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We consider the problem of identifying common three- 
dimensional substructures between proteins. Our method 
is based on comparing the shape of the a-carbon back- 
bone structures of the proteins in order to find 3D rigid 
motions that bring portions of the geometric structures 
into correspondence. We propose a geometric represen- 
tation of protein backbone chains that is compact yet 
allows for similarity measures that are robust against 
noise and outliers. We represent the structure of the 
backbone as a sequence of unit vectors, defined by each 
adjacent pair of a-carbons; we then define a measure 
of the similarity of two protein structures baaed on the 
RMS (root mean squared) distance between correspond- 
ing orientation vectors of the two proteins. 

Our measure has several advantages over measures 
that are commonly used for comparing protein shapes, 
such as the minimum RMS distance between the 3D 
positions of corresponding atoms in two proteins. This 
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new measure behaves well for identifying common sub- 
structures, in contrast with position-based measures where 
the nonmatching portions of the structure dominate the 
measure. At the same time, it avoids the quadratic 
space and computational difficulties associated with meth- 
ods based on distance matrices and contact maps. We 
show applications of our approach to detecting common 
contiguous substructures in pairs of proteins, as well as 
the more difficult problem of identifying common pro- 
tein domains (i.e., larger substructures that are not nec- 
essarily contiguous alorig the protein chain). 

1 Introduction 

As an increasing number of protein structures become 
known, the need for algorithms to analyze threedimen- 
sional conformational structure increases as well. The 
search for common substructure is of value in uncov- 
ering relationships among different proteins - for in- 
ferring similarities in function and discovering common 
evolutionary origins. There is now widespread agree- 
ment that similarities among distantly related proteins 
are often preserved at the level of three-dimensional 
structure, even after very little similarity remains at the 
sequence level [7]. W e are interested in developing effi- 
cient comparison methods for three-dimensional protein 
structures. 

The goal of our work is to automatically identify 
common substructures shared by two proteins, based 
on similarity in their three-dimensional structure. A 
key element of our approach is the development of a 
geometric notion of similarity that is appropriate to the 
task of protein structure comparison. This is a problem 
that has received considerable attention in the biological 
research literature (cf. [22]), and a variety of different 
methods have been proposed. 

For protein chains that are very similar (e.g., can- 
didate structures produced in crystallography experi- 
ments), a common measure of similarity is the RMS 
(root mean square) distance between the positions of 
corresponding atoms of the proteins, after the proteins 
have been superimposed by a three-dimensional rigid 
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motion (e.g. [lo, 191). While this approach is reasonable 
for comparing two structures that are highly similar, it 
does not work well for finding similar substructures in 
otherwise dissimilar proteins. The difficulty with dis- 
similar proteins is that the portions of the structure 
that do not match dominate the RMS value, making 
it difficult to identify matching substructures. This is 
an instance of the classical issue of outliers, or bad data, 
dominating the measure in fitting or estimation prob- 
lems. 

Other methods for structural matching address the 
limitations of techiques that use the RMS distance. One 
widespread set of approaches is based on comparing the 
distance matrices or contact maps of two proteins (see 
e.g. [3, 9, 13, 24, 251). The distance matrix records 
all pairwise distances between selected atoms within 
a given protein - often for all the a-carbons of the 
residues. For a protein with n residues, such a distance 
matrix therefore contains O(n2) entries. The distance 
matrix representation is invariant with respect to the 
position and orientation of the protein; thus the dis- 
tance matrices for two proteins can be compared di- 
rectly, without the need to find a rigid motion super- 
imposing them as RMS distance approaches require. 
The use of distance matrices has a number of draw- 
backs, however. First of all, a full distance matrix is 
quadratic in the size of the protein it represents. More- 
over, algorithms for aligning distance matrices have typ- 
ically been computationally expensive; identifying cor- 
responding substructures between two proteins requires 
finding corresponding submatrices that are nearly the 
same, and this appears to be a difficult optimization 
problem (e.g. [7, 91). 

Finally, a different set of approaches to structure 
comparison is based on using a purely local representa- 
tion of a protein chain. Some common local representa- 
tions are the set of (4, $J) torsion angles along the back- 
bone [3, 223; the set of virtual-bond angles and virtual- 
bond dihedral angles [ll, 12, 211 between consecutive 
a-carbons; and variations on these (e.g. (17, IS]). Such 
representations are compact and independent of the po- 
sition and orientation of the protein; however, there are 
settings in which two proteins with similar local repre- 
sentations can be geometrically very different. Consider, 
for example, two protein structures that are the same 
except for a bend in the middle. Although the sets of 
three-dimensional coordinates and pairwise distances of 
the proteins will be quite different, the data in a lo- 
cal representation of the two proteins will be the same 
except for those residues directly at the bend. 

In this paper we present a new algorithm for ef- 
ficiently detecting common substructures in proteins, 
based on a comparison methodology for protein chains 
that has both global and local aspects. For a given pro- 
tein, we begin with the sequence of a-carbons that form 

its backbone chain. Rather than encoding the three 
dimensional coordinates of these atoms, we record the 
unit vector zli in the direction from the ith a-carbon to 
the (i + l)St a-carbon along the chain. The distance 
between successive a-carbons is essentially a fixed con- 
stant (approximately four angstroms), and thus this set 
of unit vectors captures the structure of the backbone. 
Indeed, these unit vectors correspond to the tirtual-bond 
vectors of the protein 111, 12, 211. 

By chaining the unit vectors vi end to end, we ob- 
tain the standard model of a protein as a sequence of 
a-carbons in space. By placing all of the unit vectors 
at the origin of R3, we can view the protein as a se- 
quence of points on the unit sphere. We will represent 
the protein in this latter way: by its collection {vi} of 
unit vectors with respect to a common origin. Thus we 
see that our representation has both a local and a global 
nature: although each individual vector vi records the 
position of the (i + l)st a-carbon in a local reference 
frame centered at the ith a-carbon, our representation 
implicitly situates all the unit vectors {vi} in a common 
global reference frame. This is contrast to traditional ap- 
proaches that have used virtual bonds among a-carbons 
to define purely local representations. 

Our representation is therefore compact, having size 
O(n) for a protein with n residues, and it reflects global 
aspects of a protein’s structure - introducing a single 
bend in the middle of structure affects aZE the vectors vi 
that come after the bend. Our unit-vector representa- 
tion is not independent of the orientation of the protein, 
since the vectors {vi} are placed in a global frame of 
reference. However, we will see that unlike representa- 
tions based on raw three-dimensional coordinates, the 
unit-vector representation allows for geometric similar- 
ity measures that are robust against outliers. 

Our algorithm for comparing two protein chains, 
based on the unit-vector representation, consists of the 
following three steps. 

Determine a small set of sh@s, or contiguous align- 
ments, that are likely to include those alignments 
that bring matching substructures into 3D corre- 
spondence. 

For each shift chosen above, determine the contigu- 
ous substructures for which there is a 3D geometric 
alignment (i.e., substructures of the two proteins 
that can be superimposed using a 3D rigid motion). 

Combine the contiguous substructures chosen above 
to identify common protein domains (larger sub- 
structures that are not necessarily contiguous along 
the ‘protein chain) that can be superimposed. 

The first step of our algorithm runs in O(nlogn) 
time, where n is the number of a-carbons in the larger of 
the two proteins being compared. The second step takes 
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0(n) time for each shift identified in step one; typically 
only the best 10 shifts provide any useful information, 
but our current implementation checks the best 20. The 
running time of the third step depends on s, the number 
of substructures found in the second step. 

Our approach makes use of two very different kinds 
of alignment. The first of these, employed in Step 1, 
is the alignment of two sequences by a simple shift rel- 
ative to one another. We refer to this as contiguous 
alignment, as it is simpler than the standard biologi- 
cal notion of sequence alignment (which further allows 
for insertions and deletions into a sequence). More for- 
mally, for integers k = 0, 1, . . . , n - 1, we match each 
residue i of the shorter protein with residue i + k of the 
longer protein. Here addition is taken modulo n, so that 
our shift includes a “wrap-around”. The wrap-around 
ensures that each unit vector in protein A is compared 
against each unit vector in protein B. 

The second kind of alignment that we employ is ge- 
ometric alignment, which is the 3D positioning of two 
proteins such that corresponding atoms in the two struc- 
tures are approximately superimposed. 

Our method will be based on a variant of the RMS 
distance, measuring differences between the global ori- 
entation vectors vi at corresponding a-carbons of two 
proteins, rather than measuring differences between the 
positions of the a-carbons themselves. The key underly- 
ing observation is that the difference between two orien- 
tation vectors is bounded by a small constant, whereas 
the distance between two points can grow arbitrarily 
large. This makes the unit-vector RMS (URMS) that 
we propose naturally robust with respect to differences 
between nonmatching parts of the structure, whereas 
the conventional position-RMS is not. 

The RMS distance. A basic method for determining 
geometric similarity between two sets of points is the 
root mean square (RMS) distance on point sets. This 
measure of distance requires a one-to-one correspon- 
dence between the point sets. The standard (position- 
based) RMS distance between point sets A = {al, . . . , a,} 
and B = {br,. . . , bn} is defined as the square root of the 
sum of the squared distances between the points of A 
and the corresponding points of B. Generally one seeks 
the best possible RMS distance; that is, the RMS dis- 
tance between A’ and B where A’ is the set A after 
application of the 3D rigid motion that minimizes the 
RMS distance. We refer to this as the minimum RMS 
distance between A and B. 

To compute the minimum RMS distance, first trans- 
form A to make it have the same center-of-mass as B. 
Then compute the correlation matrix for A and B. This 
is a 3 x 3 matrix in which the (p, q) entry is ~~=r ai,pbi,,. 
This matrix is factored using the singular value decom- 
position; the resulting factors can be used to construct 
in constant time both (1) the orthogonal matrix that 

brings A into the closest possible match with B and (2) 
the resulting RMS distance. For a concise description 
of the algorithm and an explanation of why it works see 
Golub and Van Loan 161 (where it is referred to as the 
orthogonal Procrustes problem) or Lesk [lo]. 

The minimum RMS distance between two sets of 
atoms in R3 is useful primarily when aligning two struc- 
tures that are extremely similar. Thus, it is widely used 
for aligning structures produced in the course of crys- 
tallographic or NMR analysis of molecules. 

It is less appropriate for comparing structures that 
have only a distant similarity. This is due to its sen- 
sitivity to outliers. Indeed, a few outliers can have a 
significant effect on the resulting minimum RMS dis- 
tance. For instance, consider sets A and B, each with 
n points, where the minimum RMS distance between 
A and B is 0. Now suppose we take the point bl and 
gradually move it along a straight line. As we move bl, 
the minimum RMS distance between A and B increases 
without bound, and the rigid motion corresponding to 
this minimum distance also changes so that the congru- 
ent point sets A - {ur } and B - { bl} become arbitrarily 
far apart. Thus a small number of gross outliers can 
hide a large shared substructure. 

Another issue with the minimum RMS distance is 
that points far from the center of mass are, in effect, 
weighted more heavily than points near the center of 
mass. Consequently, a common “core” shared by two 
structures is difficult to detect using the minimum RMS 
distance. This is problematic in the case of proteins, 
where some crucial similarities occur near the center of 
mass. 

Our Approach. Using an RMS distance on the unit- 
vector representation {vi} allows us to avoid the draw- 
backs discussed above while retaining the computational 
efficiency of the minimum RMS calculations. Recall our 
view of the representation {vi} as consisting of a se- 
quence of points on the unit sphere in R3. To compare 
two proteins, with sets of unit vectors {vi} and {wi}, 
we compute the minimum RMS distance between the 
two sets {vi} and {wi}, viewed as subsets of the unit 
sphere. Since we wish the origins of the vectors to re- 
main fixed in space, we minimize the RMS distance only 
over possible rotations of the vectors, not over trans- 
lations. Henceforth we use the term position-RMS to 
refer to the standard, position-based, minimum RMS 
distance; we use the term unit-vector RMS (URMS) to 
refer to the minimum RMS distance for a pair of sets in 
our unit-vector representation. 

Because the maximum squared distance between any 
two unit vectors is 4, no single outlier can have a large 
effect on the URMS. As a result, the URMS exhibits 
a natural resilience to the presence of outliers, such as 
those arising due to portions of two protein structures 
that do not match. 
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Other Related Work. Above, we have indicated a num- 
ber of the approaches that have been proposed for pro- 
tein structure comparison. Here, we discuss several of 
these in more detail; see [2, 8, 221 for recent surveys on 
the topic. 

There has been work on discovering geometric align- 
ments that are not required to respect the order of 
the sequence, using distance matrices on o-carbons and 
secondary structural elements of proteins (Vriend and 
Sander [24], Holm and Sander [9], Grindley et al. [5]). 
In particular, Vreind and Sander [24] use the distance 
matrix to find pairs of matching fragments of two pro- 
teins and then combine them into larger units which 
are compatible in R3. The latter step is based on com- 
parisons of the centers of mass of the fragments and 
of relative rotations between combined fragments. Yee 
and Dill [25] use distance matrices as part of an algo- 
rithm whose high-level structure is similar to ours. They 
also search over contiguous alignments of two protein 
sequences to discover similarities, but their notion of 
similarity is different from ours. It is based on shifting 
the alignments of the distance matrices of the two pro- 
teins and computing the “distance” between the matri- 
ces (by means of the Frobenius norm). The shifts that 
give the smallest norms are predicted to yield match- 
ing contiguous alignments. Though the running time 
is not discussed explicitly in their work, it is easy to 
see that it can be O(n3). (It is possible that an applica- 
tion of the Fast Fourier Transform could improve this to 
O(n2 log n).) There has also been work by a number of 
groups on extending classical sequence alignment algo- 
rithms to handle pairwise relationships among residue 
positions (Taylor and Orengo [23], Orengo et al. [14], 
Sali and Blundell [20]). 

Rackovsky and Scheraga [17, 181 develop a purely 
local representation of protein chains, by defining dis- 
crete analogues of curvature and torsion in terms of the 
virtual bond vectors. They propose a method of search- 
ing for structural similarities based on comparing these 
parameters for different proteins [16, 181. 

Fischer et al [4] apply geometric hashing to find match- 
ing pairs of atoms (alpha carbons) between two molecules. 
The common subsequences they find are not necessarily 
consecutive. To use geometric hashing, a base molecule 
is preprocessed to find all possible matching coordinate 
frames. This may involve up to O(n3) pre-processing 
and storage, since a rigid motion in three dimensions is 
specified by its action on three points. (Distance con- 
straints imposed by the protein can improve this bound 
somewhat.) Given a second target molecule, each triplet 
of points “votes” for a rigid motion with respect to the 
base molecule; a large number of common votes indi- 
cates a possible large match between the two molecules. 
Assuming that the rigid motions are indexed in a well- 
distributed hash table, the running time is O(n3). Re- 

cent work on this technique has suggested that it may be 
possible to reduce the running time for protein matching 
applications to a roughly quadratic bound [15]. 

2 Fast Substructure Detection 

The first step of our algorithm exploits the fact that it 
is possible to quickly detect contiguous alignments (or 
shifts) of two proteins such that significant substruc- 
tures of the two proteins can be geometrically aligned. 
This operation simply identifies the shifts for which there 
are matching substructures, without determining which 
portions of the two proteins correspond. The second 
step of our algorithm, discussed below, then identifies 
these matching substructures. 

Consider the case in which two proteins contain con- 
tiguous substructures that are approximately similar. 
By contiguous we mean a portion of structure corre- 
sponding to an unbroken substring of the protein’s pri- 
mary sequence. We first compute the URMS, as de- 
fined above, for each relative shift of the two protein 
sequences. Using the FFT and assuming each protein 
has length bounded by n, this can be accomplished in 
O(n log n) time rather than the cruder bound of O(n2). 
When we reach the shift at which there is a substruc- 
ture match, we expect the URMS to drop considerably. 
By looking for shifts at which there is an unusually low 
URMS, we can detect approximate common substruc- 
tures. 

Why should we expect a drop of this sort? It is 
here that the use of URMS, rather than position-RMS, 
is crucial. Whereas a single “bad” match for URMS 
matching contributes at most 4 to the sum of squared 
distances, a single bad match in the position-RMS can 
have an unbounded effect. Thus, each outlier in the 
URMS setting contributes at most a constant amount 
to the error, and cannot prevent a good matching region 
from standing out. 

Intuitively, two unrelated proteins “look random” 
to each other. We now consider some properties of the 
URMS for sets of random unit vectors in R3. Of course, 
real proteins are not random sequences of unit vectors; 
indeed, adjacent vectors within a protein are highly cor- 
related. For instance, the angles between adjacent vec- 
tors are highly constrained and there are larger sub- 
structures that occur with high frequency (e.g. alpha 
helices and beta sheets). The Ramachandran plot of an- 
gles between adjacent residues [3] depicts exactly the 
correlations that occur in typical secondary structural 
units. Nevertheless, we show by experiment that many 
of our observations about comparing sets of random 
unit vectors apply in an approximate sense to proteins; 
though adjacent vectors within a protein are not ran- 
dom, it appears that the intuition that pairs of unre- 
lated proteins “look random” to each other has some 
validity. 
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Lemma 1 The expected (nonminimized) RMS distance 
between two sequences of randomly chosen unit vectors 
in R3 is fi. 

.Proof: By linearity of expectation, we may focus on a 
single pair of randomly chosen unit vectors x and y; and 
by symmetry, we may assume that y = (O,O, 1). For a 
unit vector 2, let f(x) denote the result of reflecting x 
through the xy-plane. If we generate the unit vector x 
from the uniform distribution on the sphere, and then 
output x or f(x) with equal probability, the result is 
still uniformly distributed. But 

(x-y)2+(f(x)-y)2 = (x-y)2+(2+y)2 = 222+2yz = 4, 

and so the expected squared distance between x and y 
is 2. n 

One intuitively expects that the URMS (the RMS 
distance between sets of random unit vectors minimized 
over rotations) should achieve a value not much below 
a. To achieve a more precise bound, we analyze the 
correlation matrix used during the RMS calculation. 

The minimized RMS distance between two sequences 
of unit vectors, each of length n, is 

where A is the correlation matrix and svd(A) is the di- 
agonal matrix in the SVD decomposition of A [6]. For 
unit vectors picked uniformly in the unit sphere (say 
(xl, x2,x3) from the first protein and (yr , yz, ys) from 
the second) we need the distribution for the pairwise 
products xiyi, as these are the terms that appear in the 
correlation matrix. These terms all have the same prob- 
ability distribution, so we analyze the random variable 
Xl&. 

For xryr, we can assume that x1 and yr are indepen- 
dent and uniformly distributed in the interval [-1, 11. 
This follows from the correspondence between uniform 
density on a sphere’s surface and uniform density on the 
sphere’s diameter. 

The random variable X = XrYr is not uniform, but 
we’re adding a large number of such random values (one 
for each unit vector in the protein chain), so, once we 
have the mean and variance, we should be able to use 
the Central Limit Theorem to obtain an approximation. 

1 l l 
fwl= 4 -1 -1 

ss 
wldxdyl = 0 

Thus, we have a standard deviation of a = 4. 
Applying the Central Limit Theorem, we conclude 

that every individual entry in the correlation matrix 

Table 1: The expected URMS for different length se- 
quences of random unit vectors. The formula is derived 
in the text. The experiments used sequences of ran- 
dom unit vectors generated using MATLAB. For each 
length, the experimental value shown is the mean for 
1000 trials. 

can be approximated by a random variable of the form 
qq(O, 1) where ~(0, 1) denotes the normal distribution 
with mean 0 and standard deviation 1. Unfortunately, 
this isn’t enough to determine the final form of the corre- 
lation matrix, as the entries are not independent. Still, 
an analysis under the (false) assumption of indepen- 
dence may be suggestive of how the matrices behave 
in practice; we confirm this with experimental results. 

Let B be a 3 x 3 matrix with entries chosen inde- 
pendently from ~(0,l). We need to determine expected 
values for the trace of the SVD of this matrix. It’s a 
simple matter to run 10,000 experiments of this type 
using MATLAB. Experimentally, the desired trace has 
mean 4.26 with standard deviation 1.06. 

The analysis above indicates that trace(svd(A)) in 
the formula for distance can be replaced by its expected 
value which is $b where b is the expected value of 
trace(svd(B)). Substituting our experimentally derived 

value for b, the expected distance D is 4-e 2 - 2s4 This 

is the approximate distance that we should see between 
two unrelated proteins after the proteins have been ro- 
tated to agree as much as possible. 

Table 1 shows values for the expected value of the 
URMS using (1) the formla derived above and (2) ex- 
perimental data using sequences of random unit vectors. 
The formula and experiments agree more closely than 
we had expected. Apparently, the (false) assumption 
of independence that we used above still allowed the 
derivation of a predictive formula. 

These results agree quite well with our experiments 
on real proteins, although the URMS for real proteins is 
a bit smaller than the values derived above. See Figures 
1 and 2. These figures show the URMS plotted for each 
possible shift. Figure 1 compares a protein of length 65 
with one of length 104. The expected URMS derived 
using the above formula (for a comparison of length 65) 
is 1.284 while the figure appears to indicate an average 
value somewhat below this. Figure 2 compares a pro- 
tein of length 382 with one of length 457. The expected 
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Figure 1: Orientation-RMS for each shift of 2cro 
and 2wrp. 
1.1 

Figure 2: Orientation-RMS for each shift of lhsc 
and 2yhx. 

URMS, by formula, is 1.362 while, again, the figure in- 
dicates a value below this. The discrepancy can be ex- 
plained by the fact that our formula models proteins as 
sequences of random unit vectors, an assumption that 
is certainly untrue. 

In summary, both analysis and experiment indicate 
that for two unrelated proteins (1) the expected (non- 
minimized) RMS-distance for the corresponding sequences 
of unit vectors is fi when the proteins are placed at 
random orientations and (2) the expected URMS (i.e., 
the RMS-distance for unit vectors when the proteins are 
rotated to align as well as possible) is roughly equal to 

6 
2 - 2.84 where n is the length of the smaller of the 

two proteins. 
If two proteins have a substructure in common and 

if the protein sequences are shifted to bring the two sim- 
ilar substructures into correspondence then the URMS 
should decrease. The following lemma tries to capture 
this notion, building on our view of unrelated portions 

of protein chains as looking “random” with respect to 
one another. 

Lemma2 Letvr,..., vk be unit vectors in R3, and let 
al,...,a,,h,. . . , b, be unit vectors chosen uniformly 
and independently at random in R3. Consider the fol- 
lowing two sequences of orientation vectors: 

{al, a2,. ..,ap,VlrV2,...,Vk,ap+l,..., 4, 

{h, bz, . . . , b,, ~1, ~2,. . . , ‘Jk, bq+l, . . . , ha). 

Define f = A, the fraction of the sequence corre- 
sponding to the set {vi}. Then at the shift that brings 
the two copies of vr into alignment, the value of the 
expected URMS is at most dm. 

Proof: We can provide an upper bound on the value 
of the URMS by computing the value of the RMS at a 
particular orientation: namely, the one which geometri- 
cally aligns the two copies of the sets {vr , . . . , vk}. The 
crucial observation is that we can consider the vectors 
in {ui} and (bj} to have been generated after choos- 
ing this alignment; thus, the expected squared distance 
between each corresponding pair is 2, by Lemma 1. 
Thus, at this orientation, the expected sum of all the 
squared distances is 2(1-f) n, and so the expected value 
of the RMS-distance is dm. The value of the 
URMS, which minimizes over all possible orientations, 
is bounded by this quantity. n 

Consider two proteins of length 300 with a com- 
mon substructure of length 45. This lemma implies 
that the expected URMS for these proteins should be 
5 &? or about 1.30. In fact, the URMS for proteins of 
length about 300 drops considerably below 1.30 even for 
smaller common substructures. Again, this is probably 
due to the nonrandom nature of real proteins. 

Our strategy is thus to try all possible shifts of the 
two proteins looking for a drop in the URMS. Experi- 
ment indicates that this strategy is quite effective. For a 
given shift, we compute the correlation matrix and use 
this to compute the RMS-distance between the two sets 
of corresponding unit vectors. The FFT can be used 
to compute the matrix entries for each of the n shifts. 
It takes 0(n log n) time to compute n 3-by-3 matrices. 
For each of these matrices we can compute in constant 
time the RMS-distance between the corresponding unit 
vectors. Thus, in O(nlogn) time we can compute the 
URMS for all possible shifts. 

Identifying Matching Substructures 

The method so far can be used to detect which shifts 
might lead to a correspondence between common sub- 
structures, but we have not described how that com- 
mon substructure can be recognized. In other words, we 
have an efficient method for indicating when two pro- 
teins have a common substructure, but it does not ac- 
tually tell us where the substructure is or how to rotate 

109 



Figure 3: Orientation-RMS for each shift of lrhd against 
itself. 

(in 3D) the structures so that the common substruc- 
tures have the same orientation. We do know the shift 
providing the correspondence between the two protein 
sequences, so we have the correct l-to-l map between 
the two proteins. 

Consider the rotation needed to superimpose the 
substructures. If the substructures are sufficiently sim- 
ilar then this rotation is the same as that needed to 
superimpose subparts of the substructures. We can use 
this observation as a way to recognize the substructure. 
The idea is to compute the rotation matrices needed to 
bring each small piece of the first protein into rotational 
alignment with the corresponding piece of the second 
protein. For pieces that are part of the matching sub- 
structure, these rotation matrices will agree. We com- 
pute the rotation matrix at each unit vector by comput- 
ing the rotation that most closely aligns the vector and 
its successor in the first protein with the corresponding 
two vectors in the second protein. 

To determine when two rotation matrices are simi- 
lar, we use the Frobenius norm. The Frobenius norm of 
a matrix is the square root of the sum of the squares of 
all the matrix entries. This is relatively easy to compute 
and is invariant under rotation. Let Q and R be two ro- 
tation matrices (i.e., orthogonal matrices). Then the 
Frobenius norm of Q - R is the same as the Frobenius 
norm of QRT - I where I is the identity matrix. This 
fits our intuition for how we want our matrix norm to 
behave: if Q and R are close as rotation matrices then 
QRT should be close to the identity matrix. 

For our problem, we are looking for sequences of 
these matrices that agree. Thus it is sufficient to com- 
pare only adjacent matrices as we move down the pro- 
tein sequence. This requires just Q(n) time. 

3 Implementation and Experimental Results 

We have implemented our algorithm in Matlab. The 
protein structures were taken from the Protein Data 
Bank (PDB) [l] d an our results were compared against 
substructure similarities reported in the literature. Some 
of our experiments are summarized in this section. 

Assume the shorter protein is A and the longer one 
is B. The first residue in A is shifted to correspond in 
turn with each of the residues in B. At each shift, we 
truncate the unmatched portion of B. When protein A 
extends past the end of B, we wrap around to the be- 
ginning of B. We compute the rotation that minimizes 
the RMS-distance for the unit-vector representations of 
A and the truncated B. 

Figures 1, 2, and 3 show the URMS for each possible 
shift of one protein against another. Our experiments 
have shown that only the first lo-20 lowest values are 
likely to represent shifts that bring significant substruc- 
tures into correspondence. Our program takes just the 
best 20 shifts and proceeds to the next stage of finding 
the actual matching contiguous substructures for these 
shifts. To ensure that we have not ignored potential 
substructure matches, we have also run experiments to 
check for matching substructures for all the shifts, not 
just the best 20. So far, without exception, the other 
shifts did not yield any matching substructures of sig- 
nificant size. 

Notice that in comparing lrhd (293 residues) with 
itself the URMS plot (Figure 3) is symmetric about the 
median shift. This is caused by our cyclic shifting of 
residues and happens whenever we compare a protein 
with itself. Note that when comparing a protein with 
itself, we do not graph the zero-shift, since the URMS 
for that shift is 0. Including this shift would distort our 
scale. 

In some structure comparisons (e.g., Figure 1: 2cro 
(65 residues) with 2wrp (104 residues)), a large consec- 
utive substructure (22 out of 65 residues) is responsible 
for the drop in the URMS. In other cases (e.g., Figure 2: 
lhsc (382 residues) with 2yhx (457 residues)), a number 
of small matching substructures (about three substruc- 
tures of average length 12-13) were found for one shift 
and they cumulatively contributed to the drop in the 
URMS. 

We compared our results with others in the liter- 
ature. In Fischer et al. [4] a helix-turn-helix motif is 
found in tryptophan repressor (PDB code: 2wrp) and 
in phage 434 cro (PDB code: 2cro). Our graph showing 
the URMS for each shift is shown in Figure 1. We find a 
substructure match between the same set of 23 consec- 
utive residues (see Figure 4). Another long match our 
program discovers for these proteins is shown in Fig- 
ure 5. Notice that these two matches involve the same 
section in 2wrp. 

An internal duplication of motifs in the molecule of 
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Figure 4: Subsequence match of 2cro(17-40) and 
2wrp(62-85). 

Figure 5: Subsequence match of 2cro(48-65) and 
2wrp(65-82). 

bovine liver rhodanese (PDB code: lrhd, 293 residues) 
is well known ([24]). 0 ur algorithm detects large match- 
ing substructures (see Figures 6 - 9 in the Appendix.) 
We do not present matching substructures of length less 
than 12. 

In a third example, we compare the heat shock cog- 
nate protein (PDB code: lhsc, 382 residues) with the 
protein hexokinase (PDB code: 2yhx, 457 residues). 
These proteins were compared in [5] though we find it 
hard to compare our results with theirs. A beta-sheet of 
27 residues is found to match residues 193-220 in lhsc 
with 63-100 in 2yhx (see Figure 10 in the Appendix). 

4 Finding Common Protein Domains 

We have preliminary results for composing larger struc- 
tures (protein domains) by combining the smaller con- 
tiguous substructures detected using the above algo- 
rithm. Assume the substructure match program out- 
puts s matching pairs of substructures. A large struc- 

ture is a disjoint union of matching substructures that 
undergo the same transformation (rotation and transla- 
tion) for the best RMS. Currently the match is found in 
a primitive way by comparing the O(s2) rotation matri- 
ces and finding a clique of similar matrices (according 
to the Frobenius norm) and then comparing the trans- 
lation. (Notice that just comparing the rotations will 
yield bogus results on alpha-helix-rich structures, be 
cause a substructure al of protein A might be similar 
to many substructures in B under the same rotation, 
but with different translations.) The matching sub- 
structures detected for lrhd above were found to un- 
dergo similar transformation. We tested two SH2 pro- 
tein fragments, the SH2 domain lale (103 residues) and 
SH3-SH2 domain fragment of Human Bcr-Abl tyrosine 
Kinase Transferase (PDB code: 2abl,l64 residues). We 
found two large matching substructures (see Figures 11 
and 12 in the Appendix) that sum up to 68 residues. 
Notice that the two matching substructures have a gap 
of 31 residues in lale and 34 residues in 2abl. 
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5 Appendix 

Figure 6: lrhd internal match of residues 9-26 with 
161-178. 
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Figure 7: lrhd internal match of residues 52-69 with 
204-221. 
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Figure 8: lrhd internal match of residues 73-102 with 
221-250. 
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Figure 9: lrhd internal match of residues 106-138 with 
251-283. 

Figure 11: lale(3-24) and 2ab1(69-80) superimposed. 

Figure 12: lale(55-102) and 2ab1(114-161) superim- 
posed. 

Figure 10: lhsc(193-220) and 2yhx(63-90) superim- 
posed. 
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