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Iterative Procedures for Nonlinear Integral Equations

Dowarp (. ANDERsoxN

Harvard University, Cambridge, Massachusetts

._/Slbst:l'act. The numerical solution of nonlinear integral equations involves the iterative s0-
Illlt ion of finite systems of nonlinear algebraic or transcendental equations. Certaln conven-
hona_.l techniques for treating such systems are reviewed in the context of a particular class of
nonhgear equations. A procedure 18 syvnthesized to offset some of the disadvantages of these
technigues in this context; however, the procedure is not restricted to this particimr clnss of
syatems of nonlinear equations.

1. Introduction

Nonlinear integral equations have gained increasing interest in recent years, both
from an analytic and a numerical point of view; the current state of the art is re-
viewed in [1]. The present remarks stem from research in the kinetic theory of gases
inwvolving the solution of coupled sets of singular, nonlinear integral equations [2,
3, 4]. Since the methods developed for the solution of finite sets of nonlinear equa-
tions have proved useful in a number of other contexts, they are reported herve.

Tn Section 2, we describe the class of nonlinear equations of interest here. In
Section 3, we survey a number of numerical procedures which have been proposed
for the solution of such equations, illustrating their deficiencies in the problem at
hand and obtaining desiderata for a new approach. In Section 4, a class of procedures
is proposed on a heuristic basis; these are illustrated in Section 5 by & number of
sinple examples. To the extent that these procedures represent devices for acceler-
ating the convergence of iterative vector scquences, they may prove useful in a
wider context than the solution of a particular class of nonlinear integral equations

2. The Class of Nonlinear Equations

The details of the original problem can be suppressed; it is necessary only to
point out certain salient features which motivate the heuristic considerations to
follow. For concreteness, consider the problem of finding f{x) satisiying

fta) = [ de KOs e = 1) + 9t (2.1)

for a given kernel K and inhomogeneous term g(z). This analytic problem m‘u_st, be
replaced by a discrete analog, thereby reducing the problem to that of solving a
finite system of nonlinear equations. The approach followed in [3] need only be
outlined briefly: The integral operator is discretized by replacing it by an ‘m—point
Ciaussian quadrature formula, or a composite of such folrmula.s. The function f{x)
is replaced by 2 finite expansion in Chebyshev polynomials 'T,c(:c), adaptf::d to the
interval (g, b). A determinate problem is obtained by enforclr_lg the rersultmg equa-
tions at a selected set of collocation or interpolation sample points 2: . The resulting
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discrete dependent variables are the expansion coeflicients ¢, or the sample valyes
fi = f(z:). Choosing the i as the roots or extrema of an uppropriatc Chebyshey
polynomial, we can relate the ¢ and the f: through the well known discrete ortheg.
onality conditions [5]. The resulting discrete problem takes the form

kil

fi = Z w; I (:0 o Vell); | i — 4 {) + g 22

=1 =
Sinec the sets of interpolation and quadrature sample points a; and £; ave, in generg]
disjoint, it is not convenient to reformulate the problem in terms of ¢, or f; Sepa:
rately. Thus both the dual scts of unknowns and the form of the equation which
arises naturally from the discretization of the analytic problem are retained.

The original problem was discretized in parallel fashion. The following propertieg
of the corresponding equations motivate the heuristic arguments to follow and de-
fine the class of problems of interest. However, considerations which rule ouf cer-
tain approaches in this context are not operative in a general problem. The most
important consideration is the amount of computation required to evaluate f;
from {2.2) given e, i.e., a unit for the computer time involved in solving the prob-
lem. In the problems of interest, the computation time is dominated by the evalua-
tion of the kernel function K which is a eomplicated nonlinear function of its argu-
ments. Due to the nature of K, a sensible discretization requires a considerable
number of interpolation and quadrature sample points; & typical problem might
involve 50-100 quadrature points and a comparable number of discrete dependent
variables. The general shape of the solution is known a priori, so that reasonably
good initial iterates are available. Nevertheless, even on a high speed digital com-
puter like the IBM 7004, the problem is not feasible if the number of iterations
required to solve the discrete problem is comparable to the dimensionality of the
problem.

The second iImportant consideration is the “shape” of the kernel function.
K(f;jx — t]}) is singular at ¢ = ¢ and decreases as | # — ¢/ increases. Lel X be a
characteristic “width” of the kernel; the mode of convergence of any iterative
procedure for solying the equations depends strongly on A. For “large’” \ there is
strong global coupling of all f; dependent variables; for “small” A there is strong
local coupling of “adjacent” f; dependent variables, but little long range interaction.
Indeed, for small X the equation tends to become an identity for any f since the
kerne! becomes almost reproducing and the inhomogeneous term g{z) has signifi-
cant magnitude only near the boundaries # = o and x = . The basic successive
substitution iteration suggested by the form of the equations then becomes ex-
tremely ill-conditioned and slowly convergent.

The influence of these considerations on the formulation of an iterative procedure
may be seen below.

3. Survey of Conventional Iterative Pracedures
Let us focus our attention on the prototype problem
Fz=0 (3.1)

where F' is an operator on the N-vector z. For iterative solution, it is convenient
to write the equation in the form

z = Gz (3.2)
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by some judmiousv choice of the iteration operator . The problem falls naturally
mto the form (3.2), but in general one can write “

Gz =z — HFz (3.3)
ehon
for some sufficiently regular, homogeneous operator H, For the heuristic discussion

1o follow, one need not be more precise.
The hasic successive substitution iteration

41 v 1 ,
= (rz (3.4)

suggests itself quite naturally. Depending on the form of @, the components 21
ean be corrected one at a time—a local iterstion—or all at onee——a glabal iteration.
The dual nature of the discretization suggests a global approach. The convergence
of the basic iteration (3.4) is an extensively studied problem [{] which is not dis-
cussed here. In practice, in a problem of this complexity the question of the rate of
convergence (or divergence) must be answered empirically, For present purposes,
it is assumed that the basic iteration converges in the usual geometric fashion, but
{oo slowly to make the problem tractable. The question then becomes that of
modifying the basic iteration so as to accelerate the convergenee. In this paper,
consider several such procedures, drawing heavily on analogies with the relatively
well studied problems of iterative procedures for the solution of univariate non-
Jinear and multivariate linear equations, By Qceam’s Razor, we also consider the
simplest procedures that seem likely to work.

Perhaps the simplest class of iterative procedures after the basic iteration ave
those of relaxation type, in which H of equation (3.3) is chosen as a multiplicative
constant (the relaxation parameter) or a sequence of such constants. Such linear
iterative processcs have been analyzed for the univariate nonlinear case [6, 7] and
have an extensive lore in the multivariate linear case [8). Under ¢ertain conditions
it is possible to determine, either empirically or in terms of properties of ¥, an
optimum relaxation factor which maximizes the rate of convergence in some sense.
For the multivariate nonlinear case, relaxation procedures have only pragmatic
self-justification but can be exiremely ellective in some instances. In the problems
of interest, optimum relaxation factors were determined empirically but were found
to depenid strongly on the “width” of the kernel. It appears that relaxation is
useful primarily in the case of strong local coupling—an observation that is con-
sistent with the theoretical analyses which ean be carried out in the linear case.
While the relaxation device can accelerate this convergence, the process remaing a
geometrically converging first-order iteration and proves to be inadequate for the
class of problems under consideration.

To ohtain a higher-order iteration, consider choosing IT of (3.3) as the inverse
of the Jacobian matrix of F with respect to z. In this way the well-known generali-
zation of the Newton-Raphson process [9] is obtained. Due to the dual nature of
the dependent variables in the problem, it is easiest to retreat to the analytic equa-
tion, to obtain a continuous analog of the Newton-Raphson process through a per-
turbation method, and then to discretize this as above; all linearization procedures
are essentially equivalent. Symbolically, the analytic problem reads

5 = 95 (3.5)

Ii it is assumed that the error in the current iterate & is “first-order” and the
operator G is expanded, retaining only first-order terms, one can write
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The perturbation operator 8G/d is linear and plays the role of a generalized ge.
rivative of §; for the prototype problem (2.1),

b a
33 o = f dt%{; . (37)
Define a first-order residual @° by

®'= gz — 5. (38)
This defines what we mean by “first-order,” The following linear integral equation
is then obtained for the correction 8g':

ag _ 1
b = 225 &
& az & + (39)

Discretizing this equation as above, one obtains the asymptotically quadratically
CONVerging process:
art = 98 ay + ¢
9z (3.10)

Ll + Az

Tor a problem characterized by a dimensionality of order 75, the solution of the
linearized problem (3.9) is a substantial exercise in itself; one must form the per-
turbation matrix 8G/9z and then invert (I — 9G/d2). Unless one is close enough
to the solution so that the asymptotic, quadratic convergence comes into play, this
is not a very practical method for solving the problems of interest, "Though one can
economize somewhat by retaining the inverse of the “Jacobian® {I — 9G/8z) for
several iterations, thereby reducing the rate of convergence but increasing the global
efficienncy, this approach is useful only for improving accurate approximations ob-
tained by other means.

With higher-order processes, such a2s the generalized Newton-Raphson (or tan-
gent) method, eliminated, one turns naturally o methods of higher degree, seeking
to utilize the trend of recent iterates to accelerate the convergence. The simplest
candidates for generalization from the univariate case are the secant method, or
other forms of regula falsi [6], and such sequence transformations as the Aitken
5°-process and the Wynn e-algorithm [10]. From the multivariate linear case, one has
the lincar acceleration or semi-iterative methods of Varga [8] and others. In the
former case, one is faced with ambiguity as to how to carry a one-dimensional proc-
ess into NV dimensions; in the latter, one lacks the powerful tools of lincar algebra.
It is not surprising, thercfore, that there are a multitude of possibilities, with largely
heuristic origins, depending on the particular aspect one wishes to generalize. Ior
the problems of interest, we will simply point out some of the disadvantages of some
algorithms that have been proposed, and obtain thercfrom some desiderata for a
new approach.

The asymplotic convergence properties of the basic iteration (3.4) are determined
by the eigenvalues of the Jacobian matrix of & with respeet to 2 at the root, in par-
ticular the dominant eigenvalue(s). In the simplest ease of a single dominant cigen-
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value and after & sx'iita,ble number of iterations, the components of the error vector,
which tends lo lie in the direction of the dominant eigenvector, are effectively dp;
coupled, in the sense that they converge geometrically and independently. The rate
of convergence (or divergence) is determined by the magnitude of the dominant
eigenvalue in a fashion analogous to the univariate case. If enough preparatory
bagic iterations are carried out, one might hope to obtain superlinear asympmti‘c
ponvergence hy applving univariate aceeleration devices to the individual COpo-
nents z:'. Fox and Coodwin [11] consider such a process using the Aitken 5*-process.
Noble 1] considers the use of a generalized 5*-process adapted to the case in which
there is a complex conjugate paiv of dominant eigenvalues. The secant method
could also be applied; when used as an acceleration process, it is associated with the
name of Wegstein [12]. Wynn {10] considers such a component-by-component
process using the e-algorithm. However, one cannot ignore the nonlinear coupling
of the error components, and such acceleration procedures often lead to disastrous
results especially in the case of strong local coupling, The situation is not natably
improved by averaging over the components of the iterates in some fashion to ob-
tain an “effective’” geometic convergence factor. Tnthe problemsof interest, one can-
not afford to do enough preparatory iterations to decouple the components of the
ertor vector; hence component-by-component acceleration procedures are un-
suitable.

The basic direct or inverse interpolation interpretation of the univariate secant
method is easily generalized to the multivariate case. Geometrically, if linearization
along a secant line to linearization over a set of secant hyperplanes is generalized,
then direct and inverse interpolation are equivalent as in the univariate case. This
spproach (attributed to Gauss) is treated in Ostrowski [6], but the most concise
form of the algorithm is that due to Wolfe [13]. Tikewise, one can extend Jeeves’
[14] approach to the univariate secant method and approximate the derivatives in
the Jucobian matrix of the Newton-Raphson process by difference quotients [7].
Somewhat similar in spirit is the formal generalization of the Steffenson iteration
(the Aitken &*-process applied dynamically) in Henrici [15]. All of these procedures
share three disadvantages: (1) There are degeneracies which prevent the inversion
of the N X N matrices involved and make them extremely ill-conditioned when not
actually singular. (2) For N of order 75 the prospect of earrying out the inversion
is itsell a deterrent, as it was in the case of the Newton-Raphson process, even if
possible in prineiple. (3) The methods are of degree N1 or more; one simply can-
not afford to obtain enough samples from the basic iteration even to begin to ac-
celerate the convergence in this way. Thus again, this class of procedures is unsuite,-
ble for the problems of interest.

Wynn {10, 16, 17] has formally extended the e-algorithm to vector sequences
through the use of the Samuelson inverse for a vector:

=yl 2| (3.11)

Such a process couples the error components and can be used from the begiquing (?f
the iteration. Wynn has conducted a number of successful experiments W'flth this
proeess, including the iterative solution of systems of linear algebraic ec!ua.t'mns and
nonlinear equations ariging from the diseretization of integral equations. In the
author’s limited experience, the vector e-algorithm seems often to be a good tactic
but a poor strategy. To reason by analogy with the univariate case, the problem
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seems to be the “statie” character of this scquence transformation—the transformeq
iterates are not “dynamically” fed back into the iterative process. The Aitken g
process, of which the e-algorithm is a generalization, is considerably lesg etfective if
applied statically as a sequence transformation than if applied dynamically as
the Bteffenson iteration [6, 7, 15, 18]. Similarly, the Wegstein process is ofter, glo-
bally more efficient than the Steffenson iteration, to which it reduces by apph’ing
the acceleration only at every other step of the basie iteration. The dynamie feed.
buck offsets the lower order of convergence. The vector e-algorithm shares with the
procedures to be deseribed below the property of being useful in some problems ang
niot in others, for reasons which are not apparent a priori,

In summary, a dynamic, low-degree, coupled iterative process is desived whigy,
accelerates the convergenee of the basie iteration. In subsequent sections, a clasg of
such processes is suggested on a heuristie basis. The basic idea is very si niple and
has many analogies with other deviees which have been considered, but the closest
dircet analogy the author has discovered in the literature is a somewhat similyr
device for the linear case due to Khabaza [19]. In onc variant or another, the pro.
cedure has proved useful in the problems outlined above, and in a number of other
problems involving the iterative solution of finite sets of linear and nonlinear equa-
tions arising from integral, ordinary and partial differential equations. For eigen.-
value problems, the device can be combined with the power method to some advan-
tage. Experiments have been carried out with a large number of variants, but only
the most useful are recorded here. No global convergence theorem seems likely
though hints as to an asymptotic analysis are available. In any case, it is casy to
find out empirically in any given problem whether or not this is a useful approach.

4. Low-Degree Generalized Secant Methods

A spectrum of ideas is involved here; we consider first a specific algorithm and
then indicate how variants and generalizations can be obtained, The first algorithm
was originally obtained by generalizing the univariate sccant method (regula falsi)
geomelrically. Though it is most straightforward to proceed algebraically, it is, hovw-
ever, useful to note the geometric interpretation. Rather than generalizing the
secant line through two sample points to a set of N sceant hyperplanes through
N1 points—which yields Wolfe's method—we consider a hyperline through two
sample points. This yields a dynamie, coupled, second-degree method. A hyperline
does not in general intersect the subspace defining the solution—the analog of the
line y = 0 or y = x, depending on whether the univariate equation #(z) = Qor
& = f(x} are being considered. Consequently, the algorithm chooses that point on
the hyperline which ig in some sense “closest” to this subspace.

Begin with a bagic iteration

zl-{-l - GZZ, (4'1)
and define a coupled pair of iterative sequences z' and y' related by
¥t = G (4.2)

I? is sought to define z™™ as a function of y*, z’, v and 2 g0 thal the sequences
z" and y* converge more rapidly than the basic sequence z', We define z*'" as 2
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finear, parameterized form in previous iterstes, define a quadratic residual, and ob-
* . _— . v T H “ N 3 . ’ . -‘ = ' )
tain the free parameters by minimaing this residual. Define g residual veetor + by
i

o= 'yl - ;1;!, (13)

Define the inner product of two N-vectors u aud » by

N
(,2) = > wwar, (4.4)
] i
where the weights w: are positive. In some cases, it is comvenient to generalize (4.4)
in the usual way to include a nondiagonal, positive-definite metric and ‘or complex
vector components. Define '

P -
u =a 4 ¢ - ah,

(4.5
v =y T - Y, o
and
B = 3t~ et — ), (4.6}
Choose the free parameter 6° so as to minimize the linearized residual R'; this vields
k' _ 1
s = = ) =0 (4.7)
Hence
A G Y e ] (#8)
Define
2=yl 4 B - D) (8" > 0)., (49

We refer to the algorithm so defined as the extrapolation algorithm. Usually the
choice 8 = 1 is most appropriate; the choice 8 = 0 is excluded for reasons to be
discussed below. The extrapolation algorithm resembles, in some respects, various
search or descent methods for root finding [18}; indeed, a “least-squares solution”
can be found if no true solution z exists, As in such methods, it is often useful to
“under-relax” the iteration by choosing 0 < 8 < 1, but the optimum 8* must be
determined empirically.

The extrapolation algorithm reduces to the univariate secant method for N' = 1;
it is interesting to note that it ean be obtained formally from the secant methoed by
introducing the Samuelson inverse of (3.11). Since the vector algebra using inner
products and the Samuelson inverse is not associative, an alternate algorithm can
be formally obtained in the same way. We refer to this alternate algorithm as the
relazation algorithm, since it corresponds to defining a relaxation parameter dy-
namically, but we prefer to approach it algebraically as follows. Define

1 [ i1
wu =y T, (4.10)

and
f’él - %(ﬂ! . aly l-)' — ,ﬁ}). (411)
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%%; = - E = @) = 0. (4.12)
Hence
nl _ (yl _ yt z’ ot 1)/(?.1 — 1, Pl Ty (4.13)
Then define
2 = (4.14)

in this “cross-sequence” interpolation, no additional averaging seems appropriate.

Just as one can obtain the Aitken §*-process, applied dynamically as the Steffen.
son iteration, in the univariate case by applying the secant method alternately with
basic iteration steps, one can also obtain a generalized 6°-process in the same fashion,
The relaxation and extrapolation (8° = 1) algorithms are identical when applied
in this fashion and yield a single generalized §’-process. This process is distinet from
the generalized &°-process abtained by earrying the Wynn vector e-algorithm through
one stage. However, as in the univariate case, it i8 usually a more effective sirategy
to accelerate at each step with the secant process rather than to use a generalized
8"-process,

Variants of these algorithms can be obtained in many ways; two classes of variants
have proved of particular interest. The first class concerns the choice of the metric
of the inner product defining the “lincarized residual” B'. Usually, it is advantageous
to define the residual in a relative sense by choosing w; inversely proportional to
some measure of the Jocal “size” of the solution vector—either a priori or dy-
namically as the iteration proceeds. This is of particular significance when solving
coupled sets of integral equations where one lumpse subvectors of somewhat dif-
ferent character together to form an iteration veetor. Alternately, one can accelerate
the subvectors individually, ignoring the coupling between them; when applied to
subvectors of dimension one, the process degenerates to the eomponent-by-compo-
nent acceleration processes discussed above. In multidimensional probletns where an
array of dependent variables is reduced to a vector iterate, an “‘alternating divec-
tion” [8] redefinition of the subvectors to be aceelerated at consecutive iterations
seems useful. A variant which is sometimes useful with the extrapolation algorithim,
but not the relaxation algorithm, is the choice of a metrie proportional to the local
residual ', Attention is thereby focussed on the ‘‘worst”’ components at each stage,

The extrapolation algorithm can easily be generalized, but it does not seem useful
to extend the relaxation algorithm in similar fashion due to its “cross-sequence”
character. The extrapolation algorithm was obtained above by minimizing a certain
linearized residual over a hyperline; higher degree methods are obtained by mini-
mizing over linear subspaces of higher dimension. Define

M
W =g+ 20" - Y,
- (4.15)

I

M

Fm b 0 - g,
=

and

R' = 30" — ! ot — ). (4.16)
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l - . . 3 .
Choose £; 0 as to minimize R'; (his yvields
P o
ak - {,‘.l-i b ! .
aa,! X P - u) = (), {-1—17}
Hence
M
VLI S AT o Ay Ul —i .
:; tr LI PO = (ot — T (4.18)

ford = 1,2 -+, M. Again 2™ is defined by (4.9),

Provided that the vectors ' ure linearily independent, the residual R ean be
brought to zero for M = N; in this case, the extrapolation algorithun becomes 4
variant of Wolte’s method. However, the extrapolation algorithra is dynamie,
coupled and can be used from the begiuning of the iteration; the degree can be al-
lowed to increase up to N1 as the iteration proceeds. In practice, the low-degres
cases with M = 1, 2, - - - are the most useful, and it seems best to limit M to about
5. By analogy with higher-degree, multipoint iterative processes in the univariate
case, one might say that the power of an iterative method increases slowly with
degree for M > 3 since the “carly,” poor approximations are not samples of signifi-
cant information content for the high-degree methods which retain theny, Tt is of
interest to consider the relationship between the present algorithm and Wolfe's
method in the light of Tornheim’s convergence theavem for the latter [20]. Sinee R
is brought to zero at each stage, Wolfe’s method converges supertinearily—if it con-
verges, The Wolfe process fails to converge if the set of previous iterates fails to
span the space containing the solution—the linear equations involved become
singular. Furthermore, as the iteration proceeds, the iterates must tend to become
more and more alike, the degeneracy becomes more and more of a problem, and the
lincar system becomes extremely ill-conditioned, if not actually singular. The low-
degrec cxtrapolation algorithm can be regarded as o device to alleviate this difficuity,
at least in part, since the degree of ill-conditioning and potentiality for degeneracy
is at least proportional to the degree of the iterative process. T'or the samme reason,
the restriction 8° > 0 in the extrapolation algorithm is required in order that the
new iterate ! not become trapped in the subspace spanned by the previous z’
iterates; the admixture of y* iteratss as each stage introduces “new dimensions”’ for
the subspace to be searched. The potentiality for degeneracy is not, however, elimi-
nated in the extrapolation algorithm, only reduced. Especially near the end of the
iteration; the linear system of dimension M will become ill-conditioned or even
singular. It is convenient to make the convention that M will be automatically de-
ereased to suppress redundant previous iterates until the degeneracy of the linear
system is lifted. This can be accomplished in the routine used to solve the systen:
of M linear equations. The matrix of coefficients is positive definite if there 1% no
redundancy. One needs simply to redefine M as the dimension of the largest positive-
definite upper left prineipal minor in the case of redundancy. Not only do the veetors
»"* — r'tend to become linearily dependent, but they also tend individually to zero;
at some point, there will not be enough significant figures left in these residuals to
define 9,-‘, and the linear aceeleration method coases to be useful, At this stage, a
Newton-Raphson iteration with the inverse of the Jacobian matrix evaluated only
onee can he used to great advantage.

If the system of N equations considered happens to be Linear, Wolfe’s methrﬁ
converges immediately, if it converges. The low-degree extrapolation algorithm will
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in general require several iterations—typically less than & for any practical con-
vergence criterion and reasonable first flerate. 1t is easy to verify that, in this case,
the linearized residual £ is an actual residual for the problem-—the residual vector
corresponding to a linear combinution of iterates is the corresponding linear ecomhi-
nation of tho individual residual vectors. If the basic iteration converges, 1t appears
that R’ decreases monotonically to zero; the accelerated iteralion converges at least
as rapidly and in general more rapidly than the basic iteration, If the basic itoration
diverges, R does not necessarily converge wonotonically to zero, but with a good
cnough initial iterate convergence is possible, indeed probable.

Khabaza [19] has considered an iterative procedure for the solution of large, sparse
systemns of linear equations based on the idea of determining al each stage a “leasi-
squares, matrix polynomial approximation” fo the inverse matrix. It can easily be
shown, with suitable redefinition of terminology, that this procedure is eyuivalent
to carrying out M steps of a Jacobi basie iteration [8], and then applying the ex-
trapolation algorithm to the resulting “samples™ —with 8" = 0, (This choice of §'is
acceplable here since “fresh samples” are obtained from the 24 basic iteration steps
at each stage.) Khabaza discusses a number of examples in which the process com-
pares [avorably with standard procedures such as successive over-relaxation [§;
even better results might be anticipated from a more dynamic process. Again, low-
degree processes (M ~ 3) prove most effective.

An asymptotic convergence theorem can be based on a linearization about the
final solution analogous to that considered above in the perturbation method and
these observations about the linear problem, It is for this reason that the quantity
R? of the extrapolation algorithm has been termed a “linearized residual.” Again,
if the proeess converges one might anticipate superlincar eonvergence. One impor-
tant property of the superlinear secant process which this generalization retains, at
least in some problems, is that of converting a divergent basic successive substitu-
tion iteration into a convergent accelerated iteration. In view of the fact that
“naturally oecurring” nonlinear integral equations often do not yield a convergent
successive substitution iteration, this is a highly desirable property. These com-
ments are 1llustrated in the next section by several highly simplified and somewhat
atypical examples; however, similar results have been obtained in more realistic
problems,

One final point of some importance should be made. At each stage, we minimize
R' over a linear subspace; the efficacy of the procedure depends strongly on having
the right “‘shaped” subspaces. Inaccurate initial iterates of the wrong “shape” will
affect later iterates due to the “memory” built into the algorithm. Since the Sub
spaces searched are linear, the “shape” is altered only through the admixture of y'
vectors from the basic iteration. In the original integral equation problems, the
iterates have an internal structure whose general character is known a priori, initial
iterates of the right form are available, and the algorithm proves to be quite effec-
tive.

5. Examples

The resulls obtained by applying various of the algorithms outlined above to three
simple examples will now be described briefly. These results illustrate the character
of those obtained in more complicated problems.
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5 A I iy

The i_irsr, exaTnple is a highly dggenemte, linear problem constructed for ease

gvalualing vartants and generalizations of the low-degree, general
methods deseribed above. Consider the system of ¥ linear equations:

in
ized seewnpt

Az = Db {51y
with
Ay =11 (i=4)
1 G §) (.29

with [ a free parameler. We choose b such that the solution z has the form

7 = 2/1, (537

and rewrite the equation in the form (3.2) so that the basic iteration is a Jacohbi
iteration [8]:

S
i

Hz -+ b (5,43
with
Hi=0 (=7
= —1/D (1 5 j).

Table 1 contains the results of applying several of the iterative procedures outlined
above, In units of the computation involved in 4 single basic iteration. The compu -
tation involved in the aceeleration processes themselves is ignored, since it is negli-
gible in any realistic, nonlinear problem. If the initial iterate is chosen ase (e: = 17,
all iterates are confined to the two-space spanned by z and e, The dimension & is
essentially nugatory, except in so far as the relationship between N and D deter-
mines the convergence properties of the basic iteration. For N = 20, D = 25 yields
& convergent basic tleration and D = 15 yields a divergent basic iteration. Due tao
the essentially two-dimensional character of this linear problem, the M = 2 extra-
polation algorithm and the Wynun vector e-algorithm are exact, terminating iterative
processes. The dynamic 8 -process obtained by carrying the Wynn vector e-algo-
rithm through one stage does not terminate. The use of a metric proportionsl to
the Jocal residual improves the M = 1 extrapolation algorithm, but & unit metric
(w: = 1) is more appropriate for M > 1 and for the relaxation algorithm. All of
the acceleration processes considered are adequale to overcome the weakly diver-
gent basic iteration for I} = 15 in this linear problem,

TABLE I B
Algorithm D=2 D =I5
Basic Iteration 67 o
Extrapolation (M = 1), unit metric 7 10
Extrapolation (M = 1), resldus} metric 5 ]
Relaxation, unit metric 7 7
Extrapolation (M = 2), unit metric 3 8
Wynn Dynamiec §%-Process 10 14
Wynn Vector «-Algorithm 6 6 »
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A very simple gonlincar example is provided by the eigenvalue problem for {he
same matrix: Az = hz. A conventional basic iteration for the dominant eigenvalye
and eigenvector of such a matrix is the power method. One forms a scquence of
eigenvector iterates according to

1-+1 1 ~
2" = Az (5.6
and a sequence of eigenvalue iverates according to
i+1 Pl IR IR .
AT = (T, B, (5.7)

using the conventional Fuclidean inner product. This can be reformulated as follows;
We define a nonlinear operator « and a coupled pair of iterative sequences by
1A 11 -1
? ! IR (Ag’, Az’) : .

P \ Az’ = (2207700 Agt 3.

¥ @ i ' { (Ac, 70 (38)
Sinee the problem is homogeneous, we normalize the iterates and define a basic
iteration by

2 =yt y (5.9)

This basic iteration is just the power method written in a form suitable for the ap-
plication of our acceleration processes. Note that in the power method, A’ plays no
essenlial role in defining the new (l-4-1)-th iterate; consequently, an acceleration
process like the Aitken 8"-process applied to the cigenvalue sequence is, perforce, a
stalic transformation. On the other hand, if a vector aceeleration scheme is applied
{0 the eigenvector sequence we obtain & dynamic process; furthermore, we obtain
eigenvectors which are essentially as necurate as the eigenvalues, which is not the
case in the conventional power moethod.

For the matrix A defined above, the dominant cigenvalueis D + N—1 (D > ()
and the corresponding eigenvector is e. The results for D = 101, N = 20, and a
unit metric are given in Table I1, in units of the equivalent number of basic itera-
tions. Again this is a rather degenerate problem; the addition of the normalization
condition restricts the iterates to a hypercirele of radius unity in the two-space
spanned by the initial iterate (47" = 2/7) and the solution. Consequently the 3 = 1
extrapolation algorithm is essentially equivalent to Wolfe’s method, in the sense
that the residual B can be brought to zero at each stage. The bebavior of the ac-
celeration schemes in this example is indicative of that fo be expected in a geo-
metrically-converging, first-order iterative process. The behavior of a component-
by-component {(or component-averaged) secant or Aitken §°-acceleration would be
comparable. The generalized 8°-process considered in this example is that obtained
from the extrapolation and/or relaxation algorithms; note the efficacy of a fully
dynamic approach.

The third, somewhat more realistic, example involves the solution of two nonlin-
ear integral equations:

£ = P2 gy o Tl L (5.10)
and
flz) = 3—\]/??2 f_l dit *(t) cos Tr—i—i—_—t—! - 41 cos %—I (5.11)
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e TABLE 1L
Algorithm | Fterafinns o

BELSic lteration % 36

Extrapolation (M = 1) l 6

Relaxation ‘ 6

Generalized §2-Process | 8

e £
TABLE 111
. Eguation (3,10}
Algorithn Eguation (3.1 /* = {
SO st 0=t w2
Basic Iteration 26 2% w
Tixtrapolation (M = 1) (] 11 6
TRelaxation 7 10 6
Extrapolation (M = 2) 5 ] 8
Wynn Dynamic §-Process 14 18 10
Wynn Vector e-Algorithm 8 12 ®
Both of these equations have the solution
T
flx) = eos = (5.12)

4

and were diseretized as described in Section 2. The basic successive substitution
fteration is convergent for (5.10) but strongly divergent for (5.11). The results for
various acceleration schemes are given in Table 111, in units of the basie iteration.
In this problem, the residual metric is ineffective, since the error is relatively uni-
formly distributed, and the unit metric yields the same results. First, the two equa-
tions were run with initial iterate £i° = 1; then, equation (5.10) was rerun with
initial iterate f." = 1 + z./2. The “shape” dependence of the acceleration schemes
is shown very clearly; while the geometric convergence of the basic iteration is un-
affected by the initial iterate, the acceleration schemes are affected through their
“memory.” The static Wynn veetor e-algorithm cannot cope with the divergence
of the basic iteration with (5.11), and even the dynamie 5'-process derived from the
vector e-algorithm is better.

While these examples are over-simplified, the character of the results is typical of
that which has been encountered in more complex problems. In all experiments con-
ducted thus far, the accelerated iteration iz more rapidly convergent than the basic
iteration.

6. Conclusion

A class of iterative procedures for the numerical solution of systerns of nonlinear
equations has been described. In the context of the numerical solution of a class of
nonlinear integral equations, these procedures possess several advantages over other
approaches which have been considered. As devices for accelerating the convergence
of vector sequences, these procedures are potentially useful in & much larger context,

Receivep Aprin, 1965
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