of improvement and consolidation, Collins and the author (working
independently but with some communication) discovered the essentials of the modu-
lar algorithm (Section 4) which completely eliminates the problem of coefficient
growth by using modular arithmetic. With a very few hints from Collins and the
author, D. E. Knuth immediately grasped most of the key ideas and published a
sketch of a similar algorithm [1, pp. 393-395].

1.7 OUTLINE. In Section 2, we present the classical algorithm without specify-
ing a method for constructing the required sequence of polyr~omials. Several al-
gorithms for this purpose are discussed in Section 3, culminating in the subresultant
PRS algorithm mentioned above. In Section 4, the modular algorithm is presented
in careful detail, with special attention to the multivariate case. The required com-
puting times for the classical algorithm (augmented by the subresultant PRS al-
gorithm) and for the modular algorithm are then analyzed in Section 5. Finally, in
Section 6 we review the highlights and present some tentative conclusions.

2. The Classical Algorithm

2.1 INTRODUCTION. The goal of this section is to obtain a straightforward gen-
eralization of Euclid's algorithm, as presented in Section 1.4, to domains of uni-

Euclid's Algorithm and Computation of Polynomial GCD' s 481

variate or multivariate polynomials. By viewing multivariate polynomials as poly-
nomials in one variable, hereafter called the main variable, with coefficients in the
domain of polynomials in the other variables, hereafter called the auxiliary variables,
we may confine our attention without loss of generality to the univariate case.

2.2 THE RATIONAL ALGORITHM. For univariate polynomials F1 and F2 over a
field, division yields a unique quotient Q and remainder R such that

F1 = QF2 + R, O (R) < O (F2), (3)

where 0 (F) denotes the degree of F, and 0 (0) = - ~ . Thus Euclid's algorithm, as
presented in Section 1.4, is directly applicable. As an example [1, pp. 370-371], if

Fi(x) = x s + x 6 - 3x 4 - 3x 3"4- 8x 2 + 2 x - - 5,
(4)

F 2 (x) -~ 3 x 6 + 5 x 4 - - 4 x 2 - - 9 x + 2 1

are viewed as polynomials with rational coefficients, then the following sequence
occurs (for brevity, we write only the coefficients):

1, 0, 1, 0, --3, --3, 8, 2, --5

3, 0, 5, 0, --4, --9, 21

-~ , o, ~, o, - ~
117 - 9 , ~ -

2 3 3 1 5 0 1 0 2 5 0 0 .
" - ~ 5 9 1 , - - - ' ~ 9 7

1 9 8 8 7 4 4 8 2 1 (5)
- 5 4 3 5 8 9 ~-~5-'"

It follows that F1 and F2 are relatively prime.
To improve this procedure, we make each polynomial monic as soon as it is ob-

tained, thereby simplifying the coefficients somewhat. In our example, we obtain
the sequence

1 , 0 , 1 , 0 , - 3 , - 3 , 8 , 2 , - 5

1, 0, ~, 0, - ~ , - 3 , 7

1,0, -] , 0, ~

1, 95 49

1, 615o
- - T~-6--,gj

1. (6)

Although this sequence minimizes the growth of coefficients, it requires integer
GCD computations at each step in order to reduce the fractions to lowest terms.

In general, if the coefficient domain is not a field, we could embed it in its field of
quotients and then use the algorithm of Section 1.4, but we shall see that it is more
efficient not to do so.

2.3 POLYNOMIAL REMAINDER SEQUENCES. Let 9 be a unique factorization do-
main in which there is some way of finding GCD's, and let 9[x] denote the domain of"
polynomials in x with coefficients in 9. Assuming that the terms of a polynomial
F C 9[x] are arranged in the order of decreasing exponents, the first term is called
the leading term, and its coefficient lc (F) is called the leading coe~cient.

Journal of the Association for Comput ing Machinery, Vol. 18, No. 4, October 1971

482 w . s . BROWN

Since the familiar process of polynomial division with remainder requires exact
divisibility in the coefficient domain, it is usually impossible to carry it out for non-
zero F1, F2 C 9[x]. However, the process of pseudo-division [1, p. 369] always yields a
unique pseudo-quotient Q = pquo(F1, F2) and pseudo-remainder R = prem (F1, F2),
such that f25+lF1 - QF2 = R and 0 (R) < 0 (F2), where f2 is the leading coefficient of
F~, and ~ = 0 (F1) - 0 (F2).

For nonzero F1, F2 C 9[x], we say that F1 is similar to F2 (F1 ~ F~) if there exist
al , a~ E 9 such that alF1 = a2F2. Here al and a2 are called coe~cients of similarity.

For nonzero F1, F2 C 9Ix] with 0 (F1) > 0 (F2), let F1, F2, • • • , Fk be a sequence of
nonzero polynomials such that F~ ~ prem(F~_2, F~-i) for i = 3, . . . , k, and
prem (Fk-1, Fk) = 0. Such a sequence is called a polynomial remainder sequence
(PRS). From the definitions, it follows that there exist nonzero a~, f~i C 9 and Q~ ~-~
pquo(F1, F2) such that

~,F, = o~iFi_2 - - Q,F~_i, O(F~) < 0(F~_i), i = 3, . . . , k. (7)

Because of the uniqueness of pseudo-division, the PRS beginning with F~ and F
is unique up to similarity. Furthermore, it is easy to see that gcd(F1, F2) ~ gcd(F ,2
F3) gcd(Fk_~, Fk) ~ Fk. Thus, the construction of the PRS yields t2he
desired GCD to within similarity.

2.4 ALGORITHM C. A polynomial F C 9Ix] will be called primitive if its nonzero
coefficients are relatively prime; in particular, all polynomials over a field are primi-
tive. Since 9 is a unique factorization domain, it follows [6, pp, 74-77] that 9Ix] is a
unique factorization domain whose units are the units of 9. Hence each polynomial
F C 9[x] has a unique representation of the form F = cont(F)pp(F), where eont(F)
is the (unit normal) GCD of the coefficients of F, and pp(F) is a primitive polyno-
mial. We shall refer to cont(F) and pp(F) as the content and primitive part, re-
spectively, of F.

Let F~' and F2' be given nonzero polynomials in 9[x] with 0 (Fi') > 0 (F21), and
let G' be their GCD. Also, let el = cont(F~'), c: = cont(F'2), c = gcd(c~, c2),
F1 = pp(F1'), F2 = pp(F2'), and G = gcd(F1, F2). Now, if F~, F2, . . . , F~is a
PRS, it is easy to show that G = pp(Fk) and G' = cG. Because of coefficient growth,
the coefficients of Fk are likely to be much larger than those of F~ and F2. However,
since G divides both F~ and F~, the coefficients of G are usually smaller than those
of F1 and F2. Thus, Fk is likely to have a very large content. Fortunately, most of
this unwanted content can be removed without computing any GCD's involving
coefficients of Fk.

Let fl = lc (F1), f: = lc (F2), fk = lc (Fk), g = lc (G), and ~ = gcd(fl , f2). Since
G divides both El and F2, it follows that g divides both fl and f2, and therefore g [~.
Let G = (~/g)G. Clearly, G has ~ as its leading coefficient, and G as its primitive
part, and it is easy to see that G = OFk/f~.

In the case of the Euclidean PRS algorithm (Section 3.2), the reduced PRS al-
gorithm (Section 3.4), and the subresultant PRS algorithm (Section 3.6), it can
be shown (see [7] and [8]) that 0 divides a subresultant (Section 3.5) which in turn
divides Fk, and therefore 0 I f~. Hence, G = F~/(f~/O). Thus, the (large) factor
f~/~ can be removed for the price of computing ~ and performing some divisions, and
it remains only to remove the (relatively small) content of G.

In other cases, such as the primitive PRS algorithm (Section 3.3), if ~ does not
divide fk, we may compute G directly from the formula G = OF~/f~. Alternatively,

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

Euclid's Algorithm and Computation of Polynomial GCD' s 483

dividing the numera to r and denomina tor of this expression by h = gcd (fk, .0), we
obtain G = ((O/h)Fk) / (f , /h) . Since (fk/h) and O/h) are relatively prime, it follows
that (f , /h) divides Fk. Hence, we may obtain G by comput ing H = F , / (~ / h) , and
then G = p p (H) .

We are now prepared to present Algor i thm C for comput ing G' = gcd(Fl ' , F~') :

(1) Set cl = con t (F l ') , c2 = cont(F2 ') , c = g c d (o , c2).
(2) Set Fi = F~' / o , F2 = F2' /c2 .
(3) Set f , = l c (F ,) , f2 = lc(F2), 0 = gcd(f~,f~) .
(4) Cons t ruc t a PRS, F1, F2, • • • , Fk.
(5) I f 0(Fk) = 0, set G' = c, and return.
(6) Set G = Fk/(fk/O) or oFk/fk as appropriate.
(7) Set G = pp(G) = G/con t (G).
(8) Set G' = cG, and return.

3. Constructing a P R S

3.1 INTRODUCTION. We tu rn now to the problem of const ruct ing a PRS, as re-
quired in Step 4 of Algor i thm C.

Let F1, F2, • • • , Fk be a P R S in ~[x]. Let di = a(F~), for i = 1, • • • , k, and note
that dl > d2 > d3 > . . . ~ dk > 0. Let ~i -- dl - d~+~ f o r i = 1, . . . , k -- 1, a n d n o t e
that ~ > 0, while ~ > 0 for i > 1. If ~ = 1 for all i > 1, the P R S is called normal;
otherwise it is called abnormal. Finally, let f~ denote the leading coefficient of F i .

Referring to (7), we shall a lways choose

~i = ji-1 , i = 3, " " , k , (8)

so that

~F~ = prem(Fi_2, F~_i), i = 3, . . . , k. (9)

When a method for choosing the f~ is given, this equat ion and the te rminat ing con-
dition

prem(Fk_l , F~) = 0 (10)

together provide an a lgor i thm for const ruct ing the PRS. We shall consider several
different methods for choosing the fl~.

3.2 THE EUCLIDEAN PRS ALGORITHM. If we choose ~i = 1 for i = 3, • • • , k, then
Fi = prem(Fi_2, F~_~) for i = 3, . . . , k. Collins calls this the Euclidean P R S
algorithm because it is the most obvious generalization of Eucl id 's a lgori thm to
polynomials over a unique factorizat ion domain tha t is not a field.

Returning to the example (4), the Eucl idean P R S is

1, 0, 1, 0, - 3 , - 3 , 8, 2, - 5

3, 0, 5, 0, - 4 , - 9 , 21

- 1 5 , 0, 3, 0, - 9

15795, 30375, - 5 9 5 3 5

1254542875143750, - 1654608338437500

12593338795500743100931141992187500. (11)

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

484 w . s . BROWN

Although the Euclidean PRS algorithm is easy to state, it is thoroughly impractical
since the coefficients grow exponentially as we proceed through the sequence. The
only comparably bad method with any surface plausibility would be to work over
the field of quotients of 9, as in (5), but without simplification.

3.3 THE PRIMITIVE PRS ALGORITHM. To obtain a PRS with minimal coefficient
growth, we choose ~i = cont (prem(Fi_2, Fi_l)) for i = 3, • • • , k, so that Fa, • .. ,
Fk are primitive. This is called the p r i m i t i v e P R S a lgor i thm. In the example (4), it
yields the sequence

1, 0, 1, 0, - 3 , - 3 , 8, 2, - 5

3, 0, 5, 0, - 4 , - 9 , 21

5,0, - 1 , 0 , 3

13, 25, - 4 9

4663, - 6150

1. (12)

Unfortunately, it is necessary to calculate one or more GCD's of coefficients at
each step, and these become progressively harder as the coefficients grow. However,
since the growth is essentially linear (Section 3.5), these GCD's would be well
worth the effort if the Euclidean PRS algorithm were the only alternative.

In the multivariate case, the linear coefficient growth is, of course, compounded
through each level of the recursion, but even so, the primitive PRS algorithm has
demonstrated considerable practical utility.

3.4 THE REDUCED PRS ALGORITHM. Since the bulk of the work in the primitive
PRS algorithm is in primitive part computations, we would like to find a way to
avoid most of them and still reduce the coefficient growth sharply from that which
occurs in the Euclidean PRS algorithm.

Surprisingly, we can accomplish this to a significant extent by choosing

~3 = 1,

~i = a i - 1 , i = 4, . . . , k. (13)

This is Collins' reduced P R S a lgor i thm, and is justified in [7] and [8] by a proof that
is sketched in Section 3.5.

In a normal reduced PRS, the coefficient growth is essentially linear (see Section
3.5). In an abnormal reduced PRS, the growth can be exponential, but of course
not as badly so as in the corresponding Euclidean PRS. In the example (4), which is
distinctly abnormal, the reduced PRS is

1, 0, 1, 0, - 3 , - 3 , 8, 2, - 5

3, 0, 5, 0, - 4 , - 9 , 21

- 1 5 , 0, 3, 0, - 9

585, 1125, - 2 2 0 5

- 18885150, 24907500

527933700. (14)

Journal of the Association for Comput ing Machinery, Vol. 18, No. 4, October 1971

Euclid's Algorithm and Computation of Polynomial GCD's 485

Notice that the coefficient sizes appear to be doubling at each step until the last.
It is easy to show that the small size of F6 results from the fact that ~4 < ~3 • If all of
the ~ were the same and greater than 1, then the growth would be uniformly ex-
ponential.

3.5 SUBRESULTANTS. Let F~, F2, • • • , Fk be any PRS in 9Ix]. The major result
of Collins [7] is that

F, ~ Sd~ (Fi, F2) ~ S d ~ _ ~ - l (F ~ , F2), i = 3, . . . , k, (15)

where ~ denotes similarity (Section 2.3) and where, for 0 _< j < d:, Si(F~, F2) is a
polynomial of degree at most j , each of whose coefficients is a determinant of order
d~ + d2 - 2j with coefficients of F~ and F~ as its elements. In particular, So(F~, F2)
is the classical resultant [5, Ch. 12] of F1 and F2 ; in general, following Collins, we
shall call S~ (F~, F~) the j t h subresultant of F~ and F2. The constants of similarity for
(15) may be expressed as products of powers of a3, - • • , a i , ~3, • • • , ~ i , f2 , • • • ,f~,
and (- 1) .

Brown and Traub [8] rederive these results in somewhat greater generality; their
treatment is brief and simple, and shows clearly how the subresultants arise.

We shall now establish bounds on the coefficients of the subresultants

Let

T~ = Sji_,_i(F1 , F:) , i = 3, " " , k. (16)

1 ml = ~(dl + d2 -+- 2) -- di-1

= [d l + d~ -- 2(4i-1 - 1)], i = 3, . . . , k. (17)

This is an approximate measure of degree loss. As we proceed through the PRS, it
increases monotonically from m3 > 1 to mk _< ½ (dl + d2). In a normal PRS, mi in-
creases by 1 when i increases by 1; in general, the increment is ~i-~. Since each
coefficient of Ti is a determinant of order 2mi with coefficients of F1 and F2 as its
elements, our bounds depend simply on m~.

If the coefficients of F1 and F2 are integers bounded in magnitude by c, then by
Hadamard 's theorem [1, p. 375] the coefficients of T~ are bounded in magnitude by

(2m~J) m'. (18)

Taking the logarithm (to the same base as the base of the number system), we see
that the coefficients of Ti are bounded in length by

mi[2l -4- log (2m~)], (19)

where 1 = log c bounds the lengths of the coefficients of Fa and F~. Although the
growth permit ted by this bound is slightly faster than linear in m~, the difference is
rarely discernible since the second term is usually small compared to the first.

If the coefficients of F~ and F2 are polynomials in y~, - • • , yn over the integers,
with degree at most ej in yj , then clearly the coefficients of T~ have degree at most

2miej (20)

in Yi, for j = 1, - . . , n. Thus, the growth in degree is strictly linear in m~. If the
polynomial coefficients of F~ and F2 have at most t terms each and have integer
coefficients bounded in magnitude by c, then the integer coefficients of the poly-
nomial coefficients of T~ are bounded in magnitude by

Journal of the Association for Comput ing Machinery, Vol. 18, No. 4, October 1971

4 8 6 w . s . BROWN

(2mlc2t 2)m~. (21)

This generalization of (18) follows easily from the results of [9]. Taking the loga-
rithm, we see tha t these integer coefficients are bounded in length by

m~[21 ~- log (2m~) + 2 log t], (22)

which is a generalization of (19).
In the case of a primitive PRS, (15) and (16) imply that F~ I Ti , so the bounds

(18) and (20) on the coefficients of T~ also apply to the coefficients of F~. When the
coefficients of F~ and T~ are polynomials, it may happen in rare cases (see Section
5.2) that one or more integer coefficients of polynomial coefficients of F~ are larger
than any integer coefficient of any polynomial coefficient of T~. Nevertheless, we
conjecture that no integer coefficient of any polynomial coefficient of F~ can ever
exceed the bound (21).

To justify the reduced PRS algorithm (Section 3.4), it is shown in [7] and [8]
that T~ I F~ for i = 3, • • • , k, and therefore all coefficients of F~ are in 9. In the case
of a normal reduced PRS, it is further shown that

F i = ± T i , i = 3, . . . , k, (23)

and therefore the bounds (18)-(22) apply to the coefficients of F~ in this case as
well.

3.6 THE SUBRESVLTANT PRS ALGORITmL If we could choose the ~ in such a
way as to satisfy (23) even in abnormal cases, then no coefficient GCD's would be
needed to compute the F~, and yet the bounds (18)-(22) would apply to their
coefficients. Fortunately this can be done. I t is shown in [8] that F~ = T~ for i =
3, . . . ,]c provided that we choose

~ = (- 1)~+1,
(24)

~ = --fi_2~b~ ' -2, i = 4, . . . , k ,

where

(25)
(4" ~i--3.Ll--~i--3 ~ = ~ - - j i - 2 j ~ i - 1 , i = 4, . . . , k .

At the present time it is not known whether or not these equations imply ~ , ~ E ~"
In any event, 6~ and 3~ belong to the quotient field 5: of ~, and they yield the PRS,
F1, F2, T3, . . . , Tk in 9[x].

I t is possible to eliminate 6~ from (24), and write ~ explicitly as a product of
powers of f2, • • " , f i - 2 , and (- 1). The resulting formula is given in [7].

In the case of a normal PRS, note that the subresultant PRS algorithm (24) and
the reduced PRS algorithm (13) agree up to signs as required by (23); in fact, the
signs also agree if ~1 is odd.

I t is natural to wonder how close a subresultant PRS is likely to be to the cor-
responding primitive PRS. In the example (4), the subresultant PRS is

1, 0, 1, 0, --3, --3, 8, 2, --5

3, 0, 5, 0, --4, --9, 21

15, 0, --3, 0, 9

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

Euclid's A lgor i thm and Computa t ion o f P o l y n o m i a l GCD's 487

65, 125, - -245

9326, -- 12300

260708 (26)

which differs ve ry litt le f rom the corresponding pr imi t ive P R S (12), except a t the
last step.

Although it is not known whe the r this behav io r is typical , it is known tha t there
is a broad spec t rum of possibilities. On the one hand, there are subresu l tan t P R S ' s
in which all polynomials except the last are pr imit ive. On the o ther hand [1, p. 377],
let F~, F2, • - - , Fk be a normal subresu l tan t PRS, and let G be a pr imi t ive poly-
nomial with leading coefficient g. T h e n it is easy to show tha t the subresu l tan t P R S
for GFi and GF2 is GF1, GF~ , g~+~GF3 , g~l+3GF4 , • • • , g6~+2k 5GFk , which diverges
linearly f rom the pr imi t ive P R S GF~ , GF2 , • • • , GFk .

3.7 FURTHER IMPROVEMENTS. H a v i n g used the subresu l tan t P R S a lgor i thm to
compute Fi = Ti [see (16)] for i = 3, . - . , j , it m a y happen tha t a divisor rj of
cont(Ti) is avai lable with litt le or no ex t ra work. For example , we know t h a t
0 = gcd (f~, f2) divides Ti for j = 3, - . . , k, and it occasionally happens t h a t f~
divides T1 for some i < j .

When such a rj is available, we would like to incorpora te it into/3j , so t ha t Fj =
T J r j . However , if we do so, we cannot necessari ly complete the P R S by direct
application of (24). For tuna te ly , it is possible to modi fy (24) so as to complete the
PRS and fu r the rmore to guaran tee t ha t F i I T i for i = j + 1, • - • , k.

Let F1, F2, T3 , Tk be a subresu l tan t PRS, and let F1, F~, F3 , . . . , F~ be an im-
proved P R S with Fi = T i / r i for i = 3, • • • , k. Le t Ti = F1, T2 = F2, and rl =
r2 = 1, and let t~ denote the leading coefficient of T~. T h e n

T~ = r iF~,
(27)

where i = 1, • • • , k. Now f rom (9), (24), (25), and (27) it is easy to show tha t the
improved P R S is defined by

/~3/r3 = (- - 1)~'+t,

~ i / r , = -- f , -2¢~ i-~rT-~ -2- ' ,

where

Given F~,

i = 4, . . . , k ,
(28)

@3 -~ - - 1 ,
(29)

~b~ = (--r,_2fi_2)~-~b~-~ '-~, i = 4, . . . , k.

• " , F~_i , we first compu te prem(Fi_2, Fi-1) and divide by ([~i/rl)
from (28) to ob ta in the subresu l tan t Ti = r i F i . We then choose r i , and divide by
it to obta in F i .

Clearly, there are m a n y possible var ia t ions on this theme. To i l lustrate the theme,
let us re turn to the example (4), for which the pr imi t ive P R S is (12) and the sub-
resultant P R S is (26). The reader should imagine the p rob lem to be enough harder
that he could not easily discover the contents of the subresu l tan ts T~. Choosing
ri = f i - l , whenever f i -1 I T~, and rl = 1 otherwise, the improved P R S is

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

488 w . s . BROWN

1, 0, 1, 0, - 3 , - 3 , 8, 2, - 5

3, 0, 5, 0, - 4 , - 9 , 21

5,0, - 1 , 0 , 3

13, 25, --49

9326, - 12300

260708. (30)

By this simple strategy, we have succeeded in making F3 and F4 primitive, but we
have failed to remove the factor of 2 from Fs.

3.8 COMPARISON. Let us now compare the foregoing algorithms. I t is clear that
the Euclidean PRS algorithm suffers so severely from coefficient growth that it does
not merit further consideration. We also exclude the reduced 1)RS algorithm be-
cause it is never bet ter than the subrcsultant 1)RS algorithm, and it can be extremely
inefficient in certain abnormal cases.

In comparing the primitive PRS algorithm and the subresultant PRS algorithm,
we must compare the cost of computing the primitive part at each step with the
advantage of having possibly smaller coefficients. In most cases, the primitive-part
calculations represent a substantial fraction of the total effort in the primitive PRS
algorithm, and there is little if any compensating advantage. However, there may
conceivably be some cases in which the subresultant PRS diverges so far from the
primitive PRS tha t the primitive PRS algorithm is actually faster.

4. The Modular Algorithm

4.1 INTRODUCTION. Let F be a nonzero polynomial with integer coefficients. L e t f
denote the leading coefficient of F, and let p be a prime which does not divide f.
Then if F is irreducible over the integers modulo p, it is also irreducible over the
integers. This fact has long been exploited by those interested in polynomial fac-
toring.

Similarly, let F1 and F2 be nonzero polynomials with leading coefficients fl and f : ,
and let p be a prime which does not divide fl or f2 • Then if F~ and F2 are relatively
prime over the integers modulo p, they are relatively prime over the integers. Even
if F1 and F2 are not relatively prime, the computat ion of their G C D over the integers
modulo p may provide useful information concerning their G C D over the integers.

We shall develop this idea into a general algorithm (Section 4.3) for computing
the G C D of univariate or mult ivariate polynomials over the integers.

4.2 BASIC CONCEPTS. Let 9 be a unique factorization domain in which GCD's
can somehow be computed, and let 9[xl, • • • , xv] denote the domain of polynomials
in xl , • • • , xv with coefficients in 9. When v > 1, we shall not view the elements of
this domain as polynomials in xl with coefficients in 9[x2, • • • , xv]. Instead, we shall
generalize the concepts of Section 2 to apply directly to mult ivariate polynomials.

Let the exponent vector of a te rm be the vector of its exponents, and define the
lexicographical ordering of exponent vectors d = (dl, - - • , dr) and e = (el, • • • , ev)
as follows. If d/ = el for i = 1, • • • , v, then d = e. Otherwise, let j be the smallest
integer such that dj # e~. I f dj < ej, then d < e, while if dj > e~, then d > e. As-
suming tha t the terms of a polynomial F are arranged in lexicographically decreasing

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

Euclid's Algorithm and Computation of Polynomial GCD's 489

order of their exponent vectors, the first term is called the leading term. The coef-
ficient of the leading term is called the leading coe~cient, and is denoted by lc (F).
The exponent vector of the leading term is called the degree vector, and is denoted by

(F). Note that a(FG) = ~ (F) + ~ (G).
A polynomial is called primitive if its nonzero coefficients are relatively prime; in

particular, all polynomials over a field are primitive. The content and primitive par t
are defined exactly as in Section 2.4, and it is again true that the GCD of two poly-
nomials is the product of the GCD of their contents and the GCD of their primitive
parts.

4.3 ALGORITHM 5I. Let Z denote the domain of integers, and let Zp denote the
field of integers modulo a prime p. Let Fi ' and F ' 2 be given nonzero polynomials in
Z[Xl, . . . , xo]. Algorithm M computes their GCD, G', and their cofactors, H~' =
FI'/G' and H'2 = F2'/G', making essential use of Algorithm P (Section 4.5), which
computes the GCD and cofactors of given nonzero polynomials in Zp[Xl, . . " , Xv].
Each of these algorithms obtains the cofactors for the essential purpose of verifying
the GCD; however, they are frequently a very welcome byproduct of the computa-
tion.

Let c~ = cont(F~'), c2 = cont(F2'), and c = g c d (o , c2). Also, let F1 = F i ' / O ,
F2 = F2'/c2, G = gcd (F~, F2), H~ = F~/G, and H2 = F2/G. Then G' = cG, H~' =
(cl/c)H1, and H2' = (c~/c)H2.

Let f~, f2, g, h~, and h2 be the leading coefficients of F~, F~, G, H1, and H2, re-
spectively. As in Section 2.4, define ~ = gcd(f~, f~) and G = ((O/g)G. Also, define
fil = oF~, F~ = OF2, tt~ = gH~, and/42 = gH2, so that fi~ = G/41 and F~ = ¢//~.
Note t h a t p p (G) = G, lc(G) = g, lc(/41) = gh~ = f l , and lc(/4:) = gh~ = f~.
Observe that f l , f2, and ¢ can easily be obtained at the beginning of the computation,
while g cannot be known until the end.

Let d = i) (G). Although d cannot be determined until the end of the computation,
it is evident that d _< min (1) (F1), ~ (F~)).

At any given time in the execution of Algorithm M, there is a set of odd primes
pi, " • " , p~ that have been used and not discarded. Furthermore, for i = 1, • • • , n,
the algorithm has computed

/~(~) = fi~ m o d p~, (31) 1

P(~) F~ mod p~, 2

and three polynomials G(~), ~(~) ~(~) t/~ , and/ / / : satisfying

= • gcd (/~'~ , ,. e) (32)

and

1
~(~) ~ (~)~) (33)

2 ----

in Z~,[xl, . . . , xv], where

~(1) = ~ rood pl . (34)

Since the GCD in (32) is unit normal (in this case, monic) by definition, it follows
that lc (~(i)) = ~)(i).

Since G I F1 and G l F2 in Z[xl , " . , xv], we have Gv~ I F~", Gvi] P~'), and therefore
Gpi [G (~) in Zp~[xl, . . . , xv], where Gv~ = G mod pl . I t follows immediately that

Journal of the Association for Comput ing Machinery, Vol. 18, No. 4, October 1971

490 w . s . BROWN

i) (G C~)) >__ 0 (Gv~) = 0 (G) = d. The algorithm keeps only those pl for which ~) (~c,))
is minimal to date; hence, we always have 0 (G(o) = e _> d. If e > d, the algorithm
will discover the fact (for proof, see Section 4.4) and start over. Eventually, e = d,
and

G (~) ~ G mod p~,

H~) ~ /71 mod pl , (35)

~ o ~_ /t2 mod p ~ ,

f o r i = 1, . . . , n .
Instead of preserving all of the quadruples (pl, G (~), H~), ~ o) , we maintain

only the integer

q = l ~ P~, (36)
i ~ l

and the unique polynomials G*, Hi*, and H2* with integer coefficients of magnitude
less than q/2, such that

G* ~- G (~) mod pi ,

H i * ------ H ~ ') mod pi , (37)

H 2 * ------ ~ (~) • ~2 mod p~,

for i = 1, • • • , n. Now as soon as e = d, we see from (35) and (37) that

G* -= G mod q,

Hi* --- / t l mod q, (38)

H2* -= //2 mod q.
When we also achieve

q > ~ = 2 max [¢ l ,

where ~k ranges over the coefficients of G , / t z , a n d / ~ , it follows that

(39)

G* ~ G ,

H I S -~ / ~ 1 , (40)

H2* = IIi2.

To obtain the final results, we then use the relations

G = pp(G),

H1 = t t l /g , (41)

H2 = t72/g,
and

G' = cG,

H I ' = (Cl/C)H1,

H 2 ' = (c2/c)H2,

all of which were derived earlier.

(42)

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

Euclid's Algorithm and Computation of Polynomial GCD's 491

In order to guarantee that the coefficients of G*, Hi*, and H2* converge to the
correct signed integers, we shall assume throughout that the integers modulo r
(where r is either q or one of the p~) are represented as integers of magnitude less
than r/2. The algorithm follows:

(1) Set Cl = cont(Fl ') , c2 = cont(E2'), c = gcd(Cl, c2).
(2) Set F~ = Fx'/Cl, F2 = F 2 ' / c 2 .

(3) Set fl = lc (F1), f2 = lc (F~), 0 = gcd (.,q, f2).
(4) S e t h = 0, e = min(a(F~), O(F2)).
(5) Set fi = 20 max I~1, where ¢ ranges over the coefficients of F1 and F2.

Usually, it will be true that fi > p, but exceptions are possible as discussed in Section
5.2.

(6) Let p be a new odd prime not dividing fl or f i .
(7) Set ~ = g mod p, F1 = 0F1 mod p, F2 = ~F2 mod p.
(S) Invoke Algorithm P (Section 4.5) to compute (~ = 0 'gcd(F1, F2) , /ql =

F1/G, a n d / t : = F2/G, all in Zv[xl, • • • , x~]. These relations imply that lc (G) = 0,
and ~(0) > d.

(9) If it(G) = 0, set G = 1, H~ = F1 ,H2 = F2, and skip to Step (15). If
O(G) > e, go back to step 6. If i)(G) < e, set n = 0, e = i)(G).

(10) S e t n = n + 1.
(11) I f n = 1, setq = p ,G* = G,H,* = /q l ,H2* =/72 .Otherwise , upda te the

quadruple (q, G*, Hi*, H2*) to include (p, G, H1,/q2) by using the Chinese remainder
algorithm (Section 4.8) with moduli ~nl = q and ~ = p to extend (37) (coefficient
by coefficient), and then replacing q by pq to extend (36).

(12) If q < fi, go back to Step (6). Otherwise, we now know that (40) holds
unless e > d or q < g. To exclude these unlikely possibilities, it suffices to prove the
relations G 'Hi* = F~ and G'H2* = fi2, which hold modulo q by (31), (33), (36),
and (37).

(13) Choose g* such that ~*/2 is an integer bound on the magnitudes of the
coefficients of G*H~* and G'H2*. If q < u*, go back to Step (6). Otherwise, we have
q] (G'H1* - f l) and q > max (u*, ~) _> max I~ [, where ~, ranges over the coef-
ficients of (G'Hi* - F1), and therefore G 'Hi* = fix. Similarly, G'H2* = fi2, and
therefore (40) is established.

(14) Set G = pp(G*), g = lc(G), H~ = Hl*/g, H~ = H2*/g.
(15) Set G' = cG, Hi' = (Cl/C)H1, H~' = (c2/c)H:, and return.
4.4 UNLUCKY PR~IES. We shall call the prime p chosen in Step (6) of Algorithm

5I lucky if e = d, and unlucky otherwise.
In executing Algorithm 5I, the first lucky prime causes us to discard the informa-

tion from any previous unlucky primes [by setting n = 0 in the third part of Step
(9)], and to set e = d. Any subsequent unlucky primes are rejected in the second
part of Step (9). In Step (13), G*, H~*, and H:* are rejected if no lucky primes have
yet been encountered, or if q is still less than u.

In Theorem 1, we shall prove that all of the unlucky primes are divisors of an
integer a, which depends only on F1 and F : . Using this result, Theorem 2 bounds the
number of unlucky primes which might occur, thereby establishing the fact that the
algorithm terminates. Finally, Theorem 3 shows that the probability of p being un-
lucky is at most v/p.

In practice, this probability is always exceedingly small, since p is chosen in the

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

492 w . s . BROWN

interval

a = ½(/~ + 1) < p _< ~, (43)

where ¢~ is the largest integer that fits in a single machine word. Thus, if F~ and F: are
relatively prime, we can expect to prove it with only a single prime. Otherwise, the
expected number of primes to determine the GCD and the eofaetors is g = log, t~ ,
where ~ is the final value of ~* in Step (13), and it can be shown [see (94)] that
g rarely exceeds 4l + 2 where I is the length (to the base o~) of the longest coefficient
in F~ or F~.

THEOREM 1. Let F~ and F: be given nonzero primitive polynomials in Z[x~ , . • • , x,] ,
let G = gcd(F1, Fo), and let d~ = O~(G), where O~ denotes the degree in X~. Also, let

(i)
Sj (F1, F2) :lenote the j th subresultant of F~ and F~ viewed as univariate polynomials
in xi with polynomial coe~cients, and let ~ be the (integer) content of ~(~) (F~, F~) *Jdi

viewed as a multivariate polynomial with integer coe~cients. (Here :l~ is the degree of
G in X~, and not, as in Section 3.5, the degree of the ith polynomial in a P R S .)
Finally, let

o" = l~I ¢ i . (44)
i = 1

Then every unlucky prime divides ¢.
PROOF. For fixed p from Step (6) of Algorithm M, let P~ = F i rood p and F~ =

F~ rood p. Also, let G = gcd (F1, F2) in Z,[x~, . . . , x,,], and let e~ = di(G).
If p is unluckv, then there is some i with di < e~, and therefore S (~) (P~, d i

F~) ~ 0 rood p. Now let Cl and c~ denote the leading (polynomial) coefficients of
F~ and F: respectively, relative to x~ If p ~ oc t , then S (~) (F1, F~) S (~) (F~ F:) , • d i ------ d i ,

rood p. Otherwise, suppose p divides the first k leading coefficients of F~ for some
c(i)(F~ F:) ~ ~,~i)(Fi F~) rood p. In either k > 0. Then it can be shown that ~,d~ , C: ~d~

c a s e t . Jd i~*(i) (Fi , F~) --= 0 mod p, p [~(i)~di/F~ 1 , F2), p i o'i, and finally p [a, as was to be
shown.

THEOREM 2. Let u be the number of unlucky primes p > a, where a >_ 2 is a given
integer. Let

c = max [~[, (45)

where ~ ranges over the coefficients of F1 and F~ . Let

v

m = ½ max (Oi(F~) + O~(F:)). (46)
i ~ 1

Let
v

t = max h, (47)
i ~ 1

where t~ is the m a x i m u m number of terms in any polynomial coe~cient of F1 or F2
viewed as univariate polynomials in x~. Finally, let

~7 = my log, (2mc2t 2). (48)

Then u < ~.
PROOF. Let P be the product of the unlucky primes p > o~. Since P I o by Theorem

m /,~ 2.2 \ m v 1, w e h a v e a ~ < P < a. N o w b y (21),o-~< (2mc2t 2) ,soo-_< ~2mc~) . I t fo l lows
tha t u < log, a _< ~, as was to be shown.

THEOREM 3. The probability that p is unlucky is at most v/p.

Euclid's A lgor i thm and Computa t ion of Po l ynomia l GCD's 493

PROOF. For all sufficiently small problems, we have o-~ < p for i = 1, . . . , v,

and therefore p cannot be unlucky. However, in the general case, we may assume that
the quantities ~ mod p are independent random variables in Zp. Hence the proba-
bility that p [~ i s p - ~ and the probability that p [cris 1 - (1 - p-~)~ < vp -1

where this last inequality follows by induction on v. This completes the proof.
4.5 ALGORITHSI P. Let Fi' and F2' be given nonzero polynomials in Zp[xi , . . • ,

x~], where p is a fixed, sufficiently large prime. [If p is too small, the elements of Zp
may be exhausted by Step (6) of the algorithm.] Algorithm P computes G' = ged (F~',
F /) , H~' = F (/ G ' , and H (= F (/ G ' . Since Zp is a field, Fi' and F2' are automatically
primitive, and G' is monie.

In the univariate ease, Algorithm P simply invokes Algorithm U, which is pre-
sented in Section 4.7.

In the multivariate ease, we could single out a main variable, and then apply
Algorithm C. If so, we would still be faced with the problem of coefficient growth,
since the polynomial coefficients would grow in degree even though their integer
coefficients (in Zp) could not grow in size.

To avoid coefficient growth altogether, we again use the idea of Algorithm M.
Instead of solving the given problem directly, we solve one or more related problems
in Zp[x~, • • • , x~_~], and then reconstruct the desired result.

Let Fi ' and F ' 2 be viewed as polynomials in g[x~, • • • X~-l], where 9 denotes the
polynomial domain Zp[xv]. Although F~' and F (are primitive as elements of Zp[xl ,

• .. , x~], they need not be primitive as elements of 9[x~, • • • , x~_~]. Let c~, c2, c,

F1, F2 , G, H1 , H2 , f~ , f~ , g, h~ , h~ , O, G, lP~ , F~ , H~ , and/t~ be defined as in Algorithm
M. Now, however, all of the lower ease symbols denote polynomials in a = Z~[x~],

while the upper ease symbols denote polynomials in ~l[xl, • • • , X~_l].
For any fixed b ~ Zp, let g~ denote the field of polynomials in ~l modulo the ir-

reducible polynomial (x~ -- b). Since for polynomials f ~ ~, the quanti ty f (x ~)

mod (xv -- b) is equal t o f (b) ~ Z~, we see that ~ is precisely Z~.
Algorithm P is essentially identical to Algorithm M, except that v is replaced by

v - 1, Z is replaced by 9, the prime p ~ Z is replaced by the irreducible polynomial
(x~ - b) ~ g, and Z , is replaced by :¢~ = Zp.

In this situation, (31) is replaced by

F(~) F1 mod (x~ b~), 1 =
(49)

while the polynomials 0 (i), H~), and
Zp[xl , . . . , x~-l]. Furthermore, (34

~(1)

and when e = d, we have

for i = 1,

/~2 m o d (x , - b i) ,
/~ (i) 2 satisfy (32) and (33) in gb~[Xl, "" • , x~-i] =
) becomes

0 mod (x~ - b~), (50)

~ (i)

__-

= -

• " , n, in place of (35).

q = I I (xv -- bl),
i= l

0 mod (xv - bi),

/71 mod (x~ - bd, (51)

/I~ mod (x~ - bl),

Also, (36) becomes

(52)

4 9 4 w . S . BROWN

while G*, Hi*, and H2* [see (37)] are the unique polynomials (in ~[Xa , "" , xv-,])
with eoeffieients (in 9) of degree (in Xv) less than n, such that

G* ~ G (i) rood (xv - bi),

H,* ------ / /~) rood (x, - bi), (53)

H 2 * ~ " (i) 1/12 mod (x, - b~),

f o r i = 1 , . . . , n . Now as soon as e = d, w e s e e f r o m (5 1) a n d (53) tha t (38 holds.

When we also achieve

n > , = max (0v (0) , o~ (/it,), 0~ (/72)), (54)

where 0v denotes the degree in x , , it follows tha t (40) holds. To obtain the final
results, we then use (41) and (42) as in Algori thm ~[.

Al though the preceding discussion is sufficient in principle to define Algor i thm P,
the interested reader m a y find it instruct ive to compare the following detailed
description with the earlier presenta t ion (Section 4.3) of Algor i thm M.

(1) If v 1, then F, and F ' = ' 2 are elements of 9 invoke Algor i thm U to comput
G' = gcd(F, ' , F () , and return. Otherwise use Algor i thm U to compute 0 = eont(Fl ')

c2 = cont(F2') , c = g c d (o , c2).
(2) Set F~ = Fl' /C,, F~ = F2'/c2.
(3) Set fl = lc(F,) , f~ = lc(F2), 0 = gcd (f , , f2).
(4) Set n = 0, e = min (~(F,) , O(F~)).
(5) Set ~, = 0~(0) + O~(F,), ~2 = 0~(0) + O~(F2), ~ = max(p, , P2). I t follows

tha t h = 0~ (f ,) = 0~ (G) + 0v (/4,), ~2 = 0~ (f~) = 0~ (G) + 0~. (/t2), and v > ,.
(6) Let b be a new element of Z , such tha t (x~ - b) ~ fir2. If Zp is exhausted,

then p is too small and the algori thm fails.
(7) Set 0 = 0 mod(x~ -- b), IP~ = OF, mod(x, - b), F2 = 0F2 mod(x~ -- b).
(8) Invoke Algor i thm P reeursively to compute G = g" ged (F~, F2), lq, = IPl/G,

and tq2 = F2/G, all in 9b[xl, " " , X~_l] = Zp[xi, . . . , xv ,]. These relations imply

t h a t l e (G) = g, a n d l) (G) > d.
(9) If it(G) = 0, set G = 1, Hi = F x , He = F2, and skip to Step (15). If

i} (G) > e, go back to Step (6). I f i} (G) < e, set n = 0, e = ~ (G).
(10) S e t n = n + 1.
(11) If n = 1, set q = p, G* = G, H,* = /q, , H2* = ~q~ . Otherwise, upda te the

quadruple (q, G*, H~*, H2*) to include (p, G, /7 , , H~) by using the Chinese re-
mainder a lgori thm (Section 4.8) (which in this ease is a form of interpolat ion [1,
p. 430]) with moduli mi = q and m~ = Xv -- b to extend (53) (coefficient by co-
efficient), and then replaeing q by q(x~ -- b) to extend (52).

(12) I f n < ~, go baek to Step (6). Otherwise, we now know t h a t n > ~ > ~,so
(40) holds unless e > d. To exclude this unlikely possibility, it suffiees to prove the

relations G'Hi* = ff~ and * * G H~ = ~0~, which hold modulo q by (33), (49), (52),

and (53).
(13) I fOv(G*) + O~(H,*) ~ ~,or 0 , (G*) + O~(H~*) ~ ~ , s e t h = 0 and go

back to Step (6). Otherwise we have q] (G*H~* - ~,) and 0,, (q) = n > ~ >_ h >_
Ov (G'Hi* - 1~,), and therefore G'H,* = fla. Similarly, G*Hz* = fi~, and therefore

(40) is established.
• H * (14) Set G pp(G*), g = le(G), H~ = H~ /g, H2 = ~ /g.

(15) Set G' = cG, H ; = (o /c)H~, H~' = (c~/c)H~, and return.

Journal of the Association for Compu t ing Machinery, Vol. 18, No. 4, October 1971

Euclid's Algorithm and Computation of Polynomial GCD ' s 495

4.6 UNLUCKY b-VALUES. We shall call the integer b C Zp chosen in Step (6)
of Algorithm P lucky if e = d, and unlucky otherwise.

In Theorem 4 we shall prove that all of the unlucky b-values are roots (in Zp) of a
polynomial o- (in 9 = Zp[x~]), which depends only on F~ and F~. Using this result,
Theorem 5 bounds the total number u of unlucky b-values, thereby establishing
the fact that the algorithm terminates.

If b is chosen at random from the elements of Zv, the probability of its being un-
lucky is u/p. If p is large (as suggested in Section 4.4), this probability is exceed-
ingly small. Thus if F~ and F2 are relatively prime, we can expect to prove it with
only a single b-value. Otherwise the expected number of b-values to determine the
GCD and the cofactors is fi = p + 1 = m a x (0 v (F 1) , 0 v (/ ~ 2)) -t-].

THEORE_U 4. Let F~ and F2 be given nonzero polynomials in 9[x~, . . . , x,-1],
where ~ = Zp[x~]. Let G = ged(F~, F2), and let d i = O~(G). Also, let S}~) (F~, F:)
denote the jth subresultant of F1 and F2 viewed as univa','iale polynomials in x~ , with
eoeficients in ~[xl, - . . , xi_~, x~+~, . . . , x~_~], and let ai be the content (in ~) of
S(~) (F~ F2) viewed as a polynomial in 9Ix,, , x~_l]. (Here di is the degree of G d i , " " "

in X~, and not, as in Seclion 3.5, the degree of the ith polynomial in a PRS.) Finally, let

v - - 1

= I I , , ~ . (55)
i=l

Then every unlucky b-value is a root (in Zp) of a.
PROOF. The proof is analogous to the proof of Theorem 1.
THEOREM 5. Let u be the total number of unlucky b-values,

let

and let

Finally, let

V--1

m = ½ max (Oi(F~) + O~(F2)), (56)
i=I

e = max (0~ (F1), 0~ (F2)). (57)

(ss) = 2 m e (v - 1).
Then u < ~.

PROOF. Let P = 1~ (xv -- b), where the product is taken over all unlucky
b-values. Since P 1 cr by Theorem 4, we have u = 0v (P) < 0~ (~) = ~ 0v (~i). But
by (20), 0" (gi) < 2me, sou < 2me(v - 1), aswas to be shown.

4.7 ALGORITHM U. Let F1 and F2 be given nonzero polynomials in Zv[x], where
p is a fixed prime. Algorithm U computes G = gcd(F1, F2). Since Zp is a field, G
must be monic in order to satisfy the requirement of unit normality. Also since Zp

is a field, we may use the rational algorithm of Section 2.2.

In the example (4) with p = 13, the monic PRS which mirrors (6) is

1, 0, 1, 0, --3, - 3 , --5, 2, --5

1, 0, 6, 0, 3, --3, --6

1 , 0 , 5 , 0 , --2

1, --3

1. (59)

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

4 9 6 w . s . BROWN

This proves that F1 and F~ are relatively prime in Zl~[x], and hence also in Z[x].
Note that the quadratic and linear polynomials in (6) have coalesced in (59),
because 13 divides the leading coefficient, 65, of the subresultant $2 (F1, F2), which
we computed in (26).

4.8 THE CHINESE REMAINDER ALGORITHM. We shall now present the Chinese
remainder algorithm [1, pp. 253-254], which is used in Algorithm M to construct
integers from their images modulo pl , " '" , p~, and in Algorithm P to construct
polynomials in Zp[x] from their images modulo x - bl, • • • , x - bn. Although the
algorithm may be used in any Euclidean domain, we shall simply state it for the
domain of integers, and indicate parenthetically how it must be modified for the
polynomial domain if[x] where 5= is any field.

Let ml and m2 be relatively prime positive integers (monic polynomials). We
shall call these the moduli; for efficiency they should be ordered so that mi > m2
[0(ml) > 0(m~)]. If ul and u~ are given integers (polynomials), then there is a
unique integer (polynomial) u such that u =-- u~ mod m~, u ~ u2 rood m2, and
0 < u < mlm2 [0(u) < O(ml, m2)].

To prove uniqueness, suppose u and u' both satisfy the conditions. Then
u ~ u' mod ml and u -~ u' mod m2. Since m~ and m2 are relatively prime, it follows
that reims{ (u - u') , and therefore u = u'.

In the following algorithm for finding u, it is understood that r = a mod b satisfies
0 < r < b [0 (r) < 0 (b)], and we assume without loss of generality that 0 < u~ < m~
[0(Ul) < 0(ml)] and0 < u2 < m2 [0(u2) < 0(m2)].

(1) Use the extended Euclid's algorithm (Section 1.4) to obtain an integer
(polynomial) c such that eml ~ 1 mod ms.

(2) Set v = c (u2 - ul) mod m2. Note that rely =- u2 - Ul mod m2.
(3) Set u = mtv -t- Ul. Clearly this satisfies all the requirements.

5. Computing T ime

5.1 INTRODUCTION. In this section we shall study the computing times for Al-
gorithm C (Section 2.4) augmented by the subresultant PRS algorithm (Section
3.6), for Algorithm M (Section 4.3), and for Algorithm P (Section 4.5) which sup-
ports Algorithm M. In particular, we shall develop asymptotic bounds on the maxi-
mum computing times C, M, and P, respectively, of these algorithms.

In deriving these bounds we shall assume that all arithmetic operations on in-
tegers and polynomials are performed by the classical algorithms [1]. Our purpose
is to emphasize the superiority of the modular techniques to the classical ones.
However, this superiority is established only when the given polynomials are suf-
ficiently large and sufficiently dense. In the sparse case (many missing terms),
Algorithm C will almost certainly benefit more than Algorithms M and P, but the
gain is difficult to analyze.

Strictly speaking, our bounds do not apply to the worst cases, since they depend
on the following assumptions:

(A1) In Algorithm C, it is assumed that abnormal PRS's do not occur at any
level of recursion. A larger bound not depending on this assumption, can easily be
derived by the same methods.

(A2) In Algorithms M and P, it is assumed that unlucky primes and unlucky
b-values, respectively, do not occur.

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

Euclid's Algorithm and Computation of Polynomial GCD's 497

(A3) In Algorithms C and 5/[, it is assumed that the integer-length (Section
5.2) of an exact quotient of polynomials does not exceed the integer-length of the
dividend. In Algorithm C, it is further assumed that the integer-length of a sum or
difference of polynomials is the maximum of the integer-lengths of the summands,
and that the integer-length of a product does not exceed the sum of the integer-
lengths of the factors.

(A4) In Algorithm M, it is assumed that the integer-lengths of the given poly-
nomials are small compared to the largest single-word integer fl so that the supply of
single-word primes will not be exhausted. Similarly it is assumed that the number of
terms in the GCD is small compared to ~, so that the required number of primes
can be bounded in a simple and realistic way.

After introducing some basic concepts in Section 5.2, we shall discuss integer
operations in Section 5.3, polynomial operations in Section 5.4, Algorithm C in
Section 5.5, Algorithm P in Section 5.6, and Algorithm M in Section 5.7. Finally we
compare Algorithms C and 5I in Section 5.8.

5.2 BASIC CONCEPTS, Let f and g be real functions defined on a set S. If there
is a positive real number c such that If(x)l < clg(x)l for all x ~ S, we write f ,~ g,
and say that f is dominated by g. If f ~ g and g ,~ f, we write f ~ g, and say that f
and g are eodominant. Finally, if f ~ g but f ~-~ g, we write f < g, and say that. f is
strictly dominated by g. Clearly codominance is an equivalence relation among the
real functions on S, while strict dominance defines a partial ordering among the
resulting codominance classes. In the author's opinion, this notation and terminology
(from [10]) are significantly superior to the traditional "li t t le-oh" and "big-oh"
notation [11, p. 5].

Since the purpose of the analysis is to provide insight, not detail, we shall con-
sider only a minimum number of independent parameters. Every polynomial F which
is considered in the analysis will be characterized either by its dimension vector
(1, d), defined below, or by its degree in the main variable together with a single
dimension vector for all its coefficients.

First we define the length of a nonzero integer to be the logarithm (to some fixed
base such as 2 or 10) of its magnitude. Next we define the integer-length of a nonzero
polynomial F ~ Z[x~, . . . , x~] to be the maximum of the lengths of its nonzero
coefficients; this will be denoted by i l (F) . Finally, for nonzero F C Z[Xl, . . . , x,]
we define the dimension vector (l, d) by the relations 1 = il(F) and d = max (Oi (F)) .

For integers it is clear that the length of a product is the sum of the lengths of the
factors. For polynomials, the integer-length of a product may be smaller or larger
than the sum of the integer-lengths of the factors, because of the additive combina-
tion of terms in polynomial multiplication. For example, if A (x) = x - 1, then
A (x) 2 = x 2 _ 2x + 1, and il(A 2) = log 2 > 2 il (A) = 0. On the other hand, letting
B (x) = x s + 2 S + 3 x 6 + 4 x 5 + 5 x 4 + 4 x 3 + 3 x 2 + 2 x + 1, we have A (x)B (x) =
x 9 + x 8 + x 7 + x 6 + x 5 - x 4 - x 3 - x ~ - x - 1, and i l (AB) = 0 < il(A) +
il(B) = log 5. In this latter example, A acts as a first difference operator. The
effect may be exhibited more dramatically by taking A (x) = (x -- 1) ~ for some
n > l, and choosing B so that the nth differences of its coefficients are all equal
to ± 1 .

In spite of these exceptions, the author believes that assumption (A3) will lead
to simpler and more realistic bounds than would otherwise be attainable.

5.3 INTEGER OPERATIONS. Let Tz(op) denote the maximum computing time
for the integer operation op, and let x~ denote an integer of length Ii > 0.

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

498 w . s . BROWN

For addition and subtraction it is easy to show that

Ti (x3 ~- xl ::i= x2) ~ ll + 12, (60)

while for classical multiplication

T1 (x3 ~ XlX2) ~'~ lll2. (61)

Turning to division and assuming ll > 12, we find

T i (x3 ~-- x l / x2 , x4 ~ Xl mod xe) ~ l: (11 - le), (62)

since this involves essentially the same work as computing the product xex3.
In studying the computation of x3 = gcd(Xl, x:) by Euclid's algorithm (Section

1.4), we again assume 11 > le, and we view each division step as a sequence of sub-
traction steps. Since the total number of subtraction steps is bounded by 2 (11 - 13),
and the work in each of these steps is dominated by l:, we have

T1 (x3 ~ gcd (Xl, x~)) ~ l~(ll - - 13). (63)

The bound is achieved when the IRS is a Fibonacci sequence.
Finally we consider the Chinese remainder algorithm (CRA) for integers, using

the notation of Section 4.8. Let l~ and le be the lengths of ~n~ and m2, respectively.
By (63), the time to compute c in Step (1) is codominant with l~le. Since Steps
(2) and (3) can also be performed within this bound, we have

T, (CRA) ~ l~le. (64)

5.4 POLYNOMIAL OPERATIONS. Let Tp(op) denote the maximum computing
time for the polynomial operation op, and let Fi denote a polynomial in v variables
with dimension vector (li, di), where l~ > 0. Clearly the number of terms in F~ is at
most (d~ ~ 1)~, and this bound is not codominant with d~ ".

For addition and subtraction it is easy to show that

Tp (F3 ~- F1 ± F~) ~ ll (d~ + 1)~ -/- le (d~ + 1)~, (65)

while for classical multiplication

T e (F3 ~-- F iFe) ~ l~le (dl -~- 1)v (de + 1)~. (66)

Turning to division, if Fel F1, we find

T e (F3 ~ F1/F~) ~ lel3 (de + 1)" (d3 + 1)*', (67)

since this involves essentially the same work as computing the product F2F3.
If Fe ~ F1, division yields to pseudo-division (Section 2.3), which is more expen-

sive because of coefficient growth. In this case, suppose that F1 and Fe have degrees
dl and de, respectively, in the main variable, and that their coefficient polynomials
(in the v -- 1 auxiliary variables) have dimension vectors bounded by (l, d). Let
(l', d') bound the dimension vectors of the polynomial coefficients of the pseudo-
quotient, Q, and note that the degree of Q in the main variable is ~ = d~ - de.
Since pseudo-division (PDIV) involves essentially the same work as computing
the product Q F e , we have by (66)

T~(PDIV) ~ (~ + 1)(d2 + 1) U ' (d + 1)~-~(d' + 1) ~-~. (68)

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

Euclid's Algorithm and Computation of Polynomial GCD's 499

Now it can be shown that d' < (8 al-
l' _< (~ + 2)l. On the other hand, for
l' > l, and 8 = 1. Hence

Tp (PDIV) ~, l 2 (d2 -4-

Tp (PDIV) ~ l 2 (d~ -4-

2) d, and similarly [using assumption (A3)]
large random problems we find that d' > d,

1) (~ --l-- 2)~+I (d --k 1)2,-2,

1) (d + 1)2~-2.
(69)

For polynomials in Zp[x], assumption (A4) permits us to restrict our attention to
single-word primes; hence all coefficient operations can be performed in some fixed
amount of time. For Algorithm U, let dl = O(Fi) and d2 = 0(F2), and suppose
dl >_ d2 > 0. Then, by essentially the same argument that led to (63),

T~ (U) ~ d, (< - d3), (70)

where da is the degree of the GCD. For the Chinese remainder algorithm, we again
use the notation of Section 4.8. Let d~ and d2 be the degrees of m~ and m2, respec-
tively. By (70), the time to compute c in Step (1) is codominant with did2. Since
Steps (2) and (3) can also be performed within this bound, we have

Tp (CRA) ~ &d2. (71)

5.5 ALGORITmr C. In analyzing the computing time for Algorithm C, we shall
use the notation of Section 2.4, and we shall assume that Step (4) is performed by
means of the subresultant PRS algorithm (Section 3.6). Let F~' and F2' be the given
nonzero polynomials in v variables, and let (1, d) bound their dimension vectors.

Let C(v, l, d) denote the maximum computing time for Algorithm C, and let
C~(v, l, d) denote the time for the ith step. We shall omit the analyses of several
steps which obviously make no contribution to the final bound.

Step (1). Since this step involves at most 2d + 1 GCD's of polynomial co-
efficients, we have

C~(v, l, d) ~ d.C(v - 1, l, d). (72)
!

Step (2). By (67), the time required to divide Cl or c2 into a coefficient of F~
or F2' ' " ~ 2 1)2~-2. is dominated bv 1 (4 + Since there are at most, 2 (d + 1) such divisions,
we have

C~ ,~, 12 (d + 1)2~-1. (73)

Step (4). Clearly most of the work in this step is in the pseudo-divisions which
yield prem(Fi_2, Fi_~) for i = 3, • • • , k. As in Section 3.1, let dl denote the degree
of F~ in the main variable. Then by assumption (A1), we have d~ = d2 -t- 2 - i,
for i = 3, • • • , k, and therefore k < d2 -4- 2. Furthermore, by (20) the degree of F~
in any auxiliary variable cammt exceed d(d~ -4- d2) _< 2d 2. Similarly, by (22),
ignoring the logarithm terms in accordance with assumption (A3), the integer-
length of Fi cannot exceed l(d~ -4- d2) < 2ld. Hence we can bound the time for a
single pseudo-division by replacing l by 2hl, d~ by d, 5 by 1, and d by 2 d 2 in (69).
Multiplying the result by d, which bounds the number of pseudo-divisions, and
applying some obvious simplifying inequalities, we obtain

C4 ,~, l 2 (d + 1)4~22~3~. (74)

Step (6). To bound the time for computing fk/O, we can replace v by v - 1,
12 by l, d2 by d, 13 by 21d, and da by 2d 2 in (67); the result is dominated

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

5 0 0 W . S . B R O W N

by 12 (d + 1)3v-22v. To bound the time for dividing this quanti ty into a coefficient
of Fk, we can replace v by v - 1, 12 by 21d, d2 by 2 d ~, 13 by l, and d3 by d in (67),
with the same result. Multiplying by d + 2, which bounds the number of such
divisions, we find

C6 £ t ~ (d + 1)3v-12v. (75)

Step (7). By assumption (A3), the dimension vectors for 0 and for the co-
efficients of G are bounded by (1, d) ; hence the dimension vectors for the coefficients
of 0 and for cont(G) are bounded by (2l, 2 d). Now by the argument used in Step
(1), cont(G) can be computed in time d.C(v -- 1, 2l, 2d). Also, by the argument
used in Step (2), each division of this content into a coefficient of C~ can be performed
in time l 2 (d --b 1)2~-22v. Hence,

CT(v,l ,d) £ d . C (v - 1,21,2d) + l ~(d + 1)2v-12v. (76)

Step (8). Here (1, d) bounds the dimension vectors of c and of the coefficients
of G. By (66), the time to maltiply one of these coefficients by c is at most
2 (d + 1)2v-2; hence

C8 • l ~ (d + 1)2~-1. (77)

Total Time. Summing these bounds, we find

C(v, l, d) • d.C(v - 1, 21, 2d) -+- 12(d + 1)4v22v3~, (78)

for v > 0. Starting with the formula

C (0, l) £ 12, (79)

which follows from (63), we can now prove by induction on v that

C(v, l, d) £ 12(g -¢- 1)4~22~23~. (80)

5.6 ALGORITHM P. In analyzing the computing time for Algorithm P, we shall
use the notation of Section 4.5. Let F~' and F2' be the given nonzero polynomials in
Zp[Xl, • • • , x~], and let d bound the components of their degree vectors.

Let P (v, d) denote the maximum computing time for Algorithm P, and let Pi (v, d)
denote the time for the i th step. We shall omit the analyses of several steps which
obviously make no contribution to the final bound.

Step (1). Since F~' and F~' each have at most (d + 1)~-1 terms, and since the
time to compute a GCD in the coefficient domain ~ = Zp[x] by Algorithm U is at
most d 2 [by (70)], we have

P~ .~ (d + 1) ~+~. (81)

Step (2). By (67), the time required to divide Cl or c~ into a coefficient of Fi'
or F (is dominated by (d -t- 1)5. Since there are at most 2 (d + 1)~'-~ such divisions,
we have

P2 £ (d + 1)~+~. (82)

Step (7). Let ~ denote either 0 or any coefficient of F~ or F2. Thus ~ C Z~,[x~],
and 0~. (~) < d. Since the time to map ~ into ~ mod(x~ - b) = ~ (b) ~ Zp, either by
division or by Horner's rule [1, p. 423], is dominated by d + 1, the time to map 0
and all of the coefficients of F1 and F2 into Zp is dominated by (d + 1)". Since this

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

Euclid's Algorithm and Computation of Polynomial GCD's 501

dominates the time required for the ensuing multiplications, we have

P7 ,~ (d + 1)v. (83)

Step (8). Here we invoke Algorithm P recursively, and then multiply the re-
sulting GCD and cofactors by ~ and -- ' g , respectively. Thus

Ps(v,d) ~ P (v - - 1,~/) + (d + 1)v-1. (84)

Step (11). Here each of the coefficients of G*, H**, and H2* must be extended
from degree n - 2 in x~ to degree n - 1. By (71), the required time for each suell
extension is codominant with n; hence

Pu ~ n (d + 1)~-1. (85)

Step (1~). Recall that G* = (~ = (O/g)G. BythesamereasoningasinStep(1) ,
eont(G*) can be computed in time (d + l) v+'. By ~he same reasoning as in Step
(2), the ensuing divisions of this content into G*, and of g into H,* and H2*, can also
be performed in time (d + 1)v+l. Hence

P14 ,~ (d + 1)v+~. (86)

Step (15). By (66), each multiplication of a coefficient of G by c can be per-
formed in time (d + 1)2. Hence the time to compute G' is bounded by (d + 1)~+~.
Since the same reasoning holds for H (and H(, we have

P15 ,~ (d + 1)'+~. (87)

Total Time. By assumption (A2) no unlucky b-values will occur. Hence if F,
and F2 are relatively prime, only one b-value will be needed; otherwise the required
number is

~ = o + 1

= max (0~ (fi,), O~ (/Tz)) + 1

< 2 d + 1. (88)

Summing the preceding bounds, with Steps (6)-(12) weighted by (88), we obtain

P (v , d) ~ d . P (v - 1, d) + (d + 1)~+t, (89)

for v > 1. Starting with the formula

P(1, d) ~ d ~, (90)
which follows from (70), we can now prove by induction on v that

P(v, d) ~ (d + 1) ~+~. (91)

5.7 ALGORITHM M. In analyzing the computing time for Algorithm M, we
shall use the notation of Section 4.3. Let F~' and F ' 2 be the given nonzero poly-
nomials in Z[xl, • • • , x~J, and let (1, d) bound their dimension vectors.

Let M(v, l, d) denote the maximum computing time for Algorithm 5'I, and let
Mi(v, l, d) denote the time for the ith step. In view of the similarity of Algorithm
M to Algorithm P, we shall merely present the results of the analyses of the sig-
nificant steps:

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

502 w . s . BROWN

M i , ~ 12(d + 1)~',

M~ ~ 1 ~ (d + 1)v,

M T , ~ l (d + 1) ~,

M s ~ P (v , d) + (d + 1)~,~, (d + l) ' + ' ,

M l l ~ n (d + l)V,

M 1 4 ~ l 2 (d + 1)~,
M15 ,~ 12 (c/ -t- 1)~.

(92)

Total Time. By assumption (A2) no unlucky primes will occur. Hence if F1
and F2 are relatively prime, only a single prime will be needed; otherwise the re
quired number is

< log~u , (93)

where ~ is the final value of u* in Step (13). Clearly u need not exceed 2c2t,
where t is the number of terms in (~, and where c bounds the magnitudes of the
coefficients of (~, flit, and /t~. It follows immediately that ~ < 2 logs c -t- logs t
+ logs '2. But by assumption (A3), logs c < 21, and by assumption (A4), log~ t < 1.
Hence

< 4l + 2. (94)

Summing (92) with Steps (6)- (12) weighted by (94), we obtain

M(v, l, d) £ 12(d + 1) ~ ÷ l(d + 1) ~+1. (95)

When F~ and F2 are relatively prime (RP), it suffices to sum Steps (1)-(9) and
(15); thus we find the smaller bound

211(Re)(V, l, d) £ 12(d + 1) ~ + (d + 1) ~'+~. (96)

5.8 COMPARISON. From (80) and (95), we see that the bound on M is strictly
dominated by the bound on C. We shall now prove that M is strictly dominated by
C in the region v >_ 2.

Let F~ and F2 be random polynomials in v variables subject only to the constraints
imposed by the dimension vector (l, d), and let C_ be the maximum computing time
to obtain their pseudo-remainder F3. Then by (69), C_ dominates 12 (d + 1)2~-~.
On the other hand, by (95), M is strictly dominated by M+ = 12(d + 1) "+~.

v 2 Since C_/M+ = (d -I- 1) , it follows that M < M+ < C_ ~ C in the region v _> 2.
This completes the proof.

6. Summary and conclusions

In attempting to generalize Euclid's algorithm to the case of univariate or multi-
variate polynomials with integer or rational coefficients, one immediately encounters
the problem of coefficient growth. This is most serious when the growth is allowed to
go unchecked, as in the Euclidean PRS algorithm, or when the algorithm is recur-
sively applied to inflated polynomial coefficients, as in the multivariate case of the
primitive PRS algorithm.

Since the subresultant PRS algorithm restricts the coefficient growth to a linear

Journal of the Association for Computing Machinery, Voh 18, No. 4, October 1971

Euclid's A lgor i t hm and Computa t ion of P o l y n o m i a l G C D ' s 503

rate comparable to that which often occurs in a primitive PRS, and at the same time
avoids the need for recursive applications to inflated coefficients, it appears to
satisfy the most optimistic criteria that could be set for Algorithm C. Nevertheless,
it may require the production of subresultants much larger than either the given
polynomials or their GCD.

Algorithm ~[avoids this difficulty by taking a fundamentally different approach.
The given polynomials are first projected by modular mappings into one or more
simpler domains in which images of the GCD can more easily be computed. The
true GCD is then constructed from these images with the aid of the Chinese re-
mainder algorithm. Since the same method is used for the required GCD computa-
tions in the image spaces, it is only necessary to apply Euclid's algorithm to integers
and to univariate polynomials with coefficients in a finite field.

This modular approach is especially well suited to the problem of GCD computa-
tion, because the desired GCD is typically smaller than the given polynomials, and
this limits the required number of images. In particular when the GCD is unity, a
single image is usually sufficient.

Of critical importance to both Algorithm C and Algorithm 5'[is the existence of a
small multiple of the GCD whose leading coefficient can be computed with negligible
effort. Otherwise, it would be necessary in Algorithm 2~I to obtain enough images to
build the associated subresultant, whose coefficients might be very large, and it
would be necessary in both algorithms to compute the primitive part of that
subresultant.

A striking difference between the two algorithms is that Algorithm S views a
polynomial in Z [x l , • • • , x~] as a univariate polynomial in some main variable, with
polynomial coefficients, while Algorithm M treats it directly as a multivariate
polynomial with integer coefficients. It is easy to see that Algorithm M profits
greatly from the resulting speed of operations on the larger number of smaller co-
efficients. This same idea is applied in the image space Zp [xl, • • • , x~], whose poly-
nomials are viewed by Algorithm P as polynomials in the variables x~, . . . , x,_~
with coefficients in Zp[x,].

In our stady of computing times, we obtained asymptotic bounds on the maximum
computing times for the two algorithms, with the aid of several simplifying assump-
tions which we believe to be realistic. Furthermore we showed that the maximum
computing time for Algorithm ~,i is strictly dominated by the maximum computing
time for the first pseudo-division in Algorithm C, in the region v _> 2. This dramat-
ically illustrates the superiority of the modular approach for GCD computations in
which the given polynomials are sdfficiently large and sufficiently dense.

ACKNOWLEDGMENTS. The author is indebted to a number of colleagues including
especially G. E. Collins and S. C. Johnson for comments on earlier drafts of this
paper, and for helpful discussions.

R E F E R E N C E S

1. KNUTH, D. E. The Art of Computer Programmi~tg: Vol. 2: Seminumerical Algorithms.
Addison-Wesley, Reading, Mass., 1969.

2. SAMMET J. E., ET AL. Symbol manipula t ion . Comm. ACM 9 (Aug. 65), 547-643.
3. HOUSEHOLDER, A. S. Bigradients and the problem of Rou th and Hurwitz , SIAM Rev.

10 (Jan. 1968), 56-66.
4. HOUSEHOLDER, A. S., AND STEWART, G. W., I I I . Bigradients , Hankel de terminants , and

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

5 0 4 w . s . BROWN

the Pads table. In Constructive Aspects of the Fundamental Theorem of Algebra, B. De-
]on and P. Henrici, Eds. Wiley-Interscience, New York, 1969, pp. 131-150.

5. USPENSKY, J .V . Theory of Equations, McGraw-Hill, New York, 1948.
6. BIRKHOFF G., AND MACLANE, S. A Survey of Modern Algebra, 3rd ed. Macmillan, New

York, 1965.
7. COLLINS, G. E. Subresultants and reduced polynomial remainder sequences. J. ACM 14

(Jan. 1967), 128-142.
8. BROWN W. S., AND TRAUB, J . F . On Euclid's algorithm and the theory of subresultants. 3".

ACM 18 (Oct. 1971), 505-514.
9. GOLDSTEIN A. J., AND GRAHAM, R.L . A Hadamard type bound on the coefficients of a de-

terminant of analytic functions (to be published).
10. COLLINS, G. E. The calculation of mult ivariate polynomial resultants. In Proc. 2nd

Symposium on Symbolic and Algebraic Manipulation. ACM, New York, 1971, pp. 212-222;
J. ACM 18 (Oct. 1971), 515--532.

11. ERD~LYI, A. Asymptotic Expansions. Dover, New York, 1956.
12. Proc. 2nd Symposium on Symbolic and Algebraic Manipulation. ACM, New York, 1971,

Chs. 3 and 7.

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971

