
A Compact and Fast Hybrid Signature Scheme for Multicast Packet
Authentication

Pankaj Rohatgi

I.B.M.T.J.Watson Research Center,

P.O.Box 704,

Yorktown Heights, NY 10598, U.S.A.

Emaih rohatg£@watson, ibm. cos

Abstract

This paper proposes a compact and fast hybrid signature
scheme that can be used to solve the problem of packet
source authentication for multicast. This scheme can be
viewed as an improvement to
off-line/on-line signature schemes, in that the signature size
overhead is much smaller. Since this is a generic technique, it
should have applications to several other practical problems
as wel l .

1 Introduction

1.1 The Multlcast Source Authentication Problem

Packet Source Authentication, i.e., authenticating the source
of a received packet, is a fundamental security issue in any
networking protocol. In the case of Unicast, this problem
has been solved (e.g., in IPSEC) by the use of message au-
thentication codes (MACs). However, the MAC approach is
inadequate in a multicast setting. This is because a MAC is
based on a shared secret key among participants and MACs
can be both generated and verified by anyone having access
to the key. If a MAC was used in a multicast setting then all
authorized receivers would have to know the secret key in
order to authenticate received packets and therefore any au-
thorized receiver could inject packets with vahd MACs and
masquerade as a sender in order to a t tack other receivers.
This problem does not arise in unicast where there is only
one receiver.

The best approach that can solve this problem from a se-
curity perspective would be for the sender to digitally sign
each packet. Any recipient could then authenticate signed
packets without gaining the ability to forge packets. The
main problem with this approach is performance. Public
key signatures using acceptable algorithms and key-lengths
are very compute-intensive to generate or to verify or both.
As an example, even a high end workstation such as a 200
MHz PPC 604e based RS/6000 can generate only 40 or so
1024 bit RSA signatures per second. Clearly, some multi-
cast applications could require a packet rate far exceeding 40
packets/s and most applications which require less through-
put, nevertheless cannot afford to devote a large fraction

Permission to make d~gital or hard copies of all or part of this work for
personal or classroom use is granted w i thout fee provided that
copies are not made or distr ibuted for profi t or commermal advant
-age and that copies bear this not ice and the full c~tatlon on the hrst page
To copy otherwme, to repubhsh, to post on servers or to
redlstnbute to lists, requires prior specif ic permission and/or a fee
CCS '99 11/99 Singapore
© 1999 ACM 1-58113-148-8/99/0010 . $5.00

of CPU cycles doing signatures. Also, if a server is serv-
ing multicast da ta to several multicast groups, the number
of public-key signatures that it can perform per second per
group will be severely limited. Thus this solution is not
practically feasible.

1.2 Prlor/Related work and ;ts shortcomings

One possible solution to this problem would be to relax
the security requirements for authentication. If a certain
amount of risk is acceptable, then one could use less-studied
signature algorithms. This approach could provide fast yet
secure authentication provided the underlying cryptographic
assumptions are valid. Howevei, if these assumptions turn
out to be invalid, these schemes may be completely open to
compromise. Another efficient approach to multicast packet
authentication when the security requirement is relaxed was
proposed in I5] where the concept of "asymmetric MACs"
was introduced. The basic idea in this approach is that the
sender knows several secret MAC keys and these keys are
shared with the recipients in such a manner so as to main-
tain several properties of the subsets of keys held by the
recipients. For example, one such property could be that no
collection of z, receivers should know all the keys known by
any other receiver. The server can authenticate a message
by computing MACs using all its secret keys and append-
ing all these MACs to the message (another variant uses
more MACs with each MAC being only 1-bit long). This
collection of MACs is known as an asymmetric MAC. Each
recipient can verify the parts of the asymmetric MAC for
which it knows the secret keys and if all these MACs verify
then the receiver accepts the message as genuine. Note that
a receiver, by itself cannot forge an asymmetric MAC since
it does not know all the keys of a sender or even all the
keys known to some other recipient. From the property of
the subsets described above, even w receivers cannot collude
to forge an asymmetric MAC to fool some other recipient.
However once there are more than w colluders the security
of the scheme could break clown and once there are suffi-
cient colluders to know all the sender keys then the scheme
breaks down completely. It is easy to see that the num-
ber of MAC's computed by the sender has to be a linear
function of the number of colluders that the scheme is sup-
posed to be resilient against. Therefore, even though this
scheme is useful in many scenarios, e.g., when groups are
small and problems of collusion can be controlled, it does
not work well in scenarios where the multicast group is very
large and large collusions are likely to occur or difficult to
detect. The two big advantages with this approach however

93

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319709.319722&domain=pdf&date_stamp=1999-11-01

is that it can employ well-studied and cryptographicaUy se-
cure MACing schemes and remain secure till the limit on the
number of colluders is reached and also for small groups or
groups with small number of expected colluders the scheme
is very efficient in terms of CPU usage and size overhead.

If reliability of transmission was not an issue, there is
another approach known as stream signing [7] that could
be used to sign the multicast packets efficiently and provide
the security guarantees associated with digital signatures.
In this approach only one regular signature is t ransmit ted
at the beginning of a s tream and each packet either con-
tains a cryptographic hash of the next packet in the stream
or a 1-time public key using which the 1-time signature on
the next packet can be verified. However, this approach, as
specified cannot tolerate a lost packet, since the information
needed to authenticate future packets will be lost. While
this may not be an issue in reliable internet protocols (such
as those based on T C P / I P) , it is a major issue for many
multicast applications such as those involving andio/video
delivery and multicast applications which use UDP over IP-
Multicast which is inherently unreliable. In particular, the
lack of any s tandard for reliable multicast over IP means
that for the time being UDP over IP-Mult icast remains the
only non-proprietary method available for using multicast
over the internet. Another problem with [7] is that if the
stream being sent is not known to the sender in advance
then the sender needs to embed 1-time keys and signatures
into the packet stream. These keys and signatures are fairly
large and can result in a substantial space overhead within
each packet. While some of the overhead can be reduced if
the sender is allowed to delay outgoing packets, delay is not
a viable option for peer-to-peer interactive multicast appli-
cations such as distr ibuted simulations/gaming. The results
presented in this paper can also be used to substantially re-
duce the space overhead of this scheme, without introducing
a delay, and this combination may be a very good solution
to the authentication problem for reliable multicast.

In [11], a different approach was proposed for packet au-
thentication when a sender is allowed to delay and group
together several consecutive packets. Essentially, this up-
proach forms an authentication tree [12] from packets col-
lected during a time-interval and signs the root of the au-
thentication tree. Then each packet is augmented by the
signature on the root and ancillary information which in-
cludes hashes on the logarithmically many nodes on the au-
thentication tree. This allows packet can be individually
verified. This approach is quite effective in client-server sce-
narios where the server is dedicated to serving a very small
number of multicast flows, each with reasonably smooth
flow rates and strictly enforced bounds on processor loading.
This approach too has several practical drawbacks. Firstly,
as discussed earlier, delaying and grouping of sender's pack-
ets is not possible for highly interactive peer-to-peer mul-
ticast applications such as distr ibuted simulations/gaming.
Secondly, there is the problem of serving multiple multi-
cast flows. This is best i l lustrated by the following example.
Suppose a server only has enough spare cycles to perform
10 public key operations per second. Using scheme in [11],
such a server could easily serve a single smooth flow of hun-
dreds of authenticated packets per second with only a minor
delay of a fraction of a second. However, if the same server
was required to send only 50 different low bandwidth flows,
e.g., each with a packet rate of only 1 packet/second for a
total of 50 packets/second throughput, this will not be pos-
sible using the scheme of [11] unless the same signing key

and authentication tree da ta structure is shared across dif-
ferent flows or an average unacceptable delay of 5 seconds is
imposed on each flow. Sharing the signing key and authenti-
cation tree da ta structure across several different unrelated
flows would result in a complex software architecture at the
sender end, put unreasonable restrictions on the choice of
authentication mechanisms across different flows and expose
privacy issues with regard to information being shared across
different flows. The multiple, low-bitrate multicast flow sce-
nario is quite likely to occur in practice since already there
are sites on the internet which provide live audio and video
and da ta feeds(such as live stock trading activity) from sev-
eral different local and national sources. Currently this is
done over unicast but these applications can benefit tremen-
dously by moving to multicast. Such applications will then
face the multiplicity of flow problem not jus t because they
serve information on several different topics from several dif-
ferent sources but also because, in the future, handheld and
embedded devices become more commonplace and informa-
tion servers will need to transform each in-coming live infor-
mation feed into several different output flows to cater to the
different form factors and capabilities of different classes of
such devices. The third practical problem with the scheme
is the fact that the size of the authentication information
added on to each message is not fixed but depends of the
short- term packet rate which in many applications is liksly
highly irregular. During bursty periods, the packets will be
larger and this can cause additional undesirable side-effects
such as increased packet loss due to fragmentation, precisely
at times when the traffic volume is large. The fourth prob-
lem with the scheme it provides no mechanism to smooth
out bursty processor loads. In any real system there will be
periods when the processor has enough free t ime to calcu-
late several s ignatures/second and there will be times when
the processor barely has t ime to calculate 1-2. Wi th the
tree approach, there is no way to leverage the idle t ime of
the CPU to help during the t ime when it is highly loaded
and performance will seriously degrade when the CPU gets
loaded.

1.3 Introduction to our solution

We now introduce our approach which could be a possible
solution to the problem of packet authentication for multi-
cast in many scenarios and in part icular does not suffer from
the drawbacks described earher. I t is also likely to find ap-
plications in several other settings. Our approach provides
the security guarantees required for authentication, yet is
efficient in both size and speed and also works in the fully
unreliable setting (with additional small but significant over-
head). To do so, our approach seeks to mimic the public key
signature per packet approach which would have be the best
solution to this problem if the speed of wen-known public
key signature algorithms was not an issue.

To mitigate the problem of speed, we use as a start ing
point the off-hne/on-line approach of I6]. The off-line/on-
line approach of [6] was motivated by a need to substantially
reduce the latency associated with computing regular digital
signatures and also to protect regular public key signature
schemes from chosen message attacks. I t is well known that
regular public key digital signatures schemes are slow but
a single signature key, could (in practice) be used to sign
an arbi t rary number of messages. On the other hand, there
exist very fast public key digital signature schemes based
on one-way functions but, in these schemes, a single private

94

key could only be used to securely sign a single message or
a small finite number of messages [9]. The off-line/on-line
approach of [6] was the first to effectively combine these
two different types of signature schemes to produce a hy-
brid signature scheme with several very nice properties. In
the off-fine/on-fine approach, off-fine computat ion is used
to create buffers of 1-time key-pairs and to certify the pub-
fic 1-time keys using the regular digital signature scheme.
When a message needs to be signed then an on-fine compu-
tation is performed to compute a signature of the message
using a 1-time private key from the buffer of keys, and the
corresponding 1-time public key and its certificate is also at-
tached to this signature. Since operations on 1-time keys are
extremely fast, there is very little load or latency introduced
to compute message signatures. We begin by observing that
since generation of 1-time key-pairs is typically also a fast
operation, the off-hhne/on-hhne technique can be used to cre-
ate a hybrid signature scheme which can sustain a high sig-
nature rate indefinitely even when both the off-fine as well
and on-fine computat ion is being clone at the same time
by the same machine in parallel. The trick is to have the
"off-line" computat ion create and certify k-time key-pairs
instead of 1-time key pairs, so that the cost of the most ex-
pensive operation, i.e., certificate creation using a regular
signature scheme can be amortized over k-signatures. With
this technique it is easy to see that for large values of k,
the sustainable rate will approach the potential signature
rate possible from the k-time key-pair generation processes
and for very small values of k, the rate will be close to k
times the regular signature rate. By choosing an appropriate
value of k, one can bring the speed of this hybrid signature
scheme to be the same order of magnitude as the the speed
of the k-time key generation process. Using this technique,
in practice, speeds of 500-1000 signatures/second are easily
achievable for workstation class machines.

With this scheme, the multicast sender has a process or
thread which generates k-time key-pairs and creates certifi-
cates for the k-time public keys using the sender's long term
regular signature key. The sender uses each such k-time key
pair to sign k successive messages. Depending on th reli-
ability of the network, the certificate for the corresponding
k-time public key could either sent multiple times separately
or added on to each da ta packet or to a large fraction of the
da ta packets. Each packet itself is signed using some i ' th
use of a k-time signature scheme.

It is easy to see that this basic approach solves the prob-
lems associated with unreliability, multiple flows, bursty
traffic, and irregular processor loading and therefore is a
good start ing point towards the development of a signature
scheme for this problem. Unreliability can be fully addressed
by sending the k-time public key certificate in each packet or
more practically addressed by sending k-time key certificates
multiple times within a flow, to minimize the impact of a few
lost packets. The off-fine nature of the expensive signature
operation when combined with very high throughput of the
on-fine k-time signature scheme, yields a fairly clean way
to handle multiple flows, bursty traffic and bursty processor
load : For each flow, buffers of k-time keys and certificates
can be precomputed and filled up during periods of low CPU
usage and slow traffic to tide over periods of high CPU usage
and high traffic.

The major drawback of k - t ime / l - t ime signature schemes
that has kept them from widespread use is that k - t ime / l -
time public keys and/or signatures tend to be very large and
thus impractical in many settings. For example, the hybrid

approach outlined in the above paragraph when used in con-
junction with a reasonably fast and secure k-time signature
scheme, could easily result in the size overhead of the order
of a kilobyte per packet, which is clearly impractical.

The main goal of this paper is to show that , by a com-
bination of techniques, some of them quite novel and others
well-known, it is indeed possible to substantially reduce the
size overhead associated with the hybrid approach to make
it much more practical without compromising on its secu-
rity. In adopting these techniques, speed of the underlying
schemes is also increased but since size is the main focus
here, wherever possible we t rade the speed improvements
for additional size reduction.

We address the issue of size in three ways. We first focus
on the size overheads in the 1-t ime/k-t ime schemes them-
selves and use a novel approach based on commitments and
the use of Target Collision Resistant hash functions to re-
duce the overhead. Next we use a known but rarely used
technique to reduce the size of ancillary authentication in-
formation that needs to be carried along with the signature,
to identify and authenticate the i ' t h use of a k-time key in
cases where the k-time key is created from k independent 1-
time keys. Next we describe how the size of a certificate can
be reduced using known techniques. These techniques al-
low us to create reasonably secure hybrid signature schemes
which have a per-packet overhead of less than 300 bytes per
packet and yet are capable of computing close to 500-1000
signatures/second on workstation class machines.

The rest of the paper is organized as follows. In section
2 we outline the ideas behind our size reduction techniques.
In section 3 we provide a concrete construction of the hybrid
scheme based on well known cryptographic primitives, which
can be proven to be as secure as the primitives themselves.
This construction also illustrates the advantages of the size
reduction techniques in practice. In section 4 we analyze
the performance of one version of our concrete construction
if one uses functions derived from the SHA-1 compress func-
tion as the basic cryptographic primitives. In section 5 we
describe some preliminary performance results of an imple-
mentation of our scheme on a PC. In section 6 we examine
other applications of our signature scheme.

2 Size Reduction Techniques

2.1 TCR functions and Commitments

Most 1-time or k-time signature schemes have a signature
size (and speed) which is proportional to the number of bits
in the quantity being signed. Typically, this quanti ty is
taken to be a collision resistant hash of the message being
signed. In [2] it was argued tha t for the purposes of a signa-
ture, a weaker condition on the hash function called Target
Colliszon Ressstance or TCI~ would suffice (such functions
were earlier known as Universal One-Way Hash Functions
[10]). In this scenario, instead of requiring a single colli-
sion resistant hash function (which may be fairly difficult to
design and which does not lend itself to a complexity theo-
retic analysis), a family of keyed hash functions with weaker
properties could be used. The key specifies a hash function
from the family. The signer of a message (the message may
even be chosen by an adversary), chooses a hash function
at random from the family (by picking a random key) and
then computes the hash value and signs both the hash value
and the key. The property of the family of hash functions,
i.e., Target Collision Resistance, is tha t even when an ad-

95

versary chooses a message trot, when the signer picks a hash
function at random, with overwhelming probability (based
on the choice of key) it is computationally difficult for the
adversary to come up with another message m2 such that
ml and m2 collide on the hash function chosen by the signer.
Thus, target collision resistant hash function families may
be much easier to design and have smaller output than colli-
sion resistant hash function since many attacks on collision
resistant hash functions such as birthday attacks are not
applicable. With this weaker notion of Target Collision Re-
sistance, one can reduce the size of the hash of the message
that needs to be signed. However in our application, this
is not sufficient to reduce the size of the data which needs
to be signed using the 1-time (or k-time) signature scheme
since the random key used to choose a specific TCR hash
function from the family needs to be signed as well. Ideally,
we would have liked the sender to apply the 1-time signature
only to the result of the TCR hash and not on the key. But
from the definition of TCR functions, for security reasons,
the signer must choose this key after the message has been
fixed and this key needs to be authenticated as well. To
solve this problem we adopt the following approach: Sup-
pose that in the regular signature on the k-time pubhc key,
we include commitments to the keys used to select the TCR
hash function in each of the k uses of the key. Then for
each message, we could sign only its TCI~ hash value with
the one of the k-time signatures and also reveal at the same
time the key already committed to. With this approach
we retain the security of the TCR construction and reduce
the size of our message signatures by almost a factor of 2
and increase the speed of the underlying k-time scheme by
a similar factor. Another well known fact about 1 or k-time
signatures is that usually there is a tradeoff between the
time it takes for key generation/signature/verification and
the size of the keys and the signatures. We can trade in
the factor of 2 improvement in speed we obtained by using
commitments to realize additional size savings. With this
tradeoff, one can, in practice, reduce the space overhead of
k-time signature schemes overall by a factor of 3 to make
them compact yet fast and secure.

2.2 Optimizing Ancillary Information

The next optimization we make is to the ancillary informa-
tion that needs to be carried along within a k-time signature
which identifies the signature as an i ' th use, in situations
where the k-time scheme is essentially composed of k inde-
pendent one-time schemes. Typically a k-time public key is
created from k one-time public keys by means of a collision
resistant hash tree construction over the k public keys, with
the root of the hash tree being the k-time public key. When
the i ' th 1-time key is used to sign a message, then apart from
the 1-time signature, the i ' th signature must include the i ' th
public key and hashes of the sibling nodes on the path from
the i ' th public key to the root of the hash tree. In our con-
struction, we replace the collision resistant hash tree with a
TCR hash tree [2]. This has several advantages. Firstly, the
use of a TCR function implies that the sizes of all interior
nodes in the tree get reduced by half and a single TCR key
is used for each level in the tree. Since these level keys will
be signed in the certificate for the k-time public key, they
need not be sent with each signature. Thus the size over-
head for the path gets reduced by a factor of 2. Also, due to
reduced sizes of the intermediate nodes, a TCR tree works
better with certificate signature schemes which permit rues-

sage recovery from the signature, since more top level nodes
can be accommodated within the embedded signed message.

However, the use of a TCR hash tree over Public keys
which contain commitments transforms these commitments
to weaker primitives which we term "TCR-commitments".
These are no longer commitments in the true sense. We
coin the term "TCl~-commitment" to denote a type of com-
mitment in which it is possible for a committer to later on
alter the committed value but has no incentive to do so.
However, the receiver gets no information from the commit-
ment and also cannot create a different consistent opening
of the commitment once the committer has opened the com-
mitment. However as far as the properties of unforgeability
and non-repudiation are concerned, weakening of commit-
ments to TCI:t keys within individual 1-time public keys to
TCR-commitments in the TCB. hash tree calculation does
not affect the security of underlying signature scheme.

2.3 Optimizing Certificate Size

The next optimization is to use padding schemes described
in [1], to embed the k-time public key inside the regular sig-
nature within the certificate itself for many popular regular
public key signature schemes, thus save on the overhead of
transmitt ing both the k-time public key and its certificate.
As mentioned earlier, this when used in conjunction with a
TCR hash tree results in additional optimization since more
top level TCR tree nodes can be embedded within the sig-
nature than top level collision resistant hash tree nodes.

3 Construction of our scheme from basic cryptographic
primitives

We now describe our scheme which creates a ¢~2-time key
pairs with embedded TCR-commitments to be used in a hy-
brid scheme involving some other regular signature scheme
such as RSA. Currently, a level of security of the order of 2 s°
is considered adequate and our scheme is meant to have a
comparable level of security. By adjusting the primitives de-
scribed below, the scheme can be generalized to give higher
levels of security.

3.1 The Primitives

Our scheme is based on the following primitives, each offer-
ing around 80 bits of security.

• Let H be a collision resistant hash function producing
a 160-bit output.

• Let C be a commitment scheme for 80 bit strings. C
provides a C - create function for creating a com-
mitment, a C - decorr~mi~ function to create a de-
commitment string and a C' - open function for the
receiver to open the commitment from the commit-
ment and de-commitment strings. In addition for the
purposes of proofs we will also assume the C is a trap-
door commitment scheme [3]. Although, at the the-
oretical, abstract and provable level we will use C in
our scheme, at the practical construction level we will
create our own commitment scheme by requiring more
properties from H as described below.

• Further assume that

96

- H is at least a weak extractor, i.e., when H is
given a high entropy input (with entropy of say
least a 100 bytes), its 160-bit output is close to
random. This property is fully expected to be met
or even exceeded (in terms of entropy required
from input) by a function like SHA-1, given its
use for pseudorandom number generation.

- H is a collision resistant hash function formed by
applying the MD method to a collision resistant
H-Compress(k, D) function based on fixing some
IV for k, where k is a key of size at least 80 bits
and D is a fixed sized data block of size more than
than 160 bits.

- H-Compress behaves like a family of keyed
pseudorandom functions with respect the key k.
This property together with the collision resis-
tant property of H-Compress is needed to use
H as part of a commitment scheme. In prac-
tice, one would realize such a function by defining
H-Compress as aliA-I-Compress (and H as SHA-
1) and already there are real-world applications,
such as the protocol to blind credit card numbers
in SET [8] which depend precisely on these two
properties of SHA-1-Compress. The other differ-
ence between this commitment and one required
in the theoretical case is the lack of a trapdoor.
The trapdoor is an artifact of the proof technique
and in practice we only need to ensure that the
commitment scheme is independent of the scheme
used for the TCK hash function.

With such a function, if we define PadH(=) to be some
fixed bijective padding of input string ~ u p t o a multi-
ple of the block size of the compression function then
ll'(r, T) = H(PadH(r)IT) for a large, almost ran-
dom r of size at least 100 bytes, is a commitment to
any string T of size less than the data block size of
H-Compress, as well as a collision resistant function
on r and T. The de-commit string is just r, T.

• Let G(K, z) denote a family of keyed one-way func-
tions with an 80 bit key K and 80 bit input z produc-
ing a 80 bit output.

• Let T I (K , z) denote a target collision resistant keyed
hash function family taking 80 bit key K and 80n bit
input z, producing 80 bit output.

• Let T2(K, z) denote a target collision resistant keyed
hash function family taking an 80 bit key K and 160
bit input z producing a 80 bit output.

Before proceeding further, it will be useful to fix some
notation.
N O T A T I O N : Let f be a function from t-bit strings to t-
bit strings for some t. We will use the notation f~(=), to
denote k successive applications of f to the string ~, e.g.,
ff '(z) = f (f (f (f (z)))) . Also for any f , f ° (z) ~ m.

3.2 Key Generation

The n2-time public key is essentially derived from n 2 in-
dependent random 1-time public keys hashed down using
TCI~ hash functions in a tree construction (see [2]). Note
that by applying the concept of target collision resistance
instead of collision resistant hash functions we can realize

additional savings. The output of target collision resistant
hash functions can be much smaller than that of collision
resistant hash functions since the birthday attack is inap-
plicable This smaller output translates in a smaller depth
of a tree based TCR hash function, since interior nodes can
accommodate more child nodes.

First pick three 80-bit keys gl, g2, gs uniformly at ran-
dom. These keys will be used throughout the construction
of this n2 use public key.

Throughout the construction, g(=) = G(#l, =) will be
used as an 80 bit to 80 bit one-way function.

For each i, corresponding to the i ' th key of the n2-time
signature scheme do the following:

Pick T,, an 80 bit key uniformly at random. T~ will be
used for selecting a TCB. function when the i ' th key is used
to sign a message (the n2-time public key will include a
"TCl~-commitment" to this key)

Pick 23 random 80 bit values, r,,1 r,,2s. From these
compute ff~,l,.. . ,/i,~s as follows:

For each j in {1 , . . . , 22}

and

A,, = 915 (~'~,j)

/~.2, = g(~..2,)

The basic idea behind this construction (which is similar
to a construction given in [6]) is that since g is a one-way
function any adversary who knows f~,s but not r~,j cannot
compute r,,s or even g~(~i j) for any k < 15 and 1 _~ j < 22.1

The i ' th public key includes in it a "commitment" for
the TCK function key to be used for signing the i ' th mes-
sage. Without the commitment, the public key would just
be f,.1 f~,~s or a collision resistant hash of these quan-
tities, i.e., H(f, , l[. . . If~,2s). To include a commitment, in a
theoretical setting the public key can be defined as follows:
Compute T~ = C -- create(T~). Compute

PK~ = H(/ , , , I I / ~ , : , I T ¢)

where "I" denotes concatenation.
Instead, in practice however, we will use

P K ~ = H ' (/ . . ~ I l / . . 2 . , z)
as both a commitment to T~ and a collision resistant hash.

The public key for the n2-time signature scheme is then

P K = PK~IPK21...IPK~

For the sake of space efficiency (as we mentioned earlier),
we do not sign a collision resistant hash of P K . Instead we
sign a tree-based TCR hash of PK (as described in [2]) 2.
This works as follows:

At the leaves are the n ~ public keys PK1, . . . , PK~2 each
of which is 160 bits long. At the next higher level in the tree
are n 2 nodes, L i , . . . , Ln2, one for each public key. The value

1In this construction i t would have been b e t t e r if g was a permu-
tation ins tead of a r a n d o m funct ion . The use of a one.way function
reduces the entropy of]~,j by a few bits, i.e., even if g was a random
function, 3 - 4 bits of entropy are lost a f ter 15 i terat ions .

~Signing a TCR hash,of PK instead of a col l i s ion res i s tant hash
converts the c o m m i t m e n t s to the TCR keys T, for message signing
into a "TCR-commitment" to those keys

97

of node L~ is jus t T2(g~,Ptfi), i.e., the T C R hash of PK,,
using the family T2 under key 92. At the next higher level
in the tree are n nodes M1 M,~. Each node M, has n
children, L,~(,-1)+1,. . . , L,¢ and its value is computed as

M, = TI(gs,L.(~-i)+i I ... I L. ,)

These ~ nodes M r , . . . , M , together with gt,g2,gs, con-
st i tute the public key for the n~-time signature scheme.
Each M, has an 80 bit value, therefore the n -time signature
scheme has a public key of size 80~ + 240 bits.

3.3 Signature Generation

To sign a message m with the i ' t h key of the n~-time signa-
ture scheme, the signer does the following:

1. Compute h = T2(T~, H(m)). This is an 80 bit TCR
hash of m, under the assumption tha t H is collision
resistant.

2. Let h z , . . . , ha0 denote the bits of k. Group these bits
into 20 groups of 4 consecutive bits (aka nibbles). The
value of each is a number from 0 to 15. Let ~ 1 , . . . , ~=0
denote these numbers.

s. For 1 _< j < ~ , iet D = / ~ - ~ , (~,,;).

4. Let
2o

N =~n 3

2=i

N is a number between 0 and 300 and therefore fits in 9
bits. Let ~21 denote the value of the least signi~cant 4
bits of/V, n22 denote the value of the next 4 significant
bits and n2a denote the value of the most significant
9' th bit.

5. Let Y21 = 0 T M (r~,21).

6. Let Y22 = 9'~2=(r~,22).

7. Let Y~s = 9 T M (r~,~).

The signature then consists of T,, Y~,. . . , ' l '~a together
with the values of the n - 1 other L nodes which corre-
sponding to the children of M(i+=-z)/=, excluding L,, i.e.,
the siblings of L,. Let Sib(L,) denote these nodes. There-
fore the signature consists of T,, Y~,. . . , Y~s, Sib(L~). In the
theoretical setting, the signature would include T$ and T~ t =
G - decommit(T,, T, ~) instead of T,.

I t has been pointed out by an anonymous referee that
most of the information contained within Sib(L,) is the same
among = signatures. Thus there is room for further improve-
ment in the size overhead of a signature.

3.4 Signature Verification

To verify a signature S~ = (T,, Y1 , Y2s, Sib(L,)) (or Si =
(T$, T~ , Y~ Y2a, S4b(L,)) in the theoretical setting) on a
message m do the following.

1. In the theoretical setting first use C - open(T, ¢, T~) to
obtain T,. In the practical setting this step is omit-
ted since T, is provided. Compute h = T2(T,, H(m)).
This is an 80 bit T C R hash of m.

2. Let hi ha0 denote the bits of h. Group these bits
into 20 groups of 4 consecutive bits. Each group is
a number from 0 to 15. Let ~t l , . . . , r t20 denote these
numbers. For 1 < j < 20, l e t / j = g'~(Y~).

3. Let
2o

N= ~n~
2=1

N is a number between 0 and 300 and therefore
fits in 9 bits. Let ~21 denote the value of the least
significant 4 bits of N, ~22 denote the value of the
next 4 significant bits and ~2s denote the value of the
most significant 9 ' th bit.

4. Let f2~ = / 5 - - 2 1 (Y21).

5. Let f:22 = 915-"22(Y~2).

6. Let f~ =/-"2~(Y~).

In the theoretical setting compute

PK~ = H(. f , .z I Lh,231T;)

in the practical setting compute PK~ as

PK: = H'(f~ I l.f2a,T,).

PK: is supposed to be the same as PK, in the keygeneration
phase. Compute L', = T2(g2, PK~). L~ is supposed to be the
same as L~ in the keygeneration phase. To verify this, since
all the siblings of L, are provided as par t of the signature,
verify that

M(,+~-i)/,~ = T l (9 , , < Sib(L,) , L~ >)
where < Sib(L~),IS > is just the concatenation of the

L, 's in the proper order.

3.5 Proof of Correctness

In the theoretical setting, one can prove that breaking the
scheme outlined above translates to breaking one of the
s tandard cryptographic primitives used in the construction
and in that sense the scheme can be considered secure. In
the practical setting a similar result holds i.e., breaking the
scheme means that an assumption about a primitive used is
incorrect or there some unusual interaction between prim-
itives. However, the assumptions made about primitives
in the practical sett ing (although same assumptions have
made in other deployed protocols) are much more onerous
and thus more likely to be false.

4 Performance and Overhead Analysis

Analyzing the performance of the above scheme requires fix-
ing of the primitives being used and the parameters. One
needs specific functions for H, G(K,z) , T I (K , z) and
T2(K, z). H can be taken to be S H A - 1 . In practice, G, T1
and T2 can all be derived from S H A - 1 Compress and in
our analysis we wiLl assume that each application of G, T1
and T2 is comparable to an application of SHA-1-Compress.

98

4.1 Space Overhead

For typical values of n, (say 6), the size of the 36-time public
key which is 80*6+240 = 720 bits, is small enough so that it
may be embedded inside a signature block itself for popular
signature algorithms like RSA and Rabin (e.g., see [1]) which
is typically expected to be at 1024 bit block size. Thus the
public key and the regular signature on it will occupy 128
bytes in this case. These 128 bytes can either be broadcast
frequently or attached to each packet.

The actual signature on a message m corresponding to
the i'th use of the 36-time public key will have the following
overhead:

• 10 bytes : Disclosure of T~.

• 230 bytes : One t ime signature on h = T2(T,, m).

• 50 bytes : Values of the 5 other L nodes corresponding
to the other children of M(~+5)/s, i.e., siblings of L,.

This gives a total of 290 bytes.
Further optimization of 10 fewer bytes may be obtained

in exchange for only a marginal reduction in security if the
scheme is modified so that f~,23 also serves the dual purpose
of T,.

For n = 5, this is reduced to 280 bytes which can be fur-
ther reduced to 270 bytes by the technique described above.

An anonymous referee has pointed out scope for further
space improvement by not having to repeatedly send out the
almost same information on the siblings in the 6 signatures
corresponding to the same M~

4.2 Time Overhead

Clearly, the sender does one regular private key operation for
the n2-time key and the receiver does one signature verifica-
tion for the n2-time key. This time varies over the signature
algorithm and can be amortized over the n 2 uses. We now
focus on the overhead just for the n 2 use key.

Key Generation

For efficiency it may be better for the signer to store all
intermediate results in the key generation process. For n 2
uses of the signature, the total amount of overhead is:

1. 240n 2 -i- 30 random byte generation. In practice this is
likely to be through a pseudorandom process.

2. 22 × 15n 2 + n2 = 331n2 applications of g.

3. n2 applications of H on 240 bytes.

4. n2 applications of T2.

5. n applications of TI.

To get a sense of how many operations these are if we
assume for example that an application of T2, T1, g is com-
parable to a SHA - 1 compress, one application of H on
240 bytes of data is comparable to 5 SHA - I compress and
one SHA- I compress produces 20 random bytes, this time
overhead is comparable to 349n ~ + n -I- 2 SIIIA - 1 com-
presses, or on an average 349 SHA - 1 compresses per key.

On high end workstations, 1000 1-time keys can be produced
per second.

Szgnature Genera~ton

If tables are kept at the time of key generation, then the
cost of the signature is essentially computing the T C R hash
of the message and around 25 table lookups.

Signature Verification

Signature verification is very similar to key generation.
However, on an average only 8 applications of 9 would be
needed instead of 15 for each of the nibbles in the T C R
hash of the message and no random numbers need to be
generated. Thus total number of operations are

1. 8 × 22 + 1 = 177 applications of g.

2. 1 application of H on 240 bytes.

3. 1 application of T2

4. 1 application of T1.

Carrying the SHA-1 analogy, this translates to roughly
184 applications of SHA - 1 Compress.

5 Implementation Experience

We have implemented a version of this scheme as part of
an ongoing prototyping effort to develop an architecture for
secure multicast [4]. The implementation was clone in "C"
on a 400Mhz Pentium II machine running Linux. We im-
plemented a 36-time hybrid scheme with SHA-1 as the main
component together with 1024-bit RSA as the long term sig-
nature algorithm. We used the pthreads threading package
on Linux to create a separate thread for the off-line process-
ing for each signature context. This thread is responsible
for replenishing a key buffer of upto 1800 uses. The prelim-
inary results axe as follows: If 1024-bit RSA directly used
to sign packets then the maximum packet rate achievable
was found to be approximately 40 packets/s (for RSA, we
recoded parts in assembly). Wi th the hybrid solution, a rate
of around 410 packets /s could be sustained. For small pack-
ets, the latency of the on-line signature calculation (provided
that a 36-time key was aheady available) was around 70ps,
provided that the signature calculation thread did not get
pre-empted by the key-generation thread. To simulate ir-
regular and bursty packet rate we ran an application which
would randomly and uniformly select the number of packets
to send per second in the range of 100 to 600 and found
that current system and buffer levels were able to handle
this load with ease. The numbers are also likely to improve
once some of the other t ime critical routines (such as SHA-1)
are re-coded in assembly.

99

G Other applications

Our scheme which is essentially a very fast and reasonably
compact approach to creating digital signatures from ba-
sic cryptographic primitives shouFd--enable a large number
of applications which require a high signature rate. In sce-
narios, where the size of the signature does not matter, we
can trade back the size advantages we have obtained in our
scheme to get much faster hybrid 1-time/k-time signature
schemes than were known before. In applications, where
size of the signature matters, we are likely to have one of
the best signature rates for a given size.

One other practical situation where our technique can
find good use is in the export-controlled ciphersuite imple-
mentations within the SSL protocol. One of the peculiari-
ties of SSL is that when an export-controlled client connects
to an SSL server, the handshake consumes more time at
the server end than when a full-crypto client connects, even
though the security of the key agreement has been reduced
from 1024-bit RSA to 512-bit RSA! One would normally
expect this modulus size reduction to result in the export-
controlled connection being 8 times faster on the server side.
The reason for this discrepancy is the following: For export
controlled connections, in the SSL protocol the server has a
1024-bit certified signature key and it generates ephemeral
512-bit encryption keys for key agreement. Typically these
512-bit keys are used for around 100-500 connections. Now,
upon receiving a client hello, the server uses its certified
1024-bit key and the received client random nonce to create
a certificate for the current 512-bit ephemeral encryption
key. The client then uses the 512-bit key for key agreement.
Therefore a connection with an export-controlled client costs
the server one 1024-bit signature and one 512-bit decryption
and is therefore more onerous than a more secure connection
involving only 1024-bit encryption. Since there is no reason
why the server should spend more resources to provide less
security, we can use our scheme to reduce the server load
when connecting with export-controlled clients to be com-
mensurate with the security provided, i.e., reduce the load
back to 512-bit decryption. For this we can employ our hy-
brid scheme based on generating 100/500-use keys (depend-
ing on the server policy on the lifetime of the ephemeral
512-bit encryption key) and create a single certificate for
them using the server's 1024-bit signature key. For each
new connection request for which an ephemeral 512-bit en-
cryption key needs to be used, we can use the 100/500-use
scheme to generate a signature on the current 512-bit key
and client nonce and return that to the client.

7 Acknowledgments

The author would like to thank Hugo Krawczyk for pointing
out the benefits of using Target Collision Resistance for this
application, Shai Halevi, for invaluable help in the design
of the scheme and to Shai Halevi and Charanjit Jutla for
help in the design of the primitives. The author would also
like to thank Ran Canetti and Rosario Gennaro for helpful
discussions. This paper has also benefitted from comments
received from anonymous referees.

References

[1] M. Bellare, P. Rogaway. The exact security of digi-
tal signatures: How to sign with RSA and Rabin. m

Advance~ in Cryp~ology - E U R O C R Y P T '96, Lecture
Notes in Computer Science 1070, Springer-Verlag, 1996.

[2] M. Bellare, P. Rogaway. Collision-Resistant Hashing:
Towards Making UOWHFs Practical. /n Advances m
Cryptology - CRYPTO '97, Lecture Notes in Computer
Science 1294, Springer-Verlag, 1997, pp 470-484.

[3] G. Brassard, D. Chaum and C. Crepeau. Minimum dis-
closure proofs of knowledge. JCSS. 37(2):156-189, 1988.

[4] R. Canetti, P. Cheng, D. Pendarakis, J. Rao, P. Ro-
hatgi and D. Saha. An Architecture for Secure In-
ternet Multicast, Internet Draft, draft-iztf-smug-sec-
mcast-arch-00.txt, Feb 25 1999, Work In Progress.

[5] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor,
B. Pinkas. Multicast Security: A Taxonomy and Some
Efficient Constructions. IEEE IArFOCOM '99.

[6] S. Even, O. Goldreich, S. Micali. On-Line/Off-Line Dig-
ital Signatures. Journal of Cryptology, 9(1):35-67, 1996.

[7] R. Gennaro, P. Rohatgi. How to sign digital streams, in
Advances in Cryptology - C R Y P T O '97, Lecture Notes
in Computer Science 1294, Springer-Verlag, 1997, pp
180-197.

[8] H. Krawczyk. Blinding of credit card numbers in the
SET protocol.Fmancsal Cryptography '99.

[9] L. Lamport. Constructing Digital Signatures from a
One-Way Function. Technical Report SRIYntl., CSL 98,
1979.

[10] M. Naor, M. Yung. Universal one-way hash functions
and their cryptographic applications. Proceed:ngs of the
~Ist Annual Symposium on Theory of Computing, 1989.

[11] C. Wong, S. Lain. Digital Signatures for Flows and MUl-
ticasts. Proceedings IEEE ICNP '98, Austin TX, Oct
1998.

[12] R. Merkle. A Certified Digital Signature. Advances in
Cr~ptology- C R Y P T O Tg, 1989.

I00

