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ABSTRACT

Human mobility data has been ubiquitously collected through
cellular networks and mobile applications, and publicly re-
leased for academic research and commercial purposes for
the last decade. Since releasing individual’s mobility records
usually gives rise to privacy issues, datasets owners tend to
only publish aggregated mobility data, such as the number
of users covered by a cellular tower at a specific timestamp,
which is believed to be sufficient for preserving users’ pri-
vacy. However, in this paper, we argue and prove that even
publishing aggregated mobility data could lead to privacy
breach in individuals’ trajectories. We develop an attack
system that is able to exploit the uniqueness and regularity
of human mobility to recover individual’s trajectories from
the aggregated mobility data without any prior knowledge.
By conducting experiments on two real-world datasets col-
lected from both mobile application and cellular network,
we reveal that the attack system is able to recover users’
trajectories with accuracy about 73%~91% at the scale of
tens of thousands to hundreds of thousands users, which in-
dicates severe privacy leakage in such datasets. Through the
investigation on aggregated mobility data, our work recog-
nizes a novel privacy problem in publishing statistic data,
which appeals for immediate attentions from both academy
and industry.
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1. INTRODUCTION

With the prevalence of mobile devices, human mobility
data has been ubiquitously collected through cellular net-
works and mobile applications, and publicly released for aca-
demic research and commercial purposes. For example, one
of the largest social applications in China, Wechat, has made
the real-time population information monitored by the mo-
bile applications available through public interface [1]. Ap-
ple recently updates its privacy policy to compel users to al-
low for sharing mobility data with its partners and licensees
[2]. One of the world-leading mobile operators, Orange, has
made a significant number of cellular accessing records avail-
able to researchers since 2013 [3]. One major concern of such
data release is how to preserve the privacy of mobile users?
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To preserve users’ privacy, instead of providing each user’s
trajectory records, the data owners tend to only publish the
aggregated mobility data, such as the number of users cov-
ered by a cellular tower at a specific timestamp. For exam-
ple, French XData project releases a cellular dataset that
only reports the population density of each region [4]. Mo-
bile operators in China share the real-time number of mobile
users at specific locations with some automobile and real
estate companies [5]. Such statistic data of mobile users’
mobility is of great utility in numerous applications, such as
epidemic controlling, transportation scheduling and business
intelligence. More importantly, most of these data providers
believe that such statistical mask can preserve users’ privacy
because the adversaries cannot distinguish each individual’s
records. In this paper, we demonstrate that this assump-
tion is false since mobile users’ trajectories can be recovered
with high accuracy from the statistically-masked aggregated
mobility dataset.

Releasing statistic data of mobile users’ mobility could re-
sult in privacy leakage in their trajectories simply because
two key characteristics of human mobility. Firstly, a sin-
gle user’s mobility pattern is coherent and regular, which
makes their trajectories highly predictable[6]. For example,
we can observe similar trajectories of a single user across dif-
ferent days, i.e., always commuting between office and home
during weekdays. Secondly, a user’s mobility pattern is sig-
nificantly different from others, which allows the adversaries
to uniquely re-identify his or her trajectory. Aggregated mo-
bility data provides masked mobility records of mobile users
in each time slot despite that we cannot identify those be-
longing to the same individuals, which is referred to as “ash”
of the original trajectories. However, our experiment reveals
that these two key insights make it possible for the adver-
saries to identify the mobility records created by a single
user, which is equivalent to recovering individual’s trajec-
tory from “ash”.

To recover user’s trajectory, we have to answer one funda-
mental question — are two masked mobility records created
by a single user or by different users? Once solving this
problem, we can recover users’ trajectories easily. We ad-
dress this problem by leveraging three general but key facts
we made from real-world mobility datasets. First, mobile
users tend to have low mobility during nighttime because of
natural sleeping cycle, i.e., more than 90% of nighttime mo-
bility records are created in the same location. Therefore,



Mobile Operator | Time Duration Location Data Source Information Type
AT&T |7, (8] 2009 2-4 months | NY and LA, USA voice call and message anonymized individual mobility information
Sprint |9:10| 2010 1 month Whole USA voice call records anonymized individual call information
Orange [1I:12] Since 2011 | 2-5 months Ivory Coast voice and text message aggregated mobility information
Tele. Italia 13| 2013 2 months Milan, Italy voice, message and data aggregated mobility information by towers
China Tele. [14] 2014 1 month Shanghai, China data accessing and logs aggregated traffic information by towers

Table 1: Examples of the mobility data releasing by operators from different countries.

we are able to estimate each mobility record’s next loca-
tion and associate those belonging to same users together
by maximizing the likelihood. Through this approach, we
can recover the nighttime trajectory of each user. Second,
utilizing the fact that a user’s mobility is continuous dur-
ing daytime, we are able to estimate the mobile users’ next
locations based on their current mobility. Specifically, we
use a velocity model to estimate the next location of a user,
and then associate unassigned location points with night-
time trajectories by minimizing the estimation error, which
expands the nighttime trajectories and recovers the whole
trajectories of each day. Third, exploiting the fact that mo-
bile users’ mobility trajectories are of high regularity while
significantly different from each others, we identify and as-
sociate users’ trajectories across days by measuring their
similarity, which finishes recovering the whole trajectory of
each mobile user. It worth noting that the above attack
system only exploits the universal characteristics of user’s
mobility, and hence does not require any prior knowledge or
parameters.

By utilizing two large-scale mobility datasets collected
from both mobile application and cellular network, we carry
out a thorough investigation on whether aggregated mobility
data preserves users’ privacy or not. We find following two
important observations. First, mobile users’ privacy is not
preserved in aggregated mobility data, i.e., we are able to
correctly recover 73%~91% mobility trajectory of each user
in a cellular network dataset that contains tens of thousands
to hundreds of thousands of mobile users. Second, we evalu-
ate how do the key factors of datasets impact on the privacy
leakage. The investigated factors include the spatial and
temporal resolution of the released data and the number of
users released. Surprisingly, we find out that spatial and
temporal resolution has little impacts on privacy preserva-
tion, while the attack model is effective even in large-scale
mobility data. These results indicate that the attack model
is robust to different settings of datasets, and the recognized
privacy problem is severe and universal in the aggregated
mobility datasets.

The rest of this paper is organized as follows. In Section 2,
we identify and define the privacy issue in aggregated mobil-
ity data to motivate our study. We introduce two real-world
datasets and explore the feasibility to recover individual’s
trajectory in Section 3, while the design of attack system is
discussed in Section 4. With the attack system, we evaluate
the privacy leakage on investigated datasets in Section 5. Fi-
nally, after discussing the potential mitigation solution and
future work in Section 6, we summarize the related works in
Section 7 and conclude our discovery in Section 8.

2. MOTIVATION

2.1 How Operators Release Their Datasets?

Table [I] summaries a few examples of mobility datasets
released by mobile operators. These datasets have various
duration and record mobile users’ mobility through the ser-
vice of voice call, SMS, data plan usage, etc. Operators
offered the anonymized individual mobility records in their
early release around 2009 and 2010. Then, researchers im-
mediately found out that mobility records generated by each
user are significantly different from others, which form quasi-
tdentifiers |15]. Therefore, with the aid of a small amount
of external information, such as several credit card records
|16], attackers are able to associate the anonymized trajec-
tory with a single user, which realizes the re-identi fication
attack|15]. More importantly, it is actually hard to alle-
viate mobile users’ privacy leakage in anonymized mobility
datasets. [17] and [18] tried to generalize or even permute
the original mobility records before anonymization. Unfor-
tunately, such operations require significant degeneration in
data quality to achieve small benefit in preserving users’ pri-
vacy.

Realizing the violation of user privacy in the releasing of
anonymized mobility records, mobile operators now tend to
release aggregated mobility datasets, such as the last three
data release in Table [[] For example, instead of sharing
each anonymized record created by individuals, they now
release the number of users covered by a base station, the
number of voice calls made each hour in each location, etc.
The operators believe that such aggregation will preserve
users’ privacy while providing useful statistic information
for academic research and commercial usage.

2.2 Privacy and Attack Model

Our work targets for the privacy concerns in aggregated
mobility data. The procedure to publishing aggregated mo-
bility data can be summarized as following two steps: a)
group the original mobility records of mobile users by time
slots, b) compute and publish specific aggregated statistics
of each time slot, e.g., the number of mobile users covered
each base station. This privacy model is simple and effec-
tive since it ensures that the released datasets exhibit the
following two desirable features:

e No individual information can be directly ac-
quired from the datasets. Since the aggregated
mobility data only contains general information of the
population, we cannot directly distinguish each mobile
user and extract personal information. It makes pub-
lishing aggregated mobility data automatically com-
plies with k-anonymity privacy model, which prevents
the re-identi fication attacks|15].

e The statistics of aggregated information is ac-
curate. The procedure of publishing aggregated mo-
bility datasets does not require generalizing, suppress-



Datasets & Metrics Operator Dataset  Application Dataset

Source Cellular network Mobile application
Time Apr. 2016 Nov. 2015
Duration one week two weeks
User number 100,000 15,500
Average records per user 261 496

Table 2: Key features of our utilized two different
mobility datasets.

ing or permuting original records. Therefore, it pre-
serves the truthfulness and accuracy of the original
datasets at record level. Such accurate aggregated
mobility data is of great importance in numerous ap-
plications, ranging from transportation scheduling to
business locating|19].

Although the privacy leakage in publishing anonymized
individual’s mobility records has been recognized and exten-
sively studied, the privacy issue in releasing aggregated mo-
bility data remains unknown. To ensure the attack model’s
ability of generalization, we assume that the adversaries have
no prior information of the targeted datasets, and define the
attack model as recovering mobile users’ individual trajecto-
ries from the aggregated mobility data with an unsupervised
method. Once the adversaries accurately recover individ-
ual’s trajectory, the privacy is under immediate threat of
well-studied individual’s records attack models, such as re-
identification attack and probability attack|15] [20], which
have been proven to be effective in various scenarios|21} [17].

3. DATASET AND FESIBILITY
3.1 Mobility Dataset

We use two real-world mobility datasets to understand
and investigate how can we recover user’s trajectory from
the aggregated mobility data.

Dataset collected by mobile application:
is collected from mobile devices by a popular mobile appli-
cation. It records the mobile users’ spatiotemporal points
when it is activated for service interactions. The dataset
traces over 15,000 mobile users from November 1st to 14th,
2015. It records fine-grained spatiotemporal information of
mobile users, including anonymized user identification, ac-
cessed base stations and timestamp.

Dataset collected by cellular operator: This dataset
is collected by a major mobile network operator in China.
It is a large-scale dataset including 100,000 mobile users
with the duration of one week, between April 1st and 7th,
2016. It records the spatiotemporal information of mobile
subscribers when they access cellular network (i.e., making
phone calls, sending texts, or consuming data plan). It also
contains anonymous user identification, accessed base sta-
tions and timestamp of each access.

Both datasets are collected in a major city with over 8,000
base stations in China. Therefore, by looking up the loca-
tions of these base stations, we are able to obtain trajecto-
ries of mobile users, which serve as the ground truth in the
investigation of aggregated mobility data’s privacy leakage.
Table [2| summarized the key features of these two datasets.

This dataset

T

(a) Day 1 (b) Day 2

Figure 1: Mobility trajectories of five randomly se-
lected mobile users in two days.
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Figure 2: The percentage of mobility records happen
in each mobile user’s most frequently visited towers.

The number of users and average number of records per
user are diverse in these two datasets, which makes our in-
vestigation covering a broad range of scenarios in dataset
releasing. We want to point out that we have taken the fol-
lowing steps to ensure the ethical considerations of dealing
with such sensitive data: first, all mobile users’ identifiers
are replaced with random sequences to achieve anonymiza-
tions; second, we store all the data in a secure local server;
third, only the core researchers regulated by the strict non
disclosure agreements have access to the data.

3.2  Why Privacy is NOT Preserved?

We argue that aggregating mobility records does not pre-
serve users’ privacy, since a user’s mobility pattern is regular
while different from others’. Figure[I]shows the mobility tra-
jectories of five randomly selected users from the operator
dataset over two days. We can clearly observe that each user
has a coherent mobility trajectory, i.e., their mobility trajec-
tories in the first day are similar to that of the second day.
More importantly, they are significantly different from each
other. As a result, even though the data owners like cellular
operators release aggregated mobility datasets, a malicious
entity still has the opportunity of recovering each user’s tra-
jectory by exploiting such regularity and uniqueness. One
natural question to ask is that does every mobile user have
such coherent and unique mobility trace?

To answer this question, we evaluate the regularity and
uniqueness of all mobile users’ trajectories on both investi-
gated datasets. First, we present the percentage of mobility
records that happen in each mobile user’s most frequently
visited cellular towers in Figure[2] For the operator dataset,
Figure a) shows that 36% of records happen in the most
frequent (top one) cellular tower during that week. Sim-
ilarly, on average a user visits top five towers for 83% of
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Figure 3: The percentage of mobile users that can
be distinguished by the selected K spatiotemporal
points.

the time. Both of them suggest that a user always stays
in the top towers for most of his/her daily cellular access.
We have similar observation on the other dataset shown in
Figure 2(b). Mobile users visit their top one towers for 76%
of the time and almost always stay in their top five tow-
ers. Such mobility pattern comes from the fact that mobile
users usually stay at one or several locations during their
daily day, such as office and home. As a result, only lim-
ited number of towers are visited. These results reveal that
mobile users’ mobility patterns are highly regular, which is
consistent with the coherent mobility trajectories observed
in Figure[T]

In order to quantify the uniqueness of mobile user’s tra-
jectory, we investigate the possibility of distinguishing differ-
ent users by choosing only a small set of the spatiotemporal
records in their trajectories. We use three different strate-
gies to obtain the sets of spatiotemporal points, i.e., selecting
the top K frequented locations visited by the user (Top-K),
randomly selecting K spatiotemporal points belong to the
user’s trajectory (Rand-K), and randomly selecting K con-
secutive spatiotemporal points (Cont-K). Under these three
strategies, we show the percentage of mobile users that can
be distinguished from others by the selected records in Fig-
ure In the operator dataset, we can observe that 67%
users can be distinguished when we look at the Top-3 tow-
ers. When we look at the Top-5 towers, above 95% of users
are unique. As for the other two strategies, we can ob-
serve higher percentage of unique users, when the number of
points is less than 3. Similar observation can be found in the
application dataset. All these results quantitatively demon-
strate that the individual mobility is significantly different
across different users, and most of them are unique. Based
on the uniqueness and the regularity of users’ mobility, we
come to the conclusion that it is possible to recover mobile
user’s trajectory from the aggregated mobility dataset.

4. MOBILITY TRAJECTORY RECOVERY

We design an unsupervised framework that leverages the
universal characteristics of human mobility to recover users’
trajectories from aggregated mobility data without any prior
knowledge. Our framework includes three modules: night-
time, daytime, and cross-day trajectory recovery. After prop-
erly formulating the investigated problem, we discuss each
module with details.

4.1 Problem Definition

In our considered privacy model, we release aggregated
spatiotemporal information of mobile users, i.e., the number

of mobile users covered by each cellular tower at each time
slot. Formally, we define such data as P = [p},p}, ..., D],
with pf, representing the number of mobile users at loca-
tion m in time slot ¢ and M representing the total number
of locations. Based on the number of each location’s mo-
bile users, we can directly derive the ID removed mobility
records L' = [I%,15, ...,1%] at time slot ¢ with N as the total
number of mobile users. Recovering a user’s mobility tra-
jectory is equivalent to associating the ID removed mobility
records that are created by the same user across different
time slots. Therefore, the fundamental question to ask is:
how to identify the mobility records that belong to the same
mobile users?

To answer this problem, we propose an attack framework
that iteratively associates the same users’ mobility records
in the neighbouring time slots, and step by step recovers
the whole trajectories. In each time slots, the procedure
of attack system can be broke down into two steps. First,
estimate the likelihood of next location I** belongs to a
given trajectory by exploiting the characteristics of human
mobility. Second, derive an optimal solution to link mobile
users’ trajectories with next mobility records that maximize
the overall likelihood. We first focus on the second step —
given estimated likelihood, how to derive an optimal associ-
ation.

Formally, we define the recovered trajectories till time slot
tas S' = [s},sh, ..., s%y], where s§ = [q},qf, ...,q5] is the jth
recovered trajectory and qj- is the recovered location at time
slot ¢. Given the cost matrix C* = {c} ;}nxw, With ¢} ; cor-
responding to the inverse of likelihood of linking trajectory
st with next location 15", the trajectory recovery problem
is equivalent to finding the optimal match between the rows
and columns with least overall cost. Formally, we define
the decision matrix X' = {z} ;}nxn, with z}; = 1 denot-
ing linking trajectory st with location l;“ and xfj =0
otherwise. Then, the trajectory recovery problem can be
formulated as following,

N N
L t t
Minimize E E Cij X Tij,
i=1 j=1

N N 1)
subject to xf] ={0,1}, foj =1, fo] =1.
i=1 j=1

The above formulated problem is equivalent to Linear
Sum Assignment Problem|22|, which has been extensively
studied and can be solved in polynomial time with Hungar-
tan algorithm|23]. The main procedure of this algorithm is
following,

e Step 1: In cost matrix C?, the elements of each row
are subtracted with the smallest element in that row.
Then, the elements of each column are subtracted with
the smallest element in that column.

e Step 2: Draw minimum number of lines through rows
and columns to cover all the zero entries in C*.

e Step 3: a)If the number of covering lines is N, derive
the optimal match among the zero entries and stop
the algorithm. b) If the number of covering lines is
less than N, proceed to Step 4.
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Figure 5: Percentage of time staying in the most
frequent locations during nighttime.

e Step 4: Find the minimum entry that is not covered
by the lines. Subtract each element of uncovered rows
with this entry, and then add each element of the cov-
ered column with this entry. Return to Step 2.

Therefore, the remaining problem of trajectory recovery is
how to build accurate cost matrix C* by exploiting mobility
characteristic. Explicitly, we design three different schemes
to estimate the cost matrix C* at different time periods:
nighttime, daytime and across days, which are elaborately
discussed as follows.

4.2 Recovering Nighttime Trajectories

The key insight of nighttime trajectory recovery is that
mobile users tend to stay in fixed locations during night-
time for natural sleeping cycle. Figure E| shows the percent-
age of users with different number of visited locations dur-
ing nighttime, i.e., 0 am~6 am. From the results, we can
observe that 62% and 88% of mobile users only visit one
base station during nighttime in operator and application
datasets, respectively. On the other hand, Figure [5| shows
the percentage of nighttime that mobile users stay in their
top frequent base stations. In the operator dataset, 89% of
nighttime is spent in the most frequent base station, while
the percentage reaches to 95% in the application dataset.
These results demonstrate that mobile users are of low mo-
bility during nighttime and tend to stay in the same base
stations.

Based on above observations, we design a scheme to gen-
erate the cost matrix C* during nighttime by following two
steps: a) estimate the next location of each recovered trajec-
tory as the last location visited by that trajectory. Defining
the estimated next location at time slot ¢ + 1 of the ith re-
covered trajectory as lf“, the estimated next locations is
derived by if“ = q¢; b) use the distance between the esti-

mated next location [f“ and the actual location point l’;“
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Figure 6: The CDF of the errors between the pre-
dicted location and ground truth.

as the cost ¢f ; of linking ™! to trajectory s}. In this way, we
define the cost matrix C* aiming to minimize the estimation
erTor.

Based on the above defined C?, we then utilize Hungar-
ian algorithm to achieve optimal association between recov-
ered trajectories and next location points, which recovers
the nighttime trajectories.

4.3 Recovering Daytime Trajectories

Different from nighttime, users move frequently during
daytime, which requires a different scheme to estimate the
next locations. The key insight is the continuity of human
mobility, which enables the next location estimation by us-
ing the current location and velocity. Our estimation model
is as follows,

I =gl + (g — a7 "), (2)

where ¢! is the location at timestamp ¢ of the ith trajectory.
Since the locations of mobile users are reported periodically,
gt — qffl is the displacement between timestamp ¢ and ¢+ 1
estimated by the velocity of last movement.

Figure[f]shows the empirical cuamulative distribution func-
tion (CDF) of the errors between the prediction and ground
truth location. From the results, we can observe that the
estimated locations are accurate in terms of 74% of them
have an error less than 1,000 meters in operator dataset,
while 93% of them have less than 500 meters error in ap-
plication dataset. Therefore, we use the distance between
the estimated next locations and the unassigned mobility
records in next time slot to formulate the cost matrix ct,
where ¢} ; = distance(l{*", l;-'*'l).

By applying Hungarian algorithm on matrix C*, we link
the trajectories with next locations by maximizing the likeli-
hood. Since minimizing distance is equivalent to maximizing
the probability, we can iteratively link the recovered night-
time trajectories with aggregated records, and recover the
trajectories of each day.

It worth noting that Hungarian algorithm is currently
the most efficient algorithm to solve this problem, but still
with computational complexity of O(n?). To speed up, we
adopt a suboptimal solution to reduce the dimension of cost
matrix by taking out the pairs of trajectories and location
points with cost below a predefined threshold and directly
link them together. This approach effectively reduces the
running time of trajectory recovery, while keeps a good per-
formance at the same time.

4.4 Recovering Trajectories Across Days



After above two steps, we have recovered mobile users’
sub-trajectories of each day. To associate the sub-trajectories
that belong to same users, we leverage two important fea-
tures that a user’s mobility pattern is regular and different
users have significantly different patterns. Specifically, we
use the information gain of connecting two sub-trajectories
to measure their similarities. We define the ith recovered
sub-trajectories in the dth day as UZ. Since the informa-
tion gain is designed based on entropy, we first introduce
the formulation of the entropy as follows,

HU ==Y sty O

where fi, is the frequency of visiting the kth cellular tower
in sub-trajectory Uf, and H(U{) is entropy of that sub-
trajectory. We denote the information gain of linking two
sub-trajectories UZ and U]‘Hl as G(U?, UJ‘.iH), which is com-
puted as follows,

H(U) + HUH
( )+2 (U; )7 )

where H(U& + U]‘“l) is the entropy of the combined trajec-
tory. The information gain measures the difference of fre-
quency distribution over towers recorded in U? and U]‘-“'l.

d prd+1y _ d d+1
G, U;7) =HU; +U;") —

If U and U;ZH have similar distribution on cellular tow-
ers, the information gain will be close to zero. Otherwise,
it will be close to one. Figure [7] shows the probability dis-
tribution function (PDF) of the information gain when we
associate two sub-trajectories that contributed by the same
users as well as the PDF of associating different users’ sub-
trajectories. We can observe that these two PDFs are sig-
nificantly different in both datasets. We obtain close to zero
information gain when we group two sub-trajectories con-
tributed by the same user. In contrast, close to one informa-
tion gain is obtained when we combine two sub-trajectories
of different users. Therefore, we use the information gain
of combining two sub-trajectories to generate the cost ma-
trix, where c‘ij = G(UE, U;H'l). By solving the optimal
match problem, we associate the sub-trajectories with high-
est similarity across different days, and recover the whole
trajectories of each mobile user.

To conclude, we design an unsupervised attack framework
that utilizes the universal characteristics of human mobil-
ity to recover individual’s trajectory in aggregated mobility
datasets. Since the proposed framework does not require
any prior information of the target datasets, it can be easily
applied on other aggregated mobility datasets. Note that
we do not aim to design an optimal while sophisticate at-
tack system. Instead, we intend to build a elementary but
effective attack system to reveal the privacy leakage in ag-
gregated mobility datasets.

S.  PERFORMANCE EVALUATION

In this section, utilizing the two introduced datasets, we
investigate the possibility of privacy leakage from the ag-
gregated mobility data by applying our designed attack sys-
tem. We first discuss how we extract ground truth from the
datasets, then define metrics to measure the privacy leakage,
and finally conduct extensive evaluations to quantify them.

5.1 Data Preparation and Metrics
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Figure 7: The PDF of information gain in linking
across days sub-trajectories contributed by a single
user or different users.

Ground Truth. Our two real-world datasets contain
spatiotemporal records of each individual’s mobility trajec-
tory. Since we target aggregated mobility data, we perform
the standard aggregating procedures on the datasets to ob-
tain the ground truth|3} |4} |5]. Such procedure includes three
steps: #1) Group all records in each 30 minutes time slot.
#2) Extract the most frequently visited location of each mo-
bile user in each time slot, and perform a linear interpolation
to determine the locations without records. #3) Aggregate
the extracted locations and generate the number of mobile
users covered by each cellular tower in each time slot.

Performance Metrics. We introduce three metrics to
evaluate the performance of our attack system —accuracy,
recovery error and uniqueness. To properly measure these
metrics, we first uniquely pair the recovered trajectories with
the most similar trajectories in the ground truth data. The
pairing is done in a greedy manner by enumerating the re-
covered trajectories and finding the most similar original
trajectories that are not paired. Intuitively, the privacy
leakage is severe, if the recovered trajectories are of high
accuracy, i.e., most of the recovered spatiotemporal points
are correct. Therefore, we compute the accuracy as the ra-
tio between the number of correctly recovered spatiotempo-
ral points and the total number. Denoting the ith original
trajectory as Y; = [yi,yZ,...,y7 ] and the ith recovered tra-
jectory that is paired with Y; as Z; = [z}, 22, ..., 2] | with T
as the total number of time slot, we compute the recover
accuracy, denoted by A, as follows,

1 N |Z¢ ﬂY”
where Z; NY; is the common spatiotemporal points between
the two trajectories and || is the number of spatiotemporal
points in *.

On the other hand, to quantify how far do the wrongly
recovered spatiotemporal points deviate from the ground
truth, we define the recovery error of each recovered spa-
tiotemporal point as the spatial distance between each re-
covered spatiotemporal points and the original points in the
ground truth. Formally, we compute the recovery error of
recovered spatiotemporal point z! as

E! = distance(z},y}), (6)

where distance(z!,y!) is the euclidean distance between z!
and y!.
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Figure 8: Accuracy, recovery error and uniqueness of the recovered trajectories, where #1, #2 and #3
represent the recovered results after step 1, step 2 and step 3, respectively.

Last but not least, we evaluate the uniqueness of the re-
covered trajectories to quantify the possibility of linking
the recovered trajectories with victims by re-identification.
For example, if the attacker knows the locations of victims’
homes and working places, the uniqueness measures the pos-
sibility that he can uniquely distinguish victims’ recovered
trajectories. Therefore, we define the uniqueness as the
percentage of recovered trajectories that can be uniquely
distinguished by their most frequent k locations(Top-K),
where the Top-2 locations usually corresponding to home
and working places.

5.2 Attack Performance

We quantify the privacy leakage in aggregated mobility
data by testing the designed attack system, and evaluating
the performance in Figure[§] where #1, #2 and #3 represent
the recovered results after step 1, step 2 and step 3, respec-
tively. From Figure a)7 we observe that in both datasets
the recovery accuracy remains high during each step of our
attack system. For the application dataset, the accuracy
reaches up to 98% in the first step and slowly decreases to
91% in the final step. It indicates that our attack system
can correctly recovered 98% of nighttime trajectories and
91% of whole trajectories. On the other hand, the accuracy
for operator data slowly decreases from 95% to 73%, which
indicates that our system recovers most of the trajectories
correctly. These results demonstrate that our system can ac-
curately recover most of the spatiotemporal points in each
trajectory, which achieves effective attack on the aggregated
mobility data.

From the perspective of recovery error, we present the
CDF of the final recovered trajectories’ error in Figure b).
The results show that only 21% and 8% of the recovered
spatiotemporal points have a recovery error more than 1,000
meters in mobile operator dataset and application dataset,
respectively. In addition, 6% and 1% of the recovered spa-
tiotemporal points deviate from the ground truth at dis-
tance between 0~1,000 meters in operator and application
datasets, respectively. These results indicate that our at-
tack system is able to recover trajectories with small devia-
tion. On the other hand, we present the percentage of the
unique recovered trajectories given the Top-K locations in
Figure c). From the results, we can observe that given the
two most frequent locations of the recovered trajectories,
over 95% of them can be uniquely distinguished. Therefore,
the results indicate that the recovered trajectories are very

unique and vulnerable to be reidentified with little external
information.

To conclude, the above evaluations indicate that our at-
tack system is effective in breaching the privacy of aggre-
gated mobility data in terms of recovering mobile users’ tra-
jectories with high recovery accuracy and low recovery error.
In addition, the recovered trajectories have a high possibility
to be linked to the victims with external information pro-
vided, such as two most frequent locations. These results
suggest that the privacy leakage is surprisingly severe even
in publishing aggregated mobility data, which contradicts
the conventional wisdom and appeals attention to investi-
gate privacy problem in such dataset.

5.3 Impact of Factors

After demonstrating the severe privacy leakage in aggre-
gated mobility data, we study the main factors influenc-
ing the privacy preservation. Intuitively, datasets consist
of large-scale and low spatiotemporal resolution trajecto-
ries are often considered to be safer. Therefore, we carry
out experiments to quantify the influence of spatial resolu-
tion, temporal resolution and dataset scale on the privacy
preservation of publishing aggregated mobility data on both
dataset. To avoid redundant, we only demonstrate the re-
sults of mobile operator dataset since the application dataset
yields similar results.

Spatial Resolution. We first look at how does the spa-
tial resolution influence the privacy leakage. The initial
spatial resolution of our investigated datasets is sector of
base stations. We aggregate the spatiotemporal points into
the resolution of base station and administration district,
where each base station has 2 or 3 sectors and the admin-
istration district typically covers about 100 base stations.
Then, we evaluate the performance of the attack system,
and present the recovery accuracy in Figure @(a). We can
observe that the recovery accuracy increases as the spatial
resolution decreases, which indicates more severe privacy
leakage in spatial coarse-grained datasets. More specifically,
when the spatial resolution reduces from sectors to adminis-
tration districts, the recovery accuracy increases from 73%
to 89%, which contradicts with our intuition. On the other
hand, Figure @(b) demonstrates that the uniqueness of re-
covered trajectories decreases as the spatial resolution de-
creases. To be precise, the percentage of uniquely distin-
guished rate with Top-2 locations provided decreases from
95% to 62% as the spatial resolution reduces from sectors
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Figure 10: The impact of temporal resolution on
privacy leakage.

to administration districts. It suggests that the possibility
of linking mobile users and recovered trajectories decreases
as spatial resolution decreases. The underlying reason is
probably that human mobility is more predictable but less
unique in spatial coarse-grained datasets.

Temporal resolution. Temporal resolution is another
important factors for mobility datasets. To study its im-
pact, we first produce aggregated mobility data with dif-
ferent temporal resolution, i.e., 30 minutes, 90 minutes and
180 minutes, and then evaluate the performance of the at-
tack system showing in Figure where #1, #2 and #3
represent the recovered results after step 1, step 2 and step
3, respectively. Observing Figure[10|a), we surprisingly find
out that as the temporal resolution decreases from 30 to 180
minutes, the accuracy of final recovered trajectories slightly
increases from 73% to 82%. It is probably because when the
temporal resolution is low, each trajectory contains fewer
spatiotemporal points, which capture more frequent and reg-
ular behavior of mobile users in the aggregation process, and
hence are more predictable. On the other hand, Figure b)
reveals that the uniqueness of recovered trajectories does not
decreases as temporal resolution decreases. More impor-
tantly, with Top-2 locations provided the uniquely distin-
guished rate even slightly increases from 95% to 98%, which
is contrary to decreasing spatial resolution. The underly-
ing reason is probably because mobile users’ trajectories are
more unique in spatial domain, and hence reducing tempo-
ral resolution does not help to make them less unique. As
a result, the accuracy and uniqueness of recovered trajecto-
ries do not decrease with temporal resolution as expected,
which indicates that the attack system is robust under dif-
ferent temporal resolutions.

Number of Users. Since our attack system exploits the
uniqueness of individual’s trajectory, the number of individ-
uals is assumed to be an important factor that influences the
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Figure 11: The impact of number of trajectories on
privacy leakage.

privacy breach. To evaluate this assumption, we randomly
sample subsets of different number of individuals from the
investigated datasets, and then utilize the proposed attack
system to recover the trajectories from each sampled subset.
The obtained results are presented in Figure [[I] where #1,
#2 and #3 represent the recovered results after step 1, step 2
and step 3, respectively. Observing Figure[11{(a), we find out
that when the dataset contains only 1,000 mobile users’ tra-
jectories, the accuracy is around 0.99, which indicates that
the attack system correctly recovers 99% of spatiotemporal
points. In addition, the recovery accuracy indeed decreases
as scale of dataset increases. However, when the number
of users reaches to 100,000, the attack system is still able
to recover the trajectories at accuracy around 50%. On the
other hand, Figure b) shows that the uniqueness of re-
covered trajectories decreases as the scale of datasets grows
when only Top-1 location is provided. However, with more
external information provided, such as Top-2 or Top-3 loca-
tions, the uniquely distinguished rate is stable and remains
above 85% with datasets of different scale. These results
reveal that increasing the size of datasets can indeed reduce
the accuracy of recovered trajectories, but it cannot prevent
attackers link the recovered trajectories with mobile users
when more than Top-2 locations are provided. More impor-
tantly, the evaluation demonstrate that the attack system is
valid at the scale of tens of thousands to hundreds of thou-
sands individuals in terms of correctly recovering most of
the trajectories.

6. DISCUSSION

Through designing and evaluating an attack system for
aggregated mobility data, we reveal that simply aggregating
mobile user’s mobility traces does not provide much privacy
preservation as one might expect. Now, we intend to discuss
the potential solutions to mitigate such privacy risk, and
explore the privacy problem in general statistic data.

6.1 Potential Mitigation Solutions

An effective attack system for aggregated mobility data
is required to meet two conditions: first, the recovered tra-
jectory is accurate; second, the recovered trajectory can be
linked with victim when certain external information is pro-
vided. Therefore, the mitigation solutions should be de-
signed to prevent the attackers from meeting both of the
conditions. We discuss two potential mitigation solutions
— generalization and perturbation.

Generalization: Generalization is a widely adopted scheme

that reduces the spatiotemporal resolution to preserve mo-
bile users’ privacy in releasing mobility datasets|17} [18]. Re-



ducing spatiotemporal resolution can potentially reduce the
uniqueness of recovered trajectories, because different users’
trajectories are more similar when they are coarse-grained.
Our previous experiments reveal that spatial generalization
can indeed reduce the uniqueness of recovered trajectories,
which prevents the attackers from linking them with the vic-
tims. In addition, coarse-grained trajectories are also less
sensitive because they do not give away the exact locations
of mobile users. Therefore, generalization is a valid privacy
preserving scheme in releasing aggregated mobility data.

Perturbation: Perturbation is another popular privacy
preserving solution in releasing mobility data, which pro-
tects individual’s privacy by adding noise to the original
data [4}|24]. Since the attack system mainly bases on the be-
haviours of human mobility, the perturbation scheme should
be designed to prevent the attackers from exploiting them.
For example, noise can be added to the mobility records at
each mobile user’s most frequent locations to make their tra-
jectories less regular. In addition, it can also make mobile
users’ trajectories less unique by eliminating several sensi-
tive mobility records. In short, a well designed perturbation
scheme can reduce the regularity and uniqueness of mobile
users’ trajectories, which has the potential for preserving
mobile users’ privacy in aggregated mobility data.

6.2 Privacy Problem in General Statistic Data

Our paper reveals the potential privacy breach in aggre-
gated mobility data, which is a kind of statistic information
of mobile users. Therefore, the follow up question will be:
is this privacy problem universal in releasing statistic data?
Or, to put it another way, can individual’s information be
inferred from general statistic data? Inspired by our study,
we notice that two key features of the released data facili-
tate the attack: a)there are patterns in the records created
by same individuals — regularity. b) those patterns are dif-
ferent across different individuals — uniqueness. Therefore,
the statistic data with similar features is likely suffering from
the same privacy breach. Unfortunately, these two features
are quite common in the traces left by human, which has
been reported in numerous scenarios, such as credit card
records [16], mobile application usages [25], and even web
browsing |26]. Hence, such privacy problem in statistic data
is potentially severe and universal, which calls for immedi-
ate attentions from both academy and industry. Evaluating
the privacy breaches in different scenarios and developing a
generic privacy model for releasing statistic data are left for
future works.

7. RELATED WORK

Human mobility behaviors and patterns have been studied
via mobile cellular data for a decade. By analyzing opera-
tors recorded mobility dataset, on one hand, individual mo-
bility is observed with a high degree of temporal and spatial
regularity|27]. Such regularity can be potentially predicted
with probability of 93% [6] and statistically modeled with
high accuracy|28]. On the other hand, individual mobility is
revealed with high uniqueness, i.e., with only several most
frequently visited locations|17] or several random spatiotem-
poral points|21}|16], an individual can be uniquely identified.
Instead of studying the regularity patterns or unique mobil-
ity behaviors, in this paper we utilize these two fundamental
human mobility laws to investigate the privacy issues, i.e.,

achieving user trajectory recovery from the aggregated mo-
bility datasets.

Despite the increasing privacy concerns about daily Inter-
net usage and web accessing|29} 30, 31, |32], recent studies

have demonstrated that the privacy risk of releasing anonymized

human mobility datasets is severe, since a very high percent-
age of individuals can be re-identified with their spatial (only
locations) |17} |18 133} (34} |35] or spatiotemporal (with both
locations and time information) records|21]. As a result, a
number of privacy-preserving techniques have been proposed
with the method of identifier replacement|36|, generaliza-
tion|18| [34], suppression[37], or perturbations and permu-
tations|24] 38|, to make sure the released datasets comply
with the guideline of k-anonymity|15, |18] and I-diversity
|20} [35]. These privacy techniques are designed under the
assumption that unique identifiers of individuals, replaced
with random sequence or encrypted, are kept in the released
datasets. Therefore, it is completely different with our pri-
vacy problem in only publishing aggregated mobility data,
where the mobility records belonging to same individuals
cannot be associated together.

Recent works also consider the privacy problem in releas-
ing aggregated statistics. However, previous works mainly
focused on protecting the membership information of in-
dividuals. Acs et al.[4] implemented a differential privacy
scheme on aggregated population density data, which pro-
vided provable privacy guarantee that the adversaries cannot
determine whether a given mobility record is in the dataset
or not. In addition, Dwork et al.[39] proposed a privacy
framework that prevented the adversaries to infer the mem-
bership information of an individual given the statistic in-
formation of a DNA dataset. Different from previous works,
our paper targets at a more general privacy problem on infer-
ring personal information, not just membership information,
from the aggregated statistic of a dataset.

8. CONCLUSION

In this paper, we identify and evaluate the risks of trajec-
tory recovery attack in the aggregated mobility dataset. To
the best of our knowledge, we are the first to recognize and
study the privacy problem of inferring individual’s informa-
tion from statistic data. Our investigation reveals that there
is serious privacy leakage in the aggregated mobility data
since individuals’ trajectories can be recovered with high
accuracy. In addition, our evaluation demonstrates that the
spatiotemporal resolution and scale of datasets have notable
impact on the privacy breach. We believe that this work
opens a new angle of protecting the privacy in publishing
and sharing statistic data, which paves the way to more ad-
vanced privacy preserving mechanisms.
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