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Abstract. The numerical solution of nonlinear integral equations involves the iterative so- 
Iutioon of finite systems of nonlinear algebraic or transcendental equations. Certain corwen- 
t i o n a l  techniqucs for treating such systems are reviewed in the context of a particular class of 
n o n l i n e a r  equations. A procedure is synthesized to offset some of the disadvantages of these 
t e c h n i q u e s  in this context; however, the procedure is not restricted to this pt~rticular class of 
s y s t e m s  of nonlinear equations. 

1. Introduction 
~Nonlinear integral equations have gained increasing interest in recent years, bo th  

f r o m  an analytic and a numerical point of view; the current state of the art is re- 
v i e w e d  in [1]. The present remarks stem from research in the kinetic theory of g~ses 
involv ing  the solution of coupled sets of singular, nonlinear integral equation,s [2, 
3, 4]. Since the methods developed for the solution of finite sets of notdinear equa- 
t i o n s  have proved useful in a number of other contexts, they are reported here. 

:In Section 2, we describe the class of nonlinear equations of interest here. In  
S e c t i o n  3, we survey a number of numerical procedures which have been proposed 
f o r  the solution of such equations, illustrating their deficiencies in the problem at  
b .and  and obtaining desiderata for a new approach. In Section 4, a cl~ss of procedures 
i s  proposed on a heuristic basis; these are illustrated in Section 5 by a number of 
s i m p l e  examples. To the extent that these procedures represent devices for acceler- 
a t i n g  the convergence of iterative vector sequences, they m~y prove useful in a 
w i d e r  context than the solution of a particular class of nonlinear integral equations 

2.  The Class of Nonlinear Equations 
'The details of the original problem can be suppressed; it is necessary only to 

p o i n t  out certain salient features which motivate the heuristic considerations to 
fo l low.  For concreteness, consider the problem of finding f(x) satisfying 

b 
f(x) = f~ dt K(f(t); [x - tl) + g(x) (2.1) 

f o r  a given kernel K and i~rhomogeneous term g(x). This analytic problem must  be 
r ep l aced  by a discrete analog, thereby reducing the problem to tllat of solving a 
f in i t e  system of nonlinear equations. The approach followed in [2] need only be 
ou t l i ned  briefly: The integral operator is discretized by replacing it by an m-poirtt 
( ]uuss ian  quadrature formula, or a composite of such formulas. The function f ( x )  
i s  replaced by a finite expansion in Chebyshev polynomials Tk(x), adapted to the  
i n t e r v a l  (a, b). A determinate problem is obtained by enforcing the resulting equa-  
t i o n s  at a selected set of collocation or interpolation sample points x~. The resulting 
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discrete dependent variables are the expansion coefficients c~ or the sample values 
f~ = f(x~). Choosing the z~ as the roots or extrema of an appropriate Chebyshev 
polynomial, we can relate the ck and the f~ through the well-known discrete orthog. 
onality conditions [5]. The resulting discrete problem takes the form 

Since the sets of interpolation and quadrature sample points x~ and ts are, in general, 
disjoint, it is not convenient to reformulate the problem in terms of c~ or f~ sepa- 
rately. Thus both the dual sets of unknowns and the form of the equation which 
arises naturally from the diseretization of the analytic problem are retained. 

The original problem was discretized in parallel fashion. The following properties 
of the corresponding equations motivate the heuristic arguments to follow and de- 
fine the class of problems of interest. However, considerations which rule out cer- 
tain approaches in this context are not operative in a general problem. The most 
important consideration is the amount of computation required to evaluate fi 
from (2.2) given ck, i.e., a unit for the computer time involved in solving the prob- 
lem. In the problems of interest, the computation time is dominated by the evalua- 
tion of the kernel function K which is a complicated nonlinear function of its argu- 
ments. Due to the nature of K,  a sensible discretization requires a considerable 
number of interpolation and quadrature sample points; a typical problem might 
involve 50-100 quadrature points and a comparable number of discrete dependent 
variables. The general shape of the solution is known a priori, so that  reasonably 
good initial iterates are available. Nevertheless, even on a high speed digital com- 
puter like the IBM 7094, the problem is not feasible if the number of iterations 
required to solve the discrete problem is comparable to the dimensionality of the 
problem. 

The second important consideration is the "shape" of the kernel function. 
K( f ;  I x - t l) is singular at x = t and decreases as I x - t ] increases. Let X be a 
characteristic "width" of the kernel; the mode of convergence of any iterative 
procedure for solving the equations depends strongly on X. For "large" X there is 
strong global coupling of all f~ dependent variables; for "small" X there is strong 
local coupling of "adjaeent"f~ depeMent variables, but  little long range interaction. 
Indeed, for small X the equation tends to become an identity for any f since the 
kernel becomes almost reproducing and the inhomogeneous term g(x)  has signifi- 
cant magnitude only near the boundaries x = a and x = b. The basic successive 
substitution iteration suggested by the form of the equations then becomes ex- 
tremely ill-conditioned and slowly convergent. 

The influence of these considerations on the formulation of an iterative procedure 
may be seen below. 

3. Survey of Conventional Iterative Procedures 

Let us focus our attention on the prototype problem 

Fz = 0 (3.1) 

where F is an operator on the N-vector z. For iterative solution, it is convenient 
to write the equation in the form 

z = Gz (3.2) 
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by some judicious choice of the iteration operator (;. The problem falls naturally 
into the form (3 2). but in general one can write 

Gz = z - H F z  (3.3) 

for some sufficiently regular, homogeneous operator H. For tile heuristic discussio~ 
to follow, one need not be more precise. 

The basic successive substitution iteration 

z~+l = Oz~ (3.4) 

suggests itself quite naturally. Depending on the form of G, the components z~ +~ 
can be corrected one at a t ime--a local iteration--or all at once--a global  iteration. 
The dual nature of the discretization suggests a global approach. The convergence 
of the basic iteration (3.4) is an extensively studied problem [1] which is not dis- 
cussed here. In practice, in a problem of this complexity the question of the rate of 
convergence (or divergence) must be answered empirically. For present purposes, 
it is assumed that  the basic iteration converges in the usual geometric fashion, but 
too slowly to make the problem tractable. The question then becomes that of 
modifying the basic iteration so as to accelerate the convergence. In this paper, 
consider several such procedures, drawing heavily on analogies with the relatively 
well studied problems of iterative procedures for the solution of univariate non- 
linear and multivariate linear equations. By Oceam's Razor, we also consider the 
simplest procedures that  seem likely to work. 

Perhaps the simplest class of iterative procedures after the basic iteration are 
those of relaxation type, in which H of equation (3.3) is chosen as a m u l t i p l i c a t i v e  

constant  (the relaxation parameter) or a sequence of such constants. Such linear 
iterative processes have been analyzed for the univariate nonlinear case [6, 7] and 
have an extensive lore in the multivariate linear case [8]. Under certain conditions 
it is possible to determine, either empirically or in terms of properties of F, an 
optimum relaxation factor which maximizes the rate of convergence in some sense. 
For the multivariate nonlinear case, relaxation procedures have only pragmatic 
self-justification but can be extremely effective in some instances. In the problems 
of interest, optimum relaxation factors were determined empirically but were found 
to depend strongly on the "width" of the kernel. I t  appears that relaxation is 
useful primarily in the case of strong local coupling~an observation that is con- 
sistent with the theoretical analyses which can be carried out in the linear case. 
While the relaxation device can accelerate this convergence, the process remains a 
geometrically converging first-order iteration and proves to be inadequate for the 
class of problems under consideration. 

To obtain a higher-order iteration, consider choosing H of (3.3) as the inverse 
of the Jacobian matrix of F with respect to z. In this way the well-known generali- 
zation of the Newton-Raphson process [9] is obtained. Due to the dual nature of 
the dependent variables in the problem, it is easiest to retreat to the analytic equa- 
tion, to obtain a continuous analog of the Newton-Raphson process through a per- 
turbation method, and then to discretize this as above; all linearization procedures 
are essentially equivalent. Symbolically, the analytic problem reads 

= 95. (3.5) 

If it is ~ssumed that  the error in the current iterate g,~ is "first-order" and the 
operator 9 is expanded, retaining only first-order terms, one can write 
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5 z+l = J + ~g,~ = ~3J + ~ ~J. (3.6) 

The perturbation operator 0c3/0 g is linear and plays the role of a generalized de- 
rivative of c3; for the prototype problem (2.1), 

O,q ,~b dt OK 
0-.,~ ~f = . .  ~ f  ~f" (3.7) 

Define a first-order residual (R ~ by 

~ z  = ¢3~z _ ,~. (3.8) 

This defines what we mean by "first-order." The following linear integral equation 
is then obtained for the correction ~ l :  

09 ~ .  
~ = ~ ~J + (3.9) 

Discretizing this equation as above, one obtains the asymptotically quadratically 
converging process: 

Az I = OG Az ~ + r z, 
Oz (3.10) 

z t+l = z z @ Az t. 

For a problem characterized by a dimensionality of order 75, the solution of the 
linearized problem (3.9) is a substantial exercise in itself; one must form the per- 
turbation matrix OG/Oz and then invert ( I  -- OG/Oz). Unless one is close enough 
to the solution so that  the asymptotic, quadratic convergence comes into play, this 
is not a very practical method for solving the problems of interest. Though one can 
economize somewhat by retaining the inverse of the "Jacobian" ( I  -- OG/Oz) for 
several iterations, thereby reducing the rate of convergence but increasing the global 
efficiency, this approach is useful only for improving accurate approximations ob- 
tained by other means. 

With higher-order processes, such as the generalized Newton-Raphson (or tan- 
gent) method, eliminated, one turns naturally to methods of higher degree, seeking 
to utilize the trend of recent iterates to accelerate the convergence. The simplest 
candidates for generalization from the univariate case are the secant method, or 
other forms of regula falsi [6], and such sequence transformations as the Aitken 
~hprocess and the Wynn e-algorithm [10]. From the multivariate linear case, one has 
the linear acceleration or semi-iterative methods of Varga [8] and others. In the 
former case, one is faced with ambiguity as to how to carry a one-dimensional proc- 
ess into N dimensions; in the latter, one lacks the powerful tools of linear algebra. 
I t  is not surprising, therefore, that  there are a multitude of possibilities, with largely 
heuristic origins, depending on the particular aspect one wishes to generalize. For 
the problems of interest, we will simply point out some of the disadvantages of some 
algorithms that have been proposed, and obtain therefrom some desiderata for a 
new approach. 

The asymptotic convergence properties of the basic iteration (3.4) are determined 
by the eigenvalues of the Jacobian matrix of G with respect to z at the root, in par- 
ticular the dominant eigenvalue(s). In the simplest case of a single dominant eigen- 
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value and after a suitable number of iterations, the components of the error vector, 
which tends to lie in the direction of the dominant eigenveetor, are effectively den 
coupled, in the sense that  they converge geometrically and independently. The rate 
of convergence (or divergence) is determined by the nlagnitude of the dominant~ 
eigenvMue in a fashion analogous to the univariate case. I f  enough preparalorv 
basic iterations are carried out, one might hope to obtain superlinear asymptotic 
convergence by applying univariate acceleration devices to the individual compo- 
nents z~ *. Fox and Goodwin [11] consider such a process using the Aitken 8"-process. 
Noble [1] eonsiders the use of a generalized 8Lproeess adapted to the ease in which 
there is a complex eoniugate pair of dominant eigenvalues. The seeant Inethod 
could also be applied;when used as an aeeeleration process, it is assoeiated with the 
name of Wegstein [12]. Wynn [10] considers such a component-by-component 
process using the e-algorithm. However, one cannot ignore the nonlinear coupling 
of the error components, and such acceleration procedures often lead to disastrous 
results especially in the ease of strong local coupling. The situation is not notably 
improved by averaging over the components of the iterates in some fashion to ob- 
tain an "effective" geometic convergence factor. In the problems of interest, one can- 
not afford to do enough preparatory iterations to decouple the components of the 
error vector; hence component-by-component acceleration procedures are un- 
suitable. 

The basic direet or inverse interpolation interpretation of the univariate secant 
method is easily generalized to the multivariate ease. Geometrically, if linearization 
along a secant line to linearization over a set of secant hyperplanes is generalized, 
then direct and inverse interpolation are equivalent as in the univariate ease. This 
approach (attributed to Gauss) is treated in Ostrowski [6], but the most eoneise 
form of the algorithm is that due to Wolfe [13]. Likewise, one can extend Jeeves' 
[14] approach to the univariate secant method and approximate the deriwLtives in 
the Jacobian matrix of the Newton-Raphson process by difference quotients [7]. 
Somewhat similar in spirit is the formal generalization of the Steffenson iteration 
(the Aitken ~%proeess applied dynamically) in Henriei [15]. All of these procedures 
share three disadvantages: (1) There are degeneracies which prevent the inversion 
of the N X N matrices involved and make them extremely ill-conditioned when :not 
actually singular. (2) For N of order 75 the prospect of carrying out the inversion 
is itself a deterrent, as it was in the ease of the Newton-Raphson process, even if 
possible in principle. (3) The methods are of degree N +  1 or more; one simply can- 
not afford to obtain enough samples from the basic iteration even to begin to ae- 
eelerate the eonvergence in this way. Thus again, this class of procedures is unsuita- 
ble for the problems of interest. 

Wynn [10, 16, 17] has formally extended the e-algorithm to vector sequences 
through the use of the Samuelson inverse for a vector: 

--1 z = z/ l l  z It ~. (3.11) 

Such a process couples the error components and can be used from the beginning of 
the iteration. Wynn has conducted a number of successful experiments with this 
process, including the iterative solution of systems of linear algebraic equations and 
nonlinear equations arising from the discretization of integral equations. In the 
author's limited experience, the vector e-algorithm seems often to be a good tactic 
but a looor strategy. To reason by analogy with the univariatc case, the problem 
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seems to be the "static" character of this sequence transformation--the transformed 
iterates are not "dynamical ly"  fed back into the iterative process. Tile Aitken ~2 
process, of which the e-algorithm is ~ generalization, is considerably less effective if 
applied statically as a sequence transformation than if applied dynamically as 
the Steffenson iteration [6, 7, 15, 18]. Similarly, the Wegstein process is often glo- 
bally more c~icient than tile Steffenson iteration, to which it reduces by applying 
the acceleration only at  every other step of the basic iteration. The dynamic feed- 
back offsets the lower order of convergence. The vector e-algorithm shares with the 
procedures to be described below the property of being useful in some problems and 
not in others, for reasons which are not apparent a priori. 

In summary, a dynamic, low-degree, coupled iterative process is desired which 
~tccelerates the convergence of the basic iteration. In subsequent sections, a class of 
such processes is suggested on a heuristic basis. The basic idea is very simple and 
has many analogies with other devices which have been considered, but the closest 
direct analogy the author has discovered in the literature is a somewhat similar 
device for the linear case due to Khabaza [19]. In one variant or another, the pro- 
cedure has proved useful in the problems outlined above, and in a number of other 
problems involving the iterative solution of finite sets of linear and nonlinear equa- 
tions arising from integral, ordinary and partial differential equations. For eigen- 
value problems, the device can be combined with the power method to some advan- 
tage. Experiments have been carried out with a large number of variants, but only 
the most useful are recorded here. No global convergence theorem seems likely 
though hints as to an asymptotic analysis are available. In any case, it is easy to 
find out empirically in any given problem whether or not this is a useful approach. 

4. Low-Degree Generalized Secant Methods 

A spectrum of ideas is involved here; we consider first a specific algorithm and 
then indicate how variants and generalizations can be obtained. The first algorithm 
was originally obtained by generalizing the univariate secant method (regula falsi) 
geometrically. Though it is most straightforward to proceed algebraically, it is, how- 
ever, useful to note the geometric interpretation. Rather than generalizing the 
secant line through two sample points to a set of N secant hyperplanes through 
N +  1 points--which yields Wolfe's method--we consider a hyperline through two 
sample points. This yields a dynamic, coupled, second-degree method. A hyperline 
does not in general intersect the subspace defining the solution--the analog of the 
line y = 0 or y = x, depending on whether the univariate equation F ( x )  = 0 or 
x = f ( x )  are being considered. Consequently, the algorithm chooses that  point on 
the hyperline which is in some sense "closest" to this subspace. 

Begin with a basic iteration 

z ~+1 = Gz ~, (4.1) 

and define a coupled pair of iterative sequences x Z and y* related by 

Y * = Gx z. (4.2) 

I t  is sought to define x z+l as a function of y*, x z, yZ-1 and x ~-1 so that  the sequences 
x * and y* converge more rapidly than the basic sequence z ~. We define x z+l as a 
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iinear, parameterized form i~ previous iterates, define a quadratic residual, aad ob- 
tain the free parameters by minimizing this residual. Define a residual vector ,r ~ by 

T ~ X ~" = Y ~ -  (4.3) 

Define the inner product of two N-vectors u and v by 

(~, v) = ~ ~v~w, (4.4) 

where the weights w~ are positive. In some cases, it is com~enient to generalize (4.4) 
in the usual way to include a nondiagonal, positive-definite metric and/or  compl(,x 
vector components. Define 

u l = x ~ + 0 1 ( z  z-~ _ x~), 
(4.5) 

v = y~ + O~(y l-1 -- yl), 

and 

= ~ ( v  - u  t, - u ~ ) .  (4.6) 

Choose the free parameter 0 ~ so as to minimize the h:nearized residual RI; this yields 

Off_O00 ~ ( / + ~ _  / , v  l -  u ~) = 0. (4.7) 

Hence 

Define 

0 z = (r t, r t _ rl-a)/(r~ _ r l-1, r ~ _ r H ) .  (4.s) 

x 1+1 = u t + ~ z ( v l -  u ~) (t3 ~ > 0). (,t.9) 

We refer to the algorithm so defined as the extrapolation algorithna. Usually the 
choice/31 = 1 is most appropriate; the choice ¢/l = 0 is excluded for reasons to be 
discussed below. The extrapolation algorithm resembles, in some respects, various 
search or descent methods for root finding [18]; indeed, a "least-squares solution" 
can be found if no true solution z exists. As in such methods, it is often useful to 
"under-relax" the iteration by choosing 0 < /!/~ < 1, but the optimum/~l must be 
determined empirically. 

The extrapolation algorithm reduces to the univariate secant method for N = 1 ; 
it is interesting to note that  it can be obtained formally from the secant method by 
introducing the Samuelson inverse of (3.11). Since t~he vector algebra using inner 
products and the Samuelson inverse is not associative, an alternate algorithm can 
be formally obtained in the same way. We refer to this alternate algorithm as the 
relaxation algorithm, since it corresponds to defining a relaxation parameter dy- 
namically, but  we prefer to approach it algebraicMly as follows. Define 

~t = yl + lr~  ' 
_~ 1-1 ~7~r1-1, (4.10) 
v = y  + 

and 
I - I  ~1 - -  ~ l  = ~:(v -- ~I, ,gl). (4.11) 
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Choose n ~ to minimize/?z i this yields 

00R l (~ z-1 / ~z 

Hence 

- ~a~) = O. (4.12) 

z (y~ y H  r ~ rZ-1)/(r ~ rZ-~l, r ~ ~i)  (4 13) 

Then define 

xl+1 = ,~l; (4.14) 

in this "cross-sequence" interpolation, no additional averaging seems appropriate. 
Just as one can obtain the Aitken 62-process, applied dynamicMly as the Steffen- 

son iteration, in the univariate case by applying the secant method alternately with 
basic iteration steps, one can also obtain a generalized 62-process in the same fashion. 
The relaxation and extrapolation (f~z = 1) Mgorithms are identical when applied 
in this fashion and yield a single generalized 62-process. This process is distinct from 
the generalized 6Lprocess obtained by carrying the Wynn vector e-algorithm through 
one stage. However, as in the univariate case, it is usually a more effective strategy 
to accelerate at each step with the secant process rather than to Use a generalized 
6%process. 

Variants of these algorithms can be obtained in many ways; two classes of variants 
have proved of particular interest. The first class concerns the choice of the metric 
of the inner product defining the "linearized residual" R t. Usually, it is advantageous 
to define the residual in a relative sense by choosing w~ inversely proportional to 
some measure of the local "size" of the solution vector--either a priori or dy- 
namically as the iteration proceeds. This is of particular significance when solving 
coupled sets of integral equations where one lumps subvectors of somewhat dif- 
ferent character together to form an iteration vector. Alternately, one can accelerate 
the subvectors individually, ignoring the coupling between them; when applied to 
subvectors of dimension one, the process degenerates to the component-by-compo- 
nent acceleration processes discussed above. In multidimensional problems where an 
array of dependent variables is reduced to a vector iterate, an "alternating direc- 
tion" [8] redefinition of the subvectors to be accelerated at consecutive iterations 
seems useful. A variant which is sometimes useful with the extrapolation Mgorithm, 
but not the relaxation algorithm, is the choice of a metric proportional to the local 
residual r~ ~. Attention is thereby focussed on the "worst" components at each stage. 

The extrapolation algorithm can easily be generalized, but it  does not seem useful 
to extend the relaxation algorithm in similar fashion due to its "cross-sequence" 
character. The extrapolation algorithm was obtained above by minimizing a certain 
linearized residual over a hyperline; higher degree methods ~re obtained by mini- 
mizing over linear subspaces of higher dimension. Define 

M 

u ~ = z ~ + ~ o / ( x  ~-J _ z~) ,  

¢~1 (4,15) 
M 

v~ = y~ + ~ OjZ(y~-j _ yZ), 
j = l  

and 

= - -  v l - -  . ( 4 . 1 6 )  R z ½(v  ~ u ~, u z) 
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Choose ~jz so as to minimize Rl; this yields 

0/~ ~ (?z-~ j 
,90---7 = - ;'~, ~ u ~) = 0. (4.17) 

Hence 
M 

j=:~ 0'~ - r~-~, ~'~ - r ~ - " ) ° /  = 0 "~, 7 "~ - r ~-~) ( 4 . l S  

for i = 1, 2, . - .  , M. Again x z+: is defined by (4.9). 
Provided that  the vectors ,r ~--~ are linearily independent, the residual R ~ can be 

brought to zero for M = N; in this case, the extrapolation algorithm becomes ~ 
variant of Wolfe's method. However, the extrapolation algorithm is dynamic, 
coupled and can be used from the beginning of the iteration; the degree can be al- 
lowed to increase up to N + I  as the iteration proceeds. In practice, the low-degree 
cases with M = 1, 2, • • • are the most useful, and it seems best to linfit M to about 
5. By analogy with higher-degree, multipoint iterative processes in the univariate 
case, one might say that  the power of an iterative method increases slowly with 
degree for M > 3 since the "early," poor approximations are not samples of siguifi- 
cant information content for the high-degree methods which retain then:. I t  is of 
interest to consider the relationship between the present algorithm and Wolfe's 
method in the light of Tornheim's convelgence theorem for the latter [20]. Siuce R ~ 
is brought to zero at each stage, Wolfe's method converges superlinearily-o-if it con- 
verges. The Wolfe process fails to converge if the set of previous iterates fails to 
span the space containing the solution--the linear equations involved become 
singular. Furthermore, as the iteration proceeds, the iterates must tend to become 
more and more alike, the degeneracy becomes more and more of a problem, and the 
linear system becomes extremely ill-conditioned, if not actually singular. The low- 
degree extrapolation algorithm can be regarded as a device to alleviate this difficulty, 
at least in part, since the degree of ill-conditioning and potentiality for degeneracy 
is at least proportional to tile degree of the iterative process. For the same reason, 
the restriction ~ > 0 in the extrapolation algorithm is required in oMer that tile 
)lew iterate x *+: not become trapped in the subspace spanned by the previous x z 
iterates; the admixture of yZ iterates as each stage introduces "new dimensious" for 
the subspace to be searched. The potentiality for degeneracy is not, however, elimi-. 
hated in the extrapolation algorithm, only reduced. Especially near tile end of the 
iteration; the linear system of dimension M will become ill-conditioued or evm~ 
singular. I t  is convenient to make the convention that M will be automatically de- 
creased to suppress redundant previous iterates until the degeneracy of the linear 
system is lifted. This can be accomplished in the routine used to solve the system 
of M linear equations. The matrix of coefficients is positive definite if there is no 
redundancy. One needs simply to redefine M as the dimension of the largest positive- 
definite upper left principal minor in the case of redundancy. Not only do the vectors 
r z-i - r z tend to become linearily dependent, but they also tend individually to zero; 
at some point, there will not be enough significant figures left in these residuals to 
define &z, and the linear acceleration method ceases to be useful. At this stage, a 
Newton-Raphson iteration with the inverse of the Jacobian matrix evaluated only 
once can be used to great advantage. 

If the system of N equations considered happens to be linear, Wolfe's method 
converges immediately, if it converges. The low-degree extrapolation algorithm will 
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in general require several iterations--typically less than N for any practical con- 
vergenec criterion and reasonable first iterate. I t  is easy to verify that, in this case, 
the linearized residual R z is an actual residual for the problem--the residual vector 
corresponding to a linear combination of iterates is the corresponding linear combi- 
nation of the individual residual vectors. If the basic iteration converges, it N)pears 
that  R ~ decreases monotonicMly to zero; the accelerated iteration converges at least 
as rapidly and in general more rapidly than the basic iteration. If the basic iteration 
diverges, R ~ does not necessarily converge monotonically to zero, but with a good 
enough initial iterate convergence is possible, indeed probable. 

Khabaza [19] has considered an iterative procedure for the solution of large, sparse 
systems of linear equations based on the idea of determining at  each stage a "least- 
squares, matrix polynomial approximation" to the inverse matrix. I t  can easily be 
shown, with suitable redefinition of terminology, that  this procedure is equivalent 
to cant ing  out M steps of a Jaeobi basic iteration [8], and then applying the ex- 
trapolation algorithm to the resulting "samples"--with tit = 0. (This choice of B: is 
acceptable here since "fresh samples" are obtained from the M basic iteration steps 
at each stage.) Khabaza discusses a number of examples in which the process com- 
pares favorably with standard procedures such as successive over-relaxation [8]; 
even better results might be anticipated from a more dynamic process. Again, low- 
degree processes (M ~ 3) prove most effective. 

An asymptotic convergence theorem can be based on a linearization about the 
final solution analogous to that  considered above in the perturbation method and 
these observations about the linear problem. I t  is for this reason that  the quantity 
R ~ of the extrapolation algorithm has been termed a "linearized residual." Again, 
if the process converges one might anticipate superlinear convergence. One impor- 
tant property of the superlinear secant process which this generalization retains, at 
least in some problems, is that of converting a divergent basic successive substitu- 
tion iteration into a convergent accelerated iteration. In view of the fact that 
"naturally occurring" nonlinear integral equations often do not yield a convergent, 
successive substitution iteration, this is a highly desirable property. These com- 
ments are illustrated in the next section by several highly simplified and somewhat 
atypical examples; however, similar results have been obtained in more realistic 
problems. 

One final point of some importance should be made. At each stage, we minimize 
R z over a linear subspaee; the efficacy of the procedure depends strongly on having 
the right "shaped" subspaces. Inaccurate initial iterates of the wrong "shape" will 
affect later iterates due to the "memory" built into the algorithm. Since the sub- 

l 
spaces searched are linear, the "shape" is altered only through the admixture of y 
vectors from the basic iteration. In the original integral equation problems, the 
iterates have an internal structure whose general character is known a priori, initial 
iterates of the right form are available, and the algorithm proves to be quite effec- 
tive. 

5. Examples 

The results obtained by applying various of the algorithms outlined above to three 
simple examples will now be described briefly. These results illustrate the character 
of those obtained in more complicated problems. 
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The first example is a highly degenerate, linear problem constructed for ease ~ 
evaluating variants and generalizations of the low-degree, generalized see~.t~ 
methods described above. Consider the system of N linear equations: 

with 

A z  = Db ( 5 . 1 )  

A,:i = D (i = j )  
(5.:2) 

= 1 (i # j )  

with D a free parameter. We choose b such that the solution z has ~he form 

z~ = 2/ i ,  (5 .3)  

and rewrite the equation in the form (3.2) so that the basic iteration is a Jaeobi  
iteration [8]: 

z = Hz  q- b (5 .4 )  

with 

H q  = 0 ( i  = j )  
( 5 . 5 )  

= - 1 / D  ( i ~ j ) .  

Table I contains the results of applying several of the iterative procedures out l i~ed 
above, in units of the computation involved in a single basic iteration. The eornpu,~ 
ration involved in the accderation processes themselves is ignored, since it is negll 
gible in any realistic, nonlinear problem. If the initial iterate is chosen as e (e, ~ 1 ) ,  
all iterates are confined to the two-space spanned by z and e. The dimension N is  
essentially nugatory, except in so far as the relationship between N and D d e t e r -  
mines the convergence properties of the basic iteration. For N = 20, D = 25 y i e ld s  
a convergent basic iteration and D = 15 yields a divergent basic iteration. Due t o  
the essentially two-dimensional character of this linear problem, the M = 2 extr:~:~- 
polation algorithm and the Wynn vector e-Mgorithm are exact, terminating iterati~,'e 
processes. The dynamic a=-process obtained by carrying the Wynn vector e-algo- 
rithm through one stage does not terminate. The use of a metric proportional t o  
the local residual improves the M = 1 extrapolation algorithm, but a unit me t r i c  
(w, ~- 1) is more appropriate for M > 1 and for the relaxation Mgorithm, All o f  
the acceleration processes considered are adequate to overcome the weMdy d iv e r -  
gent basic iteration for D = 15 in this linear problem. 

TABLE I 

A Igorithm 

Basic Iteration 
Extrapolation (M = 1), unit metric 
Extrapolation (M = 1), residual metric 
tl~elaxation, unit metric 
Extrapolation (M = 2), unit metric 
Wynn Dynamic as-Process 
Wynn Vector e-Algorithm 

D = 2 5  D = 1 5  

67 ~o 
7 10 
5 5 
7 7 
3 3 

10 14 
6 6 
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A v e t T  simple nonlinear example is provided by the eigenvalue problem for the 
same matrix: A z  = Xz. A conventionM basic iteration for the dominant eigenvalue 
and eigenvector of such a matrix is the power method. One forrns a sequence of 
eigenvector iterates according to 

z z+l = A z  ~ (5.6) 

and a sequence of eigenvalue iterates according to 

x ~+' = (z ~+1, z~+l)/(z '+', z~), (5.7) 

using tile conventional Euclidean inner product. This can be reformulated as follows: 
We define a nonlinear operator a and a coupled pair of iterative sequences by 

I(A;,A;)V 
v ~ = . x '  = Ix'+'} - '  Ax' = ~ ~ j A~'. (5.8) 

Since the problem is homogeneous, we normMize the iterates and define a basic 
iteration by 

x~+~ = y~/ (y~ ,  yZ) ,n .  (5.9) 

This basic iteration is just the power method written in a form suitable for the ap- 
plication of our acceleration processes. Note that  in the power method, X ~ plays no 
essential role in defining the new ( l +  1)-th iterate; consequently, an acceleration 
process like the Aitken 8Lprocess applied to the eigenvalue sequence is, perforce, a 
static transformation. On the other hand, if a vector acceleration scheme is applied 
to the eigenvector sequence we obtain a dynamic process; furthermore, we obtain 
eigenvectors which are essentially as accurate as the eigenvalues, which is not the 
case in the conventional power method. 

For the matrix A defined above, the dominant eigenvalue is D + N -  1 (D > 0) 
and the corresponding eigenvector is e. The results for D = 101, N = 20, and a 
unit metric are given in Table II,  in units of the equivalent number of basic itera- 
tions. Again this is a rather degenerate problem; the addition of the normalization 
condition restricts the iterates to a hypercircle of radius unity in the two-space 
spanned by  the initial iterate (y:/~ = 2 / i )  and the solution. Consequently the M = 1 
extrapolation algorithm is essentially equivalent to Wolfe's method, in the sense 
that  the residual R Z can be brought to zero at each stage. Tile behavior of the ac- 
celeration schemes in this example is indicative of that  to be expected in a geo- 
metrically-converging, first-order iterative process. The behavior of a component- 
by-component (or component-averaged) secant or Aitken if-acceleration would be 
comparable. The generalized if-process considered in this example is that  obtained 
from the extrapolation and/or  relaxation algorithms; note the efficacy of a fully 
dynamic approach. 

The third, somewhat more realistic, example involves the solution of two nonlin- 
ear integral equations: 

f ~ ' lx  tl 1 f ~ ( x )  3~X /~ .  1 = . d t f ( t )  cos 2 - - -  (5.10) 
1 6  1 4 4 

and 
1 

f(x) - 3 ~ / ~ f  dt f(t) cos 
1.6 1 

7 f i x - t ]  1 ~'x 
• - -  - cos - - .  (5.11) 

4 4 4 
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TABLE II 

Algorithm Iteratiom 

Basic Iteration 36 
Extrapolation (M = i) 6 
Relaxat ion 6 
Generalized ~2-Process 8 

TABLE I I I  

Eq,,atio~ (5.10) 
A Igorithm 

Basic I te ra t ion  
Ex t rapo la t ion  (M = 1) 
Relaxa t ion  
Ext rapo la t ion  (M = 2) 
W y n n  Dy n am ic  M-Process 
W y n n  Vector e-Algorithm 

j O =  I 

26 t 
6 
7 
5 

14 

o = 1 + x/z 
Equagion (5.11) f f  = 

26 
11 6 
10 6 
6 8 

18 10 
12 

Both of these equations have the solution 

~rx f(x) = cos ~ (5.12) 

and were discretized as described in Section 2. The basic successive substitution 
iteration is convergent for (5.10) but strongly divergent for (5.11). The results for 
various acceleration schemes are given in Table III, in units of the basic iteration. 
In this problem, the residual metric is ineffective, since the error is relatively uni- 
formly distributed, and the unit metric yields the same results. :First, the two equa- 
tions were run with initial iterate f0 _-- 1; then, equation (5.10) was rerun with 
initial iterate f0 = 1 + x~/2. The "shape" dependence of the acceleration schemes 
is shown very clearly; while the geometric convergence of the basic iteration is un- 
affected by the initial iterate, the acceleration schemes are affected through their 
"memory." The static Wynn vector e-algorithm cannot cope with the divergence 
of the basic iteration with (5.11), and even the dynamic ~hprocess derived from the 
vector e-algorithm is better. 

While these examples are over-simplified, the character of the results is typicM of 
that which has been encountered in more complex problems. In all experiments con- 
ducted thus far, the accelerated iteration is more rapidly convergent than the basic 
iteration. 

6. Conclusion 
A class of iterative procedures for the numerical solution of systems of nonlinear 

equations has been described. In the context of the mlmerical solution of a class of 
nonlinear integral equations, these procedures possess several advantages over other 
approaches which have been considered. As devices for accelerating the convergence 
of vector sequences, these procedures are potentially useful in a much larger context. 

RECEIVED APRIL, 1965 
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