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Abstract 

This paper proposes a compact and fast hybrid signature 
scheme that  can be used to solve the problem of packet 
source authentication for multicast. This scheme can be 
viewed as an improvement to 
off-line/on-line signature schemes, in that  the signature size 
overhead is much smaller. Since this is a generic technique, it 
should have applications to several other practical problems 
as  wel l .  

1 Introduction 

1.1 The Multlcast Source Authentication Problem 

Packet Source Authentication, i.e., authenticating the source 
of a received packet, is a fundamental  security issue in any 
networking protocol. In the case of Unicast, this problem 
has been solved (e.g., in IPSEC) by the use of message au- 
thentication codes (MACs). However, the MAC approach is 
inadequate in a multicast setting. This is because a MAC is 
based on a shared secret key among participants and MACs 
can be both generated and verified by anyone having access 
to the key. If  a MAC was used in a multicast setting then all 
authorized receivers would have to know the secret key in 
order to authenticate received packets and therefore any au- 
thorized receiver could inject packets with vahd MACs and 
masquerade as a sender in order to a t tack other receivers. 
This problem does not arise in unicast where there is only 
one receiver. 

The best approach that  can solve this problem from a se- 
curity perspective would be for the sender to digitally sign 
each packet. Any recipient could then authenticate signed 
packets without gaining the ability to forge packets. The 
main problem with this approach is performance. Public 
key signatures using acceptable algorithms and key-lengths 
are very compute-intensive to generate or to verify or both. 
As an example, even a high end workstation such as a 200 
MHz PPC 604e based RS/6000 can generate only 40 or so 
1024 bit RSA signatures per second. Clearly, some multi- 
cast applications could require a packet rate far exceeding 40 
packets/s  and most applications which require less through- 
put, nevertheless cannot afford to devote a large fraction 
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of CPU cycles doing signatures. Also, if a server is serv- 
ing multicast da ta  to several multicast groups, the number 
of public-key signatures that  it can perform per second per 
group will be severely limited. Thus this solution is not 
practically feasible. 

1.2 Prlor/Related work and ;ts shortcomings 

One possible solution to this problem would be to relax 
the security requirements for authentication. If a certain 
amount of risk is acceptable, then one could use less-studied 
signature algorithms. This approach could provide fast yet 
secure authentication provided the underlying cryptographic 
assumptions are valid. Howevei, if these assumptions turn 
out to be invalid, these schemes may be completely open to 
compromise. Another efficient approach to multicast  packet 
authentication when the security requirement is relaxed was 
proposed in I5] where the concept of "asymmetric  MACs" 
was introduced. The basic idea in this approach is that  the 
sender knows several secret MAC keys and these keys are 
shared with the recipients in such a manner so as to main- 
tain several properties of the subsets of keys held by the 
recipients. For example, one such property could be that  no 
collection of z, receivers should know all the keys known by 
any other receiver. The server can authenticate a message 
by computing MACs using all its secret keys and append- 
ing all these MACs to the message (another variant uses 
more MACs with each MAC being only 1-bit long). This 
collection of MACs is known as an asymmetric MAC. Each 
recipient can verify the parts  of the asymmetric MAC for 
which it knows the secret keys and if all these MACs verify 
then the receiver accepts the message as genuine. Note that  
a receiver, by itself cannot forge an asymmetric  MAC since 
it does not know all the keys of a sender or even all the 
keys known to some other recipient. From the property of 
the subsets described above, even w receivers cannot collude 
to forge an asymmetric MAC to fool some other recipient. 
However once there are more than w colluders the security 
of the scheme could break clown and once there are suffi- 
cient colluders to know all the sender keys then the scheme 
breaks down completely. It is easy to see that the num- 
ber of MAC's computed by the sender has to be a linear 
function of the number of colluders that the scheme is sup- 
posed to be resilient against. Therefore, even though this 
scheme is useful in many scenarios, e.g., when groups are 
small and problems of collusion can be controlled, it does 
not work well in scenarios where the multicast group is very 
large and large collusions are likely to occur or difficult to 
detect. The two big advantages with this approach however 
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is that  it  can employ well-studied and cryptographicaUy se- 
cure MACing schemes and remain secure till the limit on the 
number of colluders is reached and also for small groups or 
groups with small number of expected colluders the scheme 
is very efficient in terms of CPU usage and size overhead. 

If  reliability of transmission was not an issue, there is 
another approach known as stream signing [7] that  could 
be used to sign the multicast packets efficiently and provide 
the security guarantees associated with digital signatures. 
In this approach only one regular signature is t ransmit ted 
at the beginning of a s tream and each packet either con- 
tains a cryptographic hash of the next packet in the stream 
or a 1-time public key using which the 1-time signature on 
the next packet can be verified. However, this approach, as 
specified cannot tolerate a lost packet, since the information 
needed to authenticate future packets will be lost. While 
this may not be an issue in reliable internet protocols (such 
as those based on T C P / I P ) ,  it  is a major  issue for many 
multicast applications such as those involving andio/video 
delivery and multicast applications which use UDP over IP- 
Multicast which is inherently unreliable. In particular,  the 
lack of any s tandard  for reliable multicast over IP means 
that  for the time being UDP over IP-Mult icast  remains the 
only non-proprietary method available for using multicast 
over the internet.  Another  problem with [7] is that  if the 
stream being sent is not known to the sender in advance 
then the sender needs to embed 1-time keys and signatures 
into the packet stream. These keys and signatures are fairly 
large and can result in a substantial  space overhead within 
each packet. While some of the overhead can be reduced if 
the sender is allowed to delay outgoing packets, delay is not 
a viable option for peer-to-peer interactive multicast appli- 
cations such as distr ibuted simulations/gaming. The results 
presented in this paper  can also be used to substantially re- 
duce the space overhead of this scheme, without introducing 
a delay, and this combination may be a very good solution 
to the authentication problem for reliable multicast. 

In [11], a different approach was proposed for packet au- 
thentication when a sender is allowed to delay and group 
together several consecutive packets. Essentially, this up- 
proach forms an authentication tree [12] from packets col- 
lected during a time-interval and signs the root of the au- 
thentication tree. Then each packet is augmented by the 
signature on the root and ancillary information which in- 
cludes hashes on the logarithmically many nodes on the au- 
thentication tree. This allows packet can be individually 
verified. This approach is quite effective in client-server sce- 
narios where the server is dedicated to serving a very small 
number of multicast flows, each with reasonably smooth 
flow rates and strictly enforced bounds on processor loading. 
This approach too has several practical drawbacks. Firstly, 
as discussed earlier, delaying and grouping of sender's pack- 
ets is not possible for highly interactive peer-to-peer mul- 
ticast applications such as distr ibuted simulations/gaming. 
Secondly, there is the problem of serving multiple multi- 
cast flows. This is best  i l lustrated by the following example. 
Suppose a server only has enough spare cycles to perform 
10 public key operations per second. Using scheme in [11], 
such a server could easily serve a single smooth flow of hun- 
dreds of authenticated packets per second with only a minor 
delay of a fraction of a second. However, if the same server 
was required to send only 50 different low bandwidth flows, 
e.g., each with a packet rate  of only 1 packet/second for a 
total  of 50 packets/second throughput,  this will not be pos- 
sible using the scheme of [11] unless the same signing key 

and authentication tree da ta  structure is shared across dif- 
ferent flows or an average unacceptable delay of 5 seconds is 
imposed on each flow. Sharing the signing key and authenti-  
cation tree da ta  structure across several different unrelated 
flows would result in a complex software architecture at the 
sender end, put  unreasonable restrictions on the choice of 
authentication mechanisms across different flows and expose 
privacy issues with regard to information being shared across 
different flows. The multiple, low-bitrate multicast  flow sce- 
nario is quite likely to occur in practice since already there 
are sites on the internet which provide live audio and video 
and da ta  feeds(such as live stock trading activity) from sev- 
eral different local and national sources. Currently this is 
done over unicast but  these applications can benefit tremen- 
dously by moving to multicast. Such applications will then 
face the multiplicity of flow problem not jus t  because they 
serve information on several different topics from several dif- 
ferent sources but  also because, in the future, handheld and 
embedded devices become more commonplace and informa- 
tion servers will need to transform each in-coming live infor- 
mation feed into several different output  flows to cater to the 
different form factors and capabilities of different classes of 
such devices. The third practical problem with the scheme 
is the fact that  the size of the authentication information 
added on to each message is not fixed but  depends of the 
short- term packet rate  which in many applications is liksly 
highly irregular. During bursty periods, the packets will be 
larger and this can cause additional undesirable side-effects 
such as increased packet loss due to fragmentation, precisely 
at times when the traffic volume is large. The fourth prob- 
lem with the scheme it provides no mechanism to smooth 
out bursty processor loads. In any real system there will be 
periods when the processor has enough free t ime to calcu- 
late several s ignatures/second and there will be times when 
the processor barely has t ime to calculate 1-2. Wi th  the 
tree approach, there is no way to leverage the idle t ime of 
the CPU to help during the t ime when it is highly loaded 
and performance will seriously degrade when the CPU gets 
loaded. 

1.3 Introduction to our solution 

We now introduce our approach which could be a possible 
solution to the problem of packet authentication for multi- 
cast in many scenarios and in part icular  does not suffer from 
the drawbacks described earher. I t  is also likely to find ap- 
plications in several other settings. Our approach provides 
the security guarantees required for authentication, yet is 
efficient in both size and speed and also works in the fully 
unreliable setting (with additional small but  significant over- 
head). To do so, our approach seeks to mimic the public key 
signature per packet approach which would have be the best 
solution to this problem if the speed of wen-known public 
key signature algorithms was not an issue. 

To mitigate the problem of speed, we use as a start ing 
point the off-hne/on-line approach of I6]. The  off-line/on- 
line approach of [6] was motivated by a need to substantially 
reduce the latency associated with computing regular digital 
signatures and also to protect  regular public key signature 
schemes from chosen message attacks. I t  is well known that  
regular public key digital signatures schemes are slow but  
a single signature key, could (in practice) be used to sign 
an arbi t rary number of messages. On the other hand, there 
exist very fast public key digital signature schemes based 
on one-way functions but, in these schemes, a single private 
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key could only be used to securely sign a single message or 
a small finite number of messages [9]. The off-line/on-line 
approach of [6] was the first to effectively combine these 
two different types of signature schemes to produce a hy- 
brid signature scheme with several very nice properties. In 
the off-fine/on-fine approach, off-fine computat ion is used 
to create buffers of 1-time key-pairs and to certify the pub- 
fic 1-time keys using the regular digital signature scheme. 
When a message needs to be signed then an on-fine compu- 
tation is performed to compute a signature of the message 
using a 1-time private key from the buffer of keys, and the 
corresponding 1-time public key and its certificate is also at- 
tached to this signature. Since operations on 1-time keys are 
extremely fast, there is very little load or latency introduced 
to compute message signatures. We begin by observing that  
since generation of 1-time key-pairs is typically also a fast 
operation, the off-hhne/on-hhne technique can be used to cre- 
ate a hybrid signature scheme which can sustain a high sig- 
nature rate indefinitely even when both the off-fine as well 
and on-fine computat ion is being clone at the same time 
by the same machine in parallel. The trick is to have the 
"off-line" computat ion create and certify k-time key-pairs 
instead of 1-time key pairs, so that  the cost of the most ex- 
pensive operation, i.e., certificate creation using a regular 
signature scheme can be amortized over k-signatures. With  
this technique it is easy to see that  for large values of k, 
the sustainable rate will approach the potential  signature 
rate possible from the k-time key-pair generation processes 
and for very small values of k, the rate will be close to k 
times the regular signature rate. By choosing an appropriate 
value of k, one can bring the speed of this hybrid signature 
scheme to be the same order of magnitude as the the speed 
of the k-time key generation process. Using this technique, 
in practice, speeds of 500-1000 signatures/second are easily 
achievable for workstation class machines. 

With  this scheme, the multicast sender has a process or 
thread which generates k-time key-pairs and creates certifi- 
cates for the k-time public keys using the sender's long term 
regular signature key. The sender uses each such k-time key 
pair to sign k successive messages. Depending on th reli- 
ability of the network, the certificate for the corresponding 
k-time public key could either sent multiple times separately 
or added on to each da ta  packet or to a large fraction of the 
da ta  packets. Each packet itself is signed using some i ' th  
use of a k-time signature scheme. 

It is easy to see that  this basic approach solves the prob- 
lems associated with unreliability, multiple flows, bursty 
traffic, and irregular processor loading and therefore is a 
good start ing point towards the development of a signature 
scheme for this problem. Unreliability can be fully addressed 
by sending the k-time public key certificate in each packet or 
more practically addressed by sending k-time key certificates 
multiple times within a flow, to minimize the impact of a few 
lost packets. The off-fine nature of the expensive signature 
operation when combined with very high throughput of the 
on-fine k-time signature scheme, yields a fairly clean way 
to handle multiple flows, bursty traffic and bursty processor 
load : For each flow, buffers of k-time keys and certificates 
can be precomputed and filled up during periods of low CPU 
usage and slow traffic to tide over periods of high CPU usage 
and high traffic. 

The major  drawback of k - t ime / l - t ime  signature schemes 
that  has kept them from widespread use is that  k - t ime / l -  
time public keys and/or  signatures tend to be very large and 
thus impractical  in many settings. For example, the hybrid 

approach outlined in the above paragraph when used in con- 
junction with a reasonably fast and secure k-time signature 
scheme, could easily result in the size overhead of the order 
of a kilobyte per packet, which is clearly impractical.  

The main goal of this paper is to show that ,  by a com- 
bination of techniques, some of them quite novel and others 
well-known, it is indeed possible to substantially reduce the 
size overhead associated with the hybrid approach to make 
it much more practical without compromising on its secu- 
rity. In adopting these techniques, speed of the underlying 
schemes is also increased but  since size is the main focus 
here, wherever possible we t rade the speed improvements 
for additional size reduction. 

We address the issue of size in three ways. We first focus 
on the size overheads in the 1-t ime/k-t ime schemes them- 
selves and use a novel approach based on commitments and 
the use of Target Collision Resistant hash functions to re- 
duce the overhead. Next we use a known but  rarely used 
technique to reduce the size of ancillary authentication in- 
formation that  needs to be carried along with the signature, 
to identify and authenticate the i ' t h  use of a k-time key in 
cases where the k-time key is created from k independent 1- 
time keys. Next we describe how the size of a certificate can 
be reduced using known techniques. These techniques al- 
low us to create reasonably secure hybrid signature schemes 
which have a per-packet overhead of less than 300 bytes per 
packet and yet are capable of computing close to 500-1000 
signatures/second on workstation class machines. 

The rest of the paper is organized as follows. In section 
2 we outline the ideas behind our size reduction techniques. 
In section 3 we provide a concrete construction of the hybrid 
scheme based on well known cryptographic primitives, which 
can be proven to be as secure as the primitives themselves. 
This construction also illustrates the advantages of the size 
reduction techniques in practice. In section 4 we analyze 
the performance of one version of our concrete construction 
if one uses functions derived from the SHA-1 compress func- 
tion as the basic cryptographic primitives. In section 5 we 
describe some preliminary performance results of an imple- 
mentation of our scheme on a PC. In section 6 we examine 
other applications of our signature scheme. 

2 Size Reduction Techniques 

2.1 TCR functions and Commitments 

Most 1-time or k-time signature schemes have a signature 
size (and speed) which is proportional to the number of bits 
in the quantity being signed. Typically, this quanti ty is 
taken to be a collision resistant hash of the message being 
signed. In [2] it  was argued tha t  for the purposes of a signa- 
ture, a weaker condition on the hash function called Target 
Colliszon Ressstance or TCI~ would suffice (such functions 
were earlier known as Universal One-Way Hash Functions 
[10]). In this scenario, instead of requiring a single colli- 
sion resistant hash function (which may be fairly difficult to 
design and which does not lend itself to a complexity theo- 
retic analysis), a family of keyed hash functions with weaker 
properties could be used. The key specifies a hash function 
from the family. The signer of a message (the message may 
even be chosen by an adversary), chooses a hash function 
at random from the family (by picking a random key) and 
then computes the hash value and signs both the hash value 
and the key. The property of the family of hash functions, 
i.e., Target Collision Resistance, is tha t  even when an ad- 
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versary chooses a message trot, when the signer picks a hash 
function at random, with overwhelming probability (based 
on the choice of key) it is computationally difficult for the 
adversary to come up with another message m2 such that 
ml  and m2 collide on the hash function chosen by the signer. 
Thus, target collision resistant hash function families may 
be much easier to design and have smaller output than colli- 
sion resistant hash function since many attacks on collision 
resistant hash functions such as birthday attacks are not 
applicable. With this weaker notion of Target Collision Re- 
sistance, one can reduce the size of the hash of the message 
that needs to be signed. However in our application, this 
is not sufficient to reduce the size of the data which needs 
to be signed using the 1-time (or k-time) signature scheme 
since the random key used to choose a specific TCR hash 
function from the family needs to be signed as well. Ideally, 
we would have liked the sender to apply the 1-time signature 
only to the result of the TCR hash and not on the key. But 
from the definition of TCR functions, for security reasons, 
the signer must choose this key after the message has been 
fixed and this key needs to be authenticated as well. To 
solve this problem we adopt the following approach: Sup- 
pose that in the regular signature on the k-time pubhc key, 
we include commitments to the keys used to select the TCR 
hash function in each of the k uses of the key. Then for 
each message, we could sign only its TCI~ hash value with 
the one of the k-time signatures and also reveal at the same 
time the key already committed to. With this approach 
we retain the security of the TCR construction and reduce 
the size of our message signatures by almost a factor of 2 
and increase the speed of the underlying k-time scheme by 
a similar factor. Another well known fact about 1 or k-time 
signatures is that usually there is a tradeoff between the 
time it takes for key generation/signature/verification and 
the size of the keys and the signatures. We can trade in 
the factor of 2 improvement in speed we obtained by using 
commitments to realize additional size savings. With this 
tradeoff, one can, in practice, reduce the space overhead of 
k-time signature schemes overall by a factor of 3 to make 
them compact yet fast and secure. 

2.2 Optimizing Ancillary Information 

The next optimization we make is to the ancillary informa- 
tion that  needs to be carried along within a k-time signature 
which identifies the signature as an i ' th  use, in situations 
where the k-time scheme is essentially composed of k inde- 
pendent one-time schemes. Typically a k-time public key is 
created from k one-time public keys by means of a collision 
resistant hash tree construction over the k public keys, with 
the root of the hash tree being the k-time public key. When 
the i ' th  1-time key is used to sign a message, then apart from 
the 1-time signature, the i ' th  signature must include the i ' th  
public key and hashes of the sibling nodes on the path from 
the i ' th  public key to the root of the hash tree. In our con- 
struction, we replace the collision resistant hash tree with a 
TCR hash tree [2]. This has several advantages. Firstly, the 
use of a TCR function implies that the sizes of all interior 
nodes in the tree get reduced by half and a single TCR key 
is used for each level in the tree. Since these level keys will 
be signed in the certificate for the k-time public key, they 
need not be sent with each signature. Thus the size over- 
head for the path gets reduced by a factor of 2. Also, due to 
reduced sizes of the intermediate nodes, a TCR tree works 
better with certificate signature schemes which permit rues- 

sage recovery from the signature, since more top level nodes 
can be accommodated within the embedded signed message. 

However, the use of a TCR  hash tree over Public keys 
which contain commitments transforms these commitments 
to weaker primitives which we term "TCR-commitments".  
These are no longer commitments in the true sense. We 
coin the term "TCl~-commitment" to denote a type of com- 
mitment in which it is possible for a committer to later on 
alter the committed value but has no incentive to do so. 
However, the receiver gets no information from the commit- 
ment and also cannot create a different consistent opening 
of the commitment once the committer has opened the com- 
mitment. However as far as the properties of unforgeability 
and non-repudiation are concerned, weakening of commit- 
ments to TCI:t keys within individual 1-time public keys to 
TCR-commitments in the TCB. hash tree calculation does 
not affect the security of underlying signature scheme. 

2.3 Optimizing Certificate Size 

The next optimization is to use padding schemes described 
in [1], to embed the k-time public key inside the regular sig- 
nature within the certificate itself for many popular regular 
public key signature schemes, thus save on the overhead of 
transmitt ing both the k-time public key and its certificate. 
As mentioned earlier, this when used in conjunction with a 
TCR hash tree results in additional optimization since more 
top level TCR  tree nodes can be embedded within the sig- 
nature than top level collision resistant hash tree nodes. 

3 Construction of our scheme from basic cryptographic 
primitives 

We now describe our scheme which creates a ¢~2-time key 
pairs with embedded TCR-commitments  to be used in a hy- 
brid scheme involving some other regular signature scheme 
such as RSA. Currently, a level of security of the order of 2 s° 
is considered adequate and our scheme is meant to have a 
comparable level of security. By adjusting the primitives de- 
scribed below, the scheme can be generalized to give higher 
levels of security. 

3.1 The Primitives 

Our scheme is based on the following primitives, each offer- 
ing around 80 bits of security. 

• Let H be a collision resistant hash function producing 
a 160-bit output. 

• Let C be a commitment scheme for 80 bit strings. C 
provides a C - create function for creating a com- 
mitment,  a C - decorr~mi~ function to create a de- 
commitment string and a C' - open function for the 
receiver to open the commitment from the commit- 
ment and de-commitment strings. In addition for the 
purposes of proofs we will also assume the C is a trap- 
door commitment scheme [3]. Although, at the the- 
oretical, abstract and provable level we will use C in 
our scheme, at the practical construction level we will 
create our own commitment scheme by requiring more 
properties from H as described below. 

• Further assume that 
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- H is at least a weak extractor, i.e., when H is 
given a high entropy input (with entropy of say 
least a 100 bytes), its 160-bit output is close to 
random. This property is fully expected to be met 
or even exceeded (in terms of entropy required 
from input) by a function like SHA-1, given its 
use for pseudorandom number generation. 

- H is a collision resistant hash function formed by 
applying the MD method to a collision resistant 
H-Compress(k, D) function based on fixing some 
IV for k, where k is a key of size at least 80 bits 
and D is a fixed sized data block of size more than 
than 160 bits. 

- H-Compress behaves like a family of keyed 
pseudorandom functions with respect the key k. 
This property together with the collision resis- 
tant  property of H-Compress is needed to use 
H as part of a commitment scheme. In prac- 
tice, one would realize such a function by defining 
H-Compress as aliA-I-Compress (and H as SHA- 
1) and already there are real-world applications, 
such as the protocol to blind credit card numbers 
in SET [8] which depend precisely on these two 
properties of SHA-1-Compress. The other differ- 
ence between this commitment and one required 
in the theoretical case is the lack of a trapdoor. 
The trapdoor is an artifact of the proof technique 
and in practice we only need to ensure that the 
commitment scheme is independent of the scheme 
used for the TCK hash function. 

With such a function, if we define PadH(=) to be some 
fixed bijective padding of input string ~ u p t o a  multi- 
ple of the block size of the compression function then 
ll'(r, T) = H(PadH(r)IT ) for a large, almost ran- 
dom r of size at least 100 bytes, is a commitment to 
any string T of size less than the data block size of 
H-Compress, as well as a collision resistant function 
on r and T. The de-commit string is just  r, T. 

• Let G(K, z) denote a family of keyed one-way func- 
tions with an 80 bit key K and 80 bit input z produc- 
ing a 80 bit output. 

• Let T I ( K ,  z) denote a target collision resistant keyed 
hash function family taking 80 bit key K and 80n bit 
input z, producing 80 bit output. 

• Let T2(K, z) denote a target collision resistant keyed 
hash function family taking an 80 bit key K and 160 
bit input z producing a 80 bit output. 

Before proceeding further, it will be useful to fix some 
notation. 
N O T A T I O N :  Let f be a function from t-bit strings to t- 
bit strings for some t. We will use the notation f~(=), to 
denote k successive applications of f to the string ~, e.g., 
ff '(z) = f ( f ( f ( f ( z ) ) ) ) .  Also for any f ,  f ° (z )  ~ m. 

3.2 Key Generation 

The n2-time public key is essentially derived from n 2 in- 
dependent random 1-time public keys hashed down using 
TCI~ hash functions in a tree construction (see [2]). Note 
that by applying the concept of target collision resistance 
instead of collision resistant hash functions we can realize 

additional savings. The output  of target collision resistant 
hash functions can be much smaller than that  of collision 
resistant hash functions since the birthday attack is inap- 
plicable This smaller output  translates in a smaller depth 
of a tree based TCR hash function, since interior nodes can 
accommodate more child nodes. 

First pick three 80-bit keys gl, g2, gs uniformly at ran- 
dom. These keys will be used throughout the construction 
of this n2 use public key. 

Throughout the construction, g(=) = G(#l, =) will be 
used as an 80 bit to 80 bit one-way function. 

For each i, corresponding to the i ' th  key of the n2-time 
signature scheme do the following: 

Pick T,, an 80 bit key uniformly at random. T~ will be 
used for selecting a TCB. function when the i ' th  key is used 
to sign a message (the n2-time public key will include a 
"TCl~-commitment" to this key) 

Pick 23 random 80 bit values, r,,1 . . . . .  r,,2s. From these 
compute ff~,l,.. . ,/i,~s as follows: 

For each j in {1 , . . . , 22}  

and 

A,, = 915 (~'~,j) 

/~.2, = g(~..2,) 

The basic idea behind this construction (which is similar 
to a construction given in [6]) is that since g is a one-way 
function any adversary who knows f~,s but not r~,j cannot 
compute r,,s or even g~(~i j ) for  any k < 15 and 1 _~ j < 22.1 

The i ' th  public key includes in it a "commitment" for 
the TCK function key to be used for signing the i ' th  mes- 
sage. Without the commitment, the public key would just  
be f,.1 . . . . .  f~,~s or a collision resistant hash of these quan- 
tities, i.e., H(f, , l[ . . .  If~,2s). To include a commitment, in a 
theoretical setting the public key can be defined as follows: 
Compute T~ = C -- create(T~). Compute 

PK~ = H(/ , , , I  . . . .  I / ~ , : , I T ¢ )  

where "I" denotes concatenation. 
Instead, in practice however, we will use 

P K ~  = H ' ( / . . ~  I .... l / . . 2 . ,  z) 
as both a commitment to T~ and a collision resistant hash. 

The public key for the n2-time signature scheme is then 

P K  = PK~IPK21...IPK~ 

For the sake of space efficiency (as we mentioned earlier), 
we do not sign a collision resistant hash of P K .  Instead we 
sign a tree-based TCR hash of PK (as described in [2]) 2. 
This works as follows: 

At the leaves are the n ~ public keys PK1, . . . ,  PK~2 each 
of which is 160 bits long. At the next higher level in the tree 
are n 2 nodes, L i , . . . ,  Ln2, one for each public key. The value 

1In this construction i t  would  have been  b e t t e r  if g was a permu- 
tation ins tead  of a r a n d o m  funct ion .  The use of a one.way function 
reduces the  entropy of ]~,j by a few bits, i.e., even if g was a random 
function, 3 - 4 bits of entropy  are  lost  a f ter  15 i terat ions .  

~Signing a TCR hash,of PK instead of a col l i s ion  res i s tant  hash 
converts the  c o m m i t m e n t s  to  the  TCR keys T, for message signing 
into a "TCR-commitment" to  those  keys 
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of node L~ is jus t  T2(g~,Ptfi), i.e., the T C R  hash of PK,, 
using the family T2 under key 92. At the next higher level 
in the tree are n nodes M1 . . . . .  M,~. Each node M, has n 
children, L,~(,-1)+1,. . . ,  L,¢ and its value is computed as 

M, = TI(gs,L.(~-i)+i I ... I L. ,)  

These ~ nodes M r , . . . ,  M ,  together with gt,g2,gs, con- 
st i tute the public key for the n~-time signature scheme. 
Each M, has an 80 bit value, therefore the n -time signature 
scheme has a public key of size 80~ + 240 bits. 

3.3 Signature Generation 

To sign a message m with the i ' t h  key of the n~-time signa- 
ture scheme, the signer does the following: 

1. Compute h = T2(T~, H(m)). This is an 80 bit TCR 
hash of m, under the assumption tha t  H is collision 
resistant. 

2. Let h z , . . . ,  ha0 denote the bits of k. Group these bits 
into 20 groups of 4 consecutive bits (aka nibbles). The 
value of each is a number from 0 to 15. Let ~ 1 , . . . ,  ~=0 
denote these numbers. 

s. For 1 _< j < ~ ,  iet D = / ~ - ~ ,  (~,,;). 

4. Let 
2o 

N =~n 3 

2=i 

N is a number between 0 and 300 and therefore fits in 9 
bits. Let ~21 denote the value of the least signi~cant 4 
bits of/V, n22 denote the value of the next 4 significant 
bits and n2a denote the value of the most significant 
9' th bit. 

5. Let Y21 = 0 T M  (r~,21). 

6. Let Y22 = 9'~2=(r~,22). 

7. Let Y~s = 9 T M  (r~,~). 

The signature then consists of T,, Y~,. . . , ' l '~a together 
with the values of the n - 1 other L nodes which corre- 
sponding to the children of M(i+=-z)/=, excluding L,, i.e., 
the siblings of L,. Let Sib(L,) denote these nodes. There- 
fore the signature consists of T,, Y~,. . . ,  Y~s, Sib(L~). In the 
theoretical setting, the signature would include T$ and T~ t = 
G - decommit(T,, T, ~) instead of T,. 

I t  has been pointed out by an anonymous referee that  
most of the information contained within Sib(L,) is the same 
among = signatures. Thus there is room for further improve- 
ment in the size overhead of a signature. 

3.4 Signature Verification 

To verify a signature S~ = (T,, Y1 . . . .  , Y2s, Sib(L,)) (or Si = 
(T$ , T~ , Y~ ..... Y2a, S4b( L, ) ) in the theoretical setting) on a 
message m do the following. 

1. In the theoretical setting first use C - open(T, ¢, T~) to 
obtain T,. In the practical setting this step is omit- 
ted since T, is provided. Compute h = T2(T,, H(m)). 
This is an 80 bit T C R  hash of m. 

2. Let hi . . . .  ha0 denote the bits of h. Group these bits 
into 20 groups of 4 consecutive bits. Each group is 
a number from 0 to 15. Let ~t l , . . . , r t20 denote these 
numbers. For 1 < j < 20, l e t / j  = g'~(Y~). 

3. Let 
2o 

N= ~n~ 
2=1 

N is a number between 0 and 300 and therefore 
fits in 9 bits. Let ~21 denote the value of the least 
significant 4 bits of N, ~22 denote the value of the 
next 4 significant bits and ~2s denote the value of the 
most significant 9 ' th  bit.  

4. Let f2~ = / 5 - - 2 1  (Y21). 

5. Let f:22 = 915-"22(Y~2). 

6. Let f~ =/-"2~(Y~). 

In the theoretical setting compute 

PK~ = H(. f , .z  I .... Lh,231T;)  

in the practical setting compute PK~ as 

PK: = H'(f~ I .... l.f2a,T,). 

PK: is supposed to be the same as PK, in the keygeneration 
phase. Compute L', = T2(g2, PK~).  L~ is supposed to be the 
same as L~ in the keygeneration phase. To verify this, since 
all the siblings of L, are provided as par t  of the signature, 
verify that  

M(,+~-i)/,~ = T l ( 9 , ,  < Sib(L,) ,  L~ >)  
where < Sib(L~),IS > is just  the concatenation of the 

L, 's  in the proper order. 

3.5 Proof of Correctness 

In the theoretical setting, one can prove that  breaking the 
scheme outlined above translates to breaking one of the 
s tandard  cryptographic primitives used in the construction 
and in that  sense the scheme can be considered secure. In 
the practical setting a similar result holds i.e., breaking the 
scheme means that  an assumption about  a primitive used is 
incorrect or there some unusual interaction between prim- 
itives. However, the assumptions made about  primitives 
in the practical sett ing (although same assumptions have 
made in other deployed protocols) are much more onerous 
and thus more likely to be false. 

4 Performance and Overhead Analysis 

Analyzing the performance of the above scheme requires fix- 
ing of the primitives being used and the parameters.  One 
needs specific functions for H,  G(K,z) ,  T I ( K ,  z) and 
T2(K,  z). H can be taken to be S H A - 1 .  In practice, G, T1 
and T2 can all be derived from S H A  - 1 Compress and in 
our analysis we wiLl assume that  each application of G, T1 
and T2 is comparable to an application of SHA-1-Compress.  
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4.1 Space Overhead 

For typical values of n, (say 6), the size of the 36-time public 
key which is 80*6+240 = 720 bits, is small enough so that it 
may be embedded inside a signature block itself for popular 
signature algorithms like RSA and Rabin (e.g., see [1]) which 
is typically expected to be at 1024 bit block size. Thus the 
public key and the regular signature on it will occupy 128 
bytes in this case. These 128 bytes can either be broadcast 
frequently or attached to each packet. 

The actual signature on a message m corresponding to 
the i'th use of the 36-time public key will have the following 
overhead: 

• 10 bytes : Disclosure of T~. 

• 230 bytes : One t ime signature on h = T2(T,, m). 

• 50 bytes : Values of the 5 other L nodes corresponding 
to the other children of M(~+5)/s, i.e., siblings of L,. 

This gives a total  of 290 bytes. 
Further optimization of 10 fewer bytes may be obtained 

in exchange for only a marginal reduction in security if the 
scheme is modified so that  f~,23 also serves the dual purpose 
of T,. 

For n = 5, this is reduced to 280 bytes which can be fur- 
ther reduced to 270 bytes by the technique described above. 

An anonymous referee has pointed out scope for further 
space improvement by not having to repeatedly send out the 
almost same information on the siblings in the 6 signatures 
corresponding to the same M~ 

4.2 Time Overhead 

Clearly, the sender does one regular private key operation for 
the n2-time key and the receiver does one signature verifica- 
tion for the n2-time key. This time varies over the signature 
algorithm and can be amortized over the n 2 uses. We now 
focus on the overhead just for the n 2 use key. 

Key Generation 

For efficiency it may be better for the signer to store all 
intermediate results in the key generation process. For n 2 
uses of the signature, the total amount of overhead is: 

1. 240n 2 -i- 30 random byte generation. In practice this is 
likely to be through a pseudorandom process. 

2. 22 × 15n 2 + n2 = 331n2 applications of g. 

3. n2 applications of H on 240 bytes. 

4. n2 applications of T2. 

5. n applications of TI. 

To get a sense of how many operations these are if we 
assume for example that an application of T2, T1, g is com- 
parable to a SHA - 1 compress, one application of H on 
240 bytes of data is comparable to 5 SHA - I compress and 
one SHA- I compress produces 20 random bytes, this time 
overhead is comparable to 349n ~ + n -I- 2 SIIIA - 1 com- 
presses, or on an average 349 SHA - 1 compresses per key. 

On high end workstations, 1000 1-time keys can be produced 
per second. 

Szgnature Genera~ton 

If tables are kept at the time of key generation, then the 
cost of the signature is essentially computing the T C R  hash 
of the message and around 25 table lookups. 

Signature Verification 

Signature verification is very similar to key generation. 
However, on an average only 8 applications of 9 would be 
needed instead of 15 for each of the nibbles in the T C R  
hash of the message and no random numbers need to be 
generated. Thus total  number of operations are 

1. 8 × 22 + 1 = 177 applications of g. 

2. 1 application of H on 240 bytes. 

3. 1 application of T2 

4. 1 application of T1. 

Carrying the SHA-1  analogy, this translates to roughly 
184 applications of SHA - 1 Compress. 

5 Implementation Experience 

We have implemented a version of this scheme as part  of 
an ongoing prototyping effort to develop an architecture for 
secure multicast [4]. The implementation was clone in "C" 
on a 400Mhz Pentium II  machine running Linux. We im- 
plemented a 36-time hybrid scheme with SHA-1 as the main 
component together with 1024-bit RSA as the long term sig- 
nature algorithm. We used the pthreads threading package 
on Linux to create a separate thread for the off-line process- 
ing for each signature context. This  thread is responsible 
for replenishing a key buffer of upto 1800 uses. The prelim- 
inary results axe as follows: If  1024-bit RSA directly used 
to sign packets then the maximum packet rate achievable 
was found to be approximately 40 packets/s  (for RSA, we 
recoded parts in assembly). Wi th  the hybrid solution, a rate 
of around 410 packets /s  could be sustained. For small pack- 
ets, the latency of the on-line signature calculation (provided 
that  a 36-time key was aheady available) was around 70ps, 
provided that  the signature calculation thread did not get 
pre-empted by the key-generation thread. To simulate ir- 
regular and bursty packet rate  we ran an application which 
would randomly and uniformly select the number of packets 
to send per second in the range of 100 to 600 and found 
that  current system and buffer levels were able to handle 
this load with ease. The numbers are also likely to improve 
once some of the other t ime critical routines (such as SHA-1) 
are re-coded in assembly. 
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G Other applications 

Our scheme which is essentially a very fast and reasonably 
compact approach to creating digital signatures from ba- 
sic cryptographic primitives shouFd--enable a large number 
of applications which require a high signature rate. In sce- 
narios, where the size of the signature does not matter, we 
can trade back the size advantages we have obtained in our 
scheme to get much faster hybrid 1-time/k-time signature 
schemes than were known before. In applications, where 
size of the signature matters, we are likely to have one of 
the best signature rates for a given size. 

One other practical situation where our technique can 
find good use is in the export-controlled ciphersuite imple- 
mentations within the SSL protocol. One of the peculiari- 
ties of SSL is that when an export-controlled client connects 
to an SSL server, the handshake consumes more time at 
the server end than when a full-crypto client connects, even 
though the security of the key agreement has been reduced 
from 1024-bit RSA to 512-bit RSA! One would normally 
expect this modulus size reduction to result in the export- 
controlled connection being 8 times faster on the server side. 
The reason for this discrepancy is the following: For export 
controlled connections, in the SSL protocol the server has a 
1024-bit certified signature key and it generates ephemeral 
512-bit encryption keys for key agreement. Typically these 
512-bit keys are used for around 100-500 connections. Now, 
upon receiving a client hello, the server uses its certified 
1024-bit key and the received client random nonce to create 
a certificate for the current 512-bit ephemeral encryption 
key. The client then uses the 512-bit key for key agreement. 
Therefore a connection with an export-controlled client costs 
the server one 1024-bit signature and one 512-bit decryption 
and is therefore more onerous than a more secure connection 
involving only 1024-bit encryption. Since there is no reason 
why the server should spend more resources to provide less 
security, we can use our scheme to reduce the server load 
when connecting with export-controlled clients to be com- 
mensurate with the security provided, i.e., reduce the load 
back to 512-bit decryption. For this we can employ our hy- 
brid scheme based on generating 100/500-use keys (depend- 
ing on the server policy on the lifetime of the ephemeral 
512-bit encryption key) and create a single certificate for 
them using the server's 1024-bit signature key. For each 
new connection request for which an ephemeral 512-bit en- 
cryption key needs to be used, we can use the 100/500-use 
scheme to generate a signature on the current 512-bit key 
and client nonce and return that to the client. 
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