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ABSTRACT
Bitcoins and Blockchain technologies are attracting the attention

of different scientific communities. In addition, their widespread

industrial applications and the continuous introduction of cryp-

tocurrencies are also stimulating the attention of the public opinion.

The underlying structure of these technologies constitutes one of

their core concepts. In particular, they are based on peer-to-peer

networks. Accordingly, all nodes lie at the same level, so that there

is no place for privileged actors as, for instance, banking institu-

tions in classical financial networks. In this work, we perform a

preliminary investigation on two kinds of network, i.e. the Bitcoin

network and the Bitcoin Cash network. Notably, we analyze their

global structure and we try to evaluate if they are provided with a

small-world behavior. Results suggest that the principle known as

’fittest-gets-richer’, combined with a continuous increasing of con-

nections, might constitute the mechanism leading these networks

to reach their current structure. Moreover, further observations

open the way to new investigations into this direction.
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1 INTRODUCTION
Nowadays, a number of services and platforms are based on dis-

tributed networks. In particular, one of the major benefits of dis-

tributed networks is given by the partition of a computational

workload among multiple nodes, so that each one can perform an

autonomous processing. As result, at a global level, a distributed

network allows to implement the so-called ’parallel computing’ [1].

When this kind of network is not controlled by a (or a few) central

unit (e.g. a node that coordinates the whole system, or a part of the

network), it can be also defined as ’decentralized’. Blockchain is

a modern technology, described for the first time in [2], that can

be briefly defined as a decentralized and distributed ledger. The

latter contains records of transactions and implements different

functionalities mostly based on the modern cryptography. In the
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last years, this technology is finding application in several indus-

trial sectors [3], spanning from finance to healthcare, thus having

an impact at different societal levels. In this context, bitcoins are

exchanged among users and the transactions are recorded in the

Blockchain. In addition, as observed during last months, bitcoins

are exponentially increasing their value, and a number of new cryp-

tocurrencies is continuously generated [4]. The absence of a central

control unit (e.g. a Banking Institution) appears to be one of the

major and most notable results of Blockchain but, at the same time,

can constitute a motivation of concern and skepticism for those

who do not understand the underlying mechanism. Since this tech-

nology is strictly based on a networked system, as older sharing

platforms (e.g. those commonly used for file sharing), it is worth

to investigate the related topological properties. Notably, a global

topological view allows both to obtain a deeper knowledge on the

structure, and to evaluate the dynamics of stochastic processes, as

spreading and percolation, that can be of interest for new applica-

tions, security reasons, and so on. Therefore, in this work, we aim

to analyze the structure of these networks, with a focus on Bitcoin

and Bitcoin Cash. Notably, the latter results from the former, and

constitutes a new cryptocurrency (available in the market from

August 2017). Our results indicate that these two networks share

some topological similarities, and that some generative models as

’preferential attachment’ [5] or ’fittest-gets-richer’ [6, 7] might be

adopted for representing their evolution. In particular, even if both

networks are ’peer-to-peer’, parameters like the ’fitness’ can be

useful for discriminating nodes, e.g. from those provided with high

computational resources to those with low power (e.g. Raspberry

pi). The remainder the paper is organized as follows: Section 2

briefly summarizes the dynamics of the Bitcoin Network. Section 3

introduces some concepts of complex network analysis and illus-

trates two generative models that might be useful for the considered

systems. Section 4 shows results of the numerical investigations.

Finally, 5 ends the paper.

2 THE BITCOIN NETWORK
In this section, we provide a very brief introduction to the Bitcoin

Network [8]. In particular, we aim to link the basic mechanisms of

this network, without to consider all the local processes that occur

during a single transaction, with the emergence of a connectivity

pattern in the real dataset (below described) we consider in this

analysis. In few words, the Bitcoin Network represents the set of

nodes running the bitcoin P2P protocol. Here, each node can have

a specific role depending on its functionality, e.g. routing, mining,

Blockchain database and so on. Usually, a node that performs all

these functions is defined as ’full node’. All nodes play as router in
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order to simplify spreading processes over the network. Full nodes

can verify any transaction without asking for external references.

Mining nodes take part to a kind of ’competition’ for solving the

proof-of-work algorithm. Notably, this kind of nodes can also cluster

together, forming ’mining pools’, in order to increase their success

probability (i.e. in the mentioned competition). Now, when a new

node joins the network, it has to generate connections with some of

the pre-existing nodes. In particular, the new node has to discover

at least one node in the network. This process is completely random,

i.e. the new node connects with a pre-existing one randomly chosen.

It is worth to remark that the Client used to join the network

contains the list of some nodes (i.e. seed nodes). However the first

nodes to consider for generating the new connections can be also

those connected to seed nodes. Finally, in order to be connected

with the network in a reliable way, the new node generates a few

connections, forming then different paths. Notably, while one single

connection might be too little for ensuring reliability, usually nodes

need only few neighbors, saving network resources.

3 NETWORK ANALYSIS
As stated before, in this context we are dealing with a networked

system. Thus, the modern mathematical framework that allows to

analyze this kind of systems is the Theory of Complex Networks [9].

Due to its relevance and ubiquity in a number of fields, we pro-

vide a quick introduction. Notably, we focus on global properties

for characterizing the structure of a network and on few genera-

tive mechanisms that can be of interest for studying the Bitcoin

Network. Let us begin introducing simple concepts. A complex net-

work is a graph characterized by non-trivial topological features.

In more general terms, a graph is a mathematical entity that allows

to represent relations among a collection of objects. More formally,

a graphG is described asG = (N ,E), with N set of nodes and E set

of edges (or links). Nodes are the main elements of a system and

can be described by a label. On the other hand, the edges represent

connections among nodes and canmap specific relations, e.g. friend-

ship in a social network, correlations in EEG networks, direct links

among websites in the WEB, and so on and so forth. A graph can

be ‘directed’ or ‘undirected’, i.e. we can have symmetrical relations

among nodes or not. A simple line between two nodes represents

an ’undirected edge’, for instance to represent symmetric relations

like friendship. Instead, in the second case, an arrow can represent

a ’directed edge’, for instance the link between two websites. In

addition, a graph can be ‘weighted’ or ‘unweighted’. Notably, if a

numerical value is associated to edges, for example because the

related relations can be somehow weighted (e.g. representing an in-

tensity), the graph is weighted. For instance, considering an airline

network where the airports are mapped to nodes and the routes

to edges, weights can be computed according to the geographical

distance between pairs of airports. The whole set of edges, of a N
nodes graph, is collected in a N × N matrix, defined ‘adjacency

matrix’. Undirected graphs have a symmetric adjacency matrix, and

unweighted graphs are represented by a binary adjacency matrix.

In particular, the adjacency matrix A of an unweighted graph is

composed by the elements:

ai j =

{
1 if ei j is defined

0 if ei j is not defined
(1)

Instead, a weighted graph is represented by a real matrix. Now,

we present with more details some global properties, of a general

network, that can be computed by analyzing the adjacency matrix,

i.e. the degree distribution, the clustering coefficient, and the path

length.

3.1 Degree distribution
Nodes of a graph can have many connections (i.e. many edges).

Usually, the number of connections of a node is called degree, and

it is denoted as k . An important property widely used to asses the

structure of a network is the degree distribution P(k) [5]. The latter
represents the probability that a randomly selected node has the

degree equal to k , i.e. connected with k nodes. Remarkably, the

degree distribution uncovers a number of information related to

a network. In addition, there are classes of random networks, as

Erdös-Renyi graphs and Scale-free networks, whose structure is

well described in their degree distribution. Early approaches to

(complex) random networks have been developed by Paul Erdös

and Alfred Renyi [10]. Notably, they defined a famous model known

as Erdös-Renyi graph, or simply E-R graph. The latter considers

a graph with N nodes and a probability p to generate each edge,

so that there are around p · N (N−1)
2

edges, resulting in a binomial

degree distribution:

P(k) =
(
N − 1

k

)
pk (1 − p)n−1−k (2)

now, ifN → inf andNp = const , this degree distribution converges
to a Poissonian distribution:

P(k) ∼ e−pN · (pN )k
k!

(3)

While this model represents an early attempt to describe real sys-

tems, a more advanced has been proposed by Albert and Barabasi,

i.e. the BA model [5] that focuses on scale-free networks. This class

of networks is characterized by a P(k) that follows a power-law
function as:

P(k) ∼ c · k−γ (4)

with c normalizing constant and γ parameter of the distribution

known as scaling parameter. In this class of networks, few nodes

(called hubs) have many connections (i.e. a high degree), while the

majority of nodes only few. The BA model considers N nodes and a

second parameter, usually defined asm, representing the minimum

number of edges per node. In the thermodynamic limit, the BA

model leads the network to be fitted by a power-law function with

scaling parameter γ = 3, and to an average degree equal to 2m. Two

main generative mechanisms allow to implement the BA model:

the first-mover-wins and the fittest gets richer.

First-mover-wins
The first-mover-wins constitutes the basic mechanism of the BA

model. It can be summarized as follows:

(1) Define N number of nodes andm minimum number of edges

for each node
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(2) Add a new node and link it with otherm pre-exisisting nodes.

Pre-existing nodes are selected according to the following

equation:

Π(ki ) =
ki∑
j kj

(5)

with Π(ki ) probability that the new node generates a link

with the i-th node having a ki degree.

This mechanism is not able to capture any difference among nodes.

Fittest gets richer
Bianconi and Barabasi [6] proposed a variation to the previous

mechanism by introducing a fitness parameter η. Here, the fitness
parameter represents the ability of a node to compete for new links.

In particular, the degree of the i-th node is proportional to:

Πi =
ηiki∑
j ηjkj

(6)

with ki degree of the ith node. Notably, new nodes tend to link with

pre-existing nodes having high values of (η,k). Therefore, even
new nodes can reach a high degree if provided with a good fitness.

3.2 Clustering Coefficient
The clustering coefficient [5] allows to assess if nodes tend to cluster

together. This phenomenon is common in many real networks as

social networks, where it is possible to observe the emergence of

circles of friends where people know each other. The clustering

coefficient can be computed as:

C =
3 ×Tn

Tp
(7)

Tn is the number of triangles in the network and Tp is the number

of connected triples of nodes. A connected triple is a single node

with edges running to an unordered pair of others. The value of

C lies in the range 0 ≤ C ≤ 1. A further way to compute this

parameter has been proposed by Watts and Strogatz [11], focusing

on this quantity at a local level, i.e. computing the value

Ci =
Tni
Tpi

(8)

with Tni number of triangles connected to node i and Tpi number

of triples centered on node i . In this case, the local C of nodes with

a degree equal to 0 or 1 is set to 0. In doing so, the global clustering

coefficient of a network can be computed as

C =
1

n

∑
i
Ci (9)

This parameter allows to measure the density of triangles in a

network, and can be computed both in directed and undirected

networks.

Path Length
The distance between two nodes, belonging to the same network,

can be computed considering the edges (and their weights inweighted

networks) generating the path between them. A geodesic corre-

sponds to the minimum path between two nodes, while a distance

becomes infinite when there are no paths between them. The Di-

jkstra’s algorithm [12] and the Floyd-Warshall algorithm [13] are

Figure 1: Pictorial representation of the Bitcoin Cash Net-
work related to the month of August 2017. A giant core
strongly connected clearly emerges. Each link should be rep-
resent by an arrow, since our dataset represents a directed
network, however here they are drawn as simple lines.

two classical algorithms for computing this parameter, however

often the utilization of heuristics might be useful since this task

can be computationally very expensive. Eventually, it is worth to

highlight that the average shortest path length provides a first clue

for assessing if a network is small-world [11]. Notably, ’small-world’

networks have an average distance L between pairs of nodes that

scales with the size of the network, i.e. L ∝ lnN .

4 RESULTS
In this section, we describe results of our preliminary investigations

on two kinds of networks, i.e. Bitcoin network and Bitcoin Cash

network (see a pictorial representation in fig. 1).

Dataset and Methodology
The dataset related to Bitcoin network contains 7025 nodes and

refers to the month of April 2016, while those related to Bitcoin

Cash refer to August and December 2017, and contain 963 and 1454

nodes, respectively. The datasets used in this investigation refers to

a subset of the related real networks. In particular, data have been

obtained by using a cluster of machines connected to the Bitcoin

(and Bitcoin Cash) network. Some of these nodes act as miners,

while others perform only simple functions (e.g. routing).

The resulting cluster is able to obtain information about a large

amount of other nodes according to the mechanism previously

described (see Section 2), i.e. when a new node joins the network,

it gets connected with some pre-existing nodes. Here, the commu-

nication protocol allows nodes to share the address of first order

(i.e. nearest) neighbors and second order neighbors (i.e. friends of

friends), then supporting the generation of new connections. There-

fore, this mechanism has been exploited for achieving topological

information and generating our datasets. So, while obviously the

whole real networks are bigger than ours, we deem that the ana-

lyzed data provide a good description of the general behavior of

the whole network.
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Figure 2: Out-degree distributions P(kout ). From top to bot-
tom: Bitcoin network on April 2016, Bitcoin Cash network
on August 2017, and Bitcoin Cash Network on December
2017. As reported in the legend, red stars represent real data,
green squares represent binned samples, and the black lines
represent the power-law fitting curves.

Analysis
According to their dynamics, these networks are directed, i.e. nodes

are connected by links that can be represented as arrows. As prelim-

inary analysis, we focus on the degree distribution. In particular, the

out-degree distribution representing that of arrows leaving a node,

and the in-degree distribution representing the distribution of ar-

rows reaching a node. Results related to the out-degree distribution

(i.e. P(kout )) of the two Bitcoin Cash networks are shown in fig. 2,

while the in-degree (i.e. P(kin )) of the same networks are shown

in fig. 3. In general, we found that few nodes have a minimum in-

degree or out-degree equal to zero. So, we decided to remove them

from the analysis, considering a minimum degree (for both cases)

equal to 1. Considering the resulting out-degree distributions, we

hypothesized that they might be fitted by a power-law equation.

Therefore, we computed the related scaling parameters (i.e. γout ).
As widely discussed in [14], when the minimum degree is kmin = 1,

the computing of scaling parameters requires particular attention

Figure 3: In-degree distributions P(kin ). From top to bottom:
Bitcoin network on April 2016, Bitcoin Cash network on Au-
gust 2017, and Bitcoin Cash Network on December 2017.

(see also [15]). Notably, a possible approach is based on the max-

imum likelihood estimator (MLE), that requires to find the value

of γ (in our case γout , since it refers to the out-degree distribution)

that satisfies the following equation:

Ûζ (γ )
ζ (γ ) =

1

n

n∑
i=1

log(ki ) (10)

with ζ Riemann Zeta function and
Ûζ its derivative. Some numerical

values of the ratio

Ûζ (γ )
ζ (γ ) are available in [16]. Following this method,

we achieved for all three networks values of γout smaller than 1

(see Table 4). These results indicate that both kinds of network

(i.e. Bitcoin and Bitcoin Cash) have an out-degree distribution that

might be fitted by a power-law, however further analyses for the

goodness-of-fit are required. Instead, the in-degree distributions

seem to be more homogeneous, since in general all nodes have

a similar in-degree. Then, we analyze the average clustering co-

efficient (i.e. C) and the average shortest path length (i.e. SPL) of
the three networks. These two parameters have been computed

using the Python library NetworkX [17]. Table 4 reports the related

numerical values.
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Network Parameters

Network N γout C SPL

BC Apr 2016 7025 0.76 0.486 1.816

BCH Aug 2017 963 0.72 0.576 1.7267

BCH Dec 2017 1454 0.74 0.544 1.7605

It is worth to highlight that all networks seem to be provided with a

small-world behavior, since their SPL is smaller than the logarithm

of their size (i.e. N ).

5 DISCUSSION AND CONCLUSION
In this work, we perform a preliminary analysis of a real Bitcoin

Network and two Bitcoin Cash networks. Our aim is both analyz-

ing their connectivity pattern and trying to understand ’how’ their

structure evolved. In order to reach this goal, we need to remind

how a Bitcoin network works, as described in Section 2. In par-

ticular, as we know, since in principle all nodes have to store the

whole ’ledger’ of transactions, the in-degree distribution, i.e. the

information received, must be more or less uniform (remarkably an

homogeneous distribution actually characterizes their structure).

On the other hand, since storing connections requires resources (e.g.

memory), in general most nodes remain connected to few neighbors.

At the same time, powerful nodes can store more node connections

than others. Thus, considering the generative mechanisms before

described, i.e. ’fittest-gets-richer’ and ’first-mover-wins’, we think

that the former might be more suitable for modeling the evolution

of the out-degree distribution. In particular, the fitness can be re-

lated to the computational power of nodes, i.e. the higher the fitness

the higher the availability of resources (and then the out-degree). In

addition, even in the light of the increasing amount of Raspberry Pi,

appearing in the network, we suggest that a ’fitness based’ model

can be effective in describing the dynamics of the Bitcoin network

and the Bitcoin Cash network. Moreover, since the structure of

the networks (considering their out-degree distribution), seems

very similar to that of scale-free networks, we have a first clue

that they can be ’small-world’ [11]. Here, a small-world behavior

would be essential for the reliability of these networks. Therefore,

we analyzed two important parameters, i.e. the average clustering

coefficient and the average shortest path length. While the latter

suggests that all these three networks are ’small-world’, the former

can be used also for future investigations. Notably, we aim to com-

pare the average clustering coefficient with that achieved in an E-R

network generated with the same number of nodes and having a

similar number or edges (this result can be achieved by setting an

opportune value for the parameter related to the edge probability

before described). In particular, this analysis might constitute a

further proof, combined with the average shortest path length, of

the small-world behavior of a network. Finally, it is important to

observe that beyond the difference in the size (i.e. in the amount of

nodes), the Bitcoin network and the two Bitcoin Cash networks ap-

pear very similar. In general, that difference can be expected, being

the Bitcoin Cash network recently proposed. To conclude, beyond

the further analyses above mentioned, as for future work we deem

relevant to investigate also the evolution of stochastic processes on

these structures. In particular, analyzing spreading phenomena and

percolation, can be useful for a better understanding on how these

modern technologies behave sharing data and information.
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